Pass StringRef by value.
[oota-llvm.git] / lib / Support / APFloat.cpp
index 7e56c849a5ec985e88f272afbf29f3689fa1aa4e..b9b323c4242826176685eee547857b58325639e7 100644 (file)
@@ -2,8 +2,8 @@
 //
 //                     The LLVM Compiler Infrastructure
 //
-// This file was developed by Neil Booth and is distributed under the
-// University of Illinois Open Source License. See LICENSE.TXT for details.
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
 //
 //===----------------------------------------------------------------------===//
 //
 //
 //===----------------------------------------------------------------------===//
 
-#include <cassert>
-#include <cstring>
 #include "llvm/ADT/APFloat.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/FoldingSet.h"
+#include "llvm/Support/ErrorHandling.h"
 #include "llvm/Support/MathExtras.h"
+#include <cstring>
 
 using namespace llvm;
 
@@ -23,6 +25,7 @@ using namespace llvm;
 
 /* Assumed in hexadecimal significand parsing, and conversion to
    hexadecimal strings.  */
+#define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
 COMPILE_TIME_ASSERT(integerPartWidth % 4 == 0);
 
 namespace llvm {
@@ -39,263 +42,541 @@ namespace llvm {
 
     /* Number of bits in the significand.  This includes the integer
        bit.  */
-    unsigned char precision;
+    unsigned int precision;
 
-    /* If the target format has an implicit integer bit.  */
-    bool implicitIntegerBit;
+    /* True if arithmetic is supported.  */
+    unsigned int arithmeticOK;
   };
 
+  const fltSemantics APFloat::IEEEhalf = { 15, -14, 11, true };
   const fltSemantics APFloat::IEEEsingle = { 127, -126, 24, true };
   const fltSemantics APFloat::IEEEdouble = { 1023, -1022, 53, true };
   const fltSemantics APFloat::IEEEquad = { 16383, -16382, 113, true };
-  const fltSemantics APFloat::x87DoubleExtended = { 16383, -16382, 64, false };
-  const fltSemantics APFloat::Bogus = { 0, 0, 0, false };
+  const fltSemantics APFloat::x87DoubleExtended = { 16383, -16382, 64, true };
+  const fltSemantics APFloat::Bogus = { 0, 0, 0, true };
+
+  // The PowerPC format consists of two doubles.  It does not map cleanly
+  // onto the usual format above.  For now only storage of constants of
+  // this type is supported, no arithmetic.
+  const fltSemantics APFloat::PPCDoubleDouble = { 1023, -1022, 106, false };
+
+  /* A tight upper bound on number of parts required to hold the value
+     pow(5, power) is
+
+       power * 815 / (351 * integerPartWidth) + 1
+       
+     However, whilst the result may require only this many parts,
+     because we are multiplying two values to get it, the
+     multiplication may require an extra part with the excess part
+     being zero (consider the trivial case of 1 * 1, tcFullMultiply
+     requires two parts to hold the single-part result).  So we add an
+     extra one to guarantee enough space whilst multiplying.  */
+  const unsigned int maxExponent = 16383;
+  const unsigned int maxPrecision = 113;
+  const unsigned int maxPowerOfFiveExponent = maxExponent + maxPrecision - 1;
+  const unsigned int maxPowerOfFiveParts = 2 + ((maxPowerOfFiveExponent * 815)
+                                                / (351 * integerPartWidth));
+}
+
+/* A bunch of private, handy routines.  */
+
+static inline unsigned int
+partCountForBits(unsigned int bits)
+{
+  return ((bits) + integerPartWidth - 1) / integerPartWidth;
+}
+
+/* Returns 0U-9U.  Return values >= 10U are not digits.  */
+static inline unsigned int
+decDigitValue(unsigned int c)
+{
+  return c - '0';
 }
 
-/* Put a bunch of private, handy routines in an anonymous namespace.  */
-namespace {
+static unsigned int
+hexDigitValue(unsigned int c)
+{
+  unsigned int r;
+
+  r = c - '0';
+  if(r <= 9)
+    return r;
+
+  r = c - 'A';
+  if(r <= 5)
+    return r + 10;
+
+  r = c - 'a';
+  if(r <= 5)
+    return r + 10;
 
-  inline unsigned int
-  partCountForBits(unsigned int bits)
-  {
-    return ((bits) + integerPartWidth - 1) / integerPartWidth;
+  return -1U;
+}
+
+static inline void
+assertArithmeticOK(const llvm::fltSemantics &semantics) {
+  assert(semantics.arithmeticOK
+         && "Compile-time arithmetic does not support these semantics");
+}
+
+/* Return the value of a decimal exponent of the form
+   [+-]ddddddd.
+
+   If the exponent overflows, returns a large exponent with the
+   appropriate sign.  */
+static int
+readExponent(StringRef::iterator begin, StringRef::iterator end)
+{
+  bool isNegative;
+  unsigned int absExponent;
+  const unsigned int overlargeExponent = 24000;  /* FIXME.  */
+  StringRef::iterator p = begin;
+
+  assert(p != end && "Exponent has no digits");
+
+  isNegative = (*p == '-');
+  if (*p == '-' || *p == '+') {
+    p++;
+    assert(p != end && "Exponent has no digits");
   }
 
-  unsigned int
-  digitValue(unsigned int c)
-  {
-    unsigned int r;
+  absExponent = decDigitValue(*p++);
+  assert(absExponent < 10U && "Invalid character in exponent");
+
+  for (; p != end; ++p) {
+    unsigned int value;
 
-    r = c - '0';
-    if(r <= 9)
-      return r;
+    value = decDigitValue(*p);
+    assert(value < 10U && "Invalid character in exponent");
 
-    return -1U;
+    value += absExponent * 10;
+    if (absExponent >= overlargeExponent) {
+      absExponent = overlargeExponent;
+      break;
+    }
+    absExponent = value;
   }
 
-  unsigned int
-  hexDigitValue (unsigned int c)
-  {
-    unsigned int r;
+  assert(p == end && "Invalid exponent in exponent");
 
-    r = c - '0';
-    if(r <= 9)
-      return r;
+  if (isNegative)
+    return -(int) absExponent;
+  else
+    return (int) absExponent;
+}
 
-    r = c - 'A';
-    if(r <= 5)
-      return r + 10;
+/* This is ugly and needs cleaning up, but I don't immediately see
+   how whilst remaining safe.  */
+static int
+totalExponent(StringRef::iterator p, StringRef::iterator end,
+              int exponentAdjustment)
+{
+  int unsignedExponent;
+  bool negative, overflow;
+  int exponent;
 
-    r = c - 'a';
-    if(r <= 5)
-      return r + 10;
+  assert(p != end && "Exponent has no digits");
 
-    return -1U;
+  negative = *p == '-';
+  if(*p == '-' || *p == '+') {
+    p++;
+    assert(p != end && "Exponent has no digits");
+  }
+
+  unsignedExponent = 0;
+  overflow = false;
+  for(; p != end; ++p) {
+    unsigned int value;
+
+    value = decDigitValue(*p);
+    assert(value < 10U && "Invalid character in exponent");
+
+    unsignedExponent = unsignedExponent * 10 + value;
+    if(unsignedExponent > 65535)
+      overflow = true;
   }
 
-  /* This is ugly and needs cleaning up, but I don't immediately see
-     how whilst remaining safe.  */
-  static int
-  totalExponent(const char *p, int exponentAdjustment)
-  {
-    integerPart unsignedExponent;
-    bool negative, overflow;
-    long exponent;
+  if(exponentAdjustment > 65535 || exponentAdjustment < -65536)
+    overflow = true;
 
-    /* Move past the exponent letter and sign to the digits.  */
+  if(!overflow) {
+    exponent = unsignedExponent;
+    if(negative)
+      exponent = -exponent;
+    exponent += exponentAdjustment;
+    if(exponent > 65535 || exponent < -65536)
+      overflow = true;
+  }
+
+  if(overflow)
+    exponent = negative ? -65536: 65535;
+
+  return exponent;
+}
+
+static StringRef::iterator
+skipLeadingZeroesAndAnyDot(StringRef::iterator begin, StringRef::iterator end,
+                           StringRef::iterator *dot)
+{
+  StringRef::iterator p = begin;
+  *dot = end;
+  while(*p == '0' && p != end)
     p++;
-    negative = *p == '-';
-    if(*p == '-' || *p == '+')
-      p++;
 
-    unsignedExponent = 0;
-    overflow = false;
-    for(;;) {
-      unsigned int value;
+  if(*p == '.') {
+    *dot = p++;
 
-      value = digitValue(*p);
-      if(value == -1U)
-        break;
+    assert(end - begin != 1 && "Significand has no digits");
 
+    while(*p == '0' && p != end)
       p++;
-      unsignedExponent = unsignedExponent * 10 + value;
-      if(unsignedExponent > 65535)
-        overflow = true;
-    }
+  }
 
-    if(exponentAdjustment > 65535 || exponentAdjustment < -65536)
-      overflow = true;
+  return p;
+}
 
-    if(!overflow) {
-      exponent = unsignedExponent;
-      if(negative)
-        exponent = -exponent;
-      exponent += exponentAdjustment;
-      if(exponent > 65535 || exponent < -65536)
-        overflow = true;
-    }
+/* Given a normal decimal floating point number of the form
+
+     dddd.dddd[eE][+-]ddd
 
-    if(overflow)
-      exponent = negative ? -65536: 65535;
+   where the decimal point and exponent are optional, fill out the
+   structure D.  Exponent is appropriate if the significand is
+   treated as an integer, and normalizedExponent if the significand
+   is taken to have the decimal point after a single leading
+   non-zero digit.
 
-    return exponent;
+   If the value is zero, V->firstSigDigit points to a non-digit, and
+   the return exponent is zero.
+*/
+struct decimalInfo {
+  const char *firstSigDigit;
+  const char *lastSigDigit;
+  int exponent;
+  int normalizedExponent;
+};
+
+static void
+interpretDecimal(StringRef::iterator begin, StringRef::iterator end,
+                 decimalInfo *D)
+{
+  StringRef::iterator dot = end;
+  StringRef::iterator p = skipLeadingZeroesAndAnyDot (begin, end, &dot);
+
+  D->firstSigDigit = p;
+  D->exponent = 0;
+  D->normalizedExponent = 0;
+
+  for (; p != end; ++p) {
+    if (*p == '.') {
+      assert(dot == end && "String contains multiple dots");
+      dot = p++;
+      if (p == end)
+        break;
+    }
+    if (decDigitValue(*p) >= 10U)
+      break;
   }
 
-  const char *
-  skipLeadingZeroesAndAnyDot(const char *p, const char **dot)
-  {
-    *dot = 0;
-    while(*p == '0')
-      p++;
+  if (p != end) {
+    assert((*p == 'e' || *p == 'E') && "Invalid character in significand");
+    assert(p != begin && "Significand has no digits");
+    assert((dot == end || p - begin != 1) && "Significand has no digits");
 
-    if(*p == '.') {
-      *dot = p++;
-      while(*p == '0')
-        p++;
+    /* p points to the first non-digit in the string */
+    D->exponent = readExponent(p + 1, end);
+
+    /* Implied decimal point?  */
+    if (dot == end)
+      dot = p;
+  }
+
+  /* If number is all zeroes accept any exponent.  */
+  if (p != D->firstSigDigit) {
+    /* Drop insignificant trailing zeroes.  */
+    if (p != begin) {
+      do
+        do
+          p--;
+        while (p != begin && *p == '0');
+      while (p != begin && *p == '.');
     }
 
-    return p;
+    /* Adjust the exponents for any decimal point.  */
+    D->exponent += static_cast<exponent_t>((dot - p) - (dot > p));
+    D->normalizedExponent = (D->exponent +
+              static_cast<exponent_t>((p - D->firstSigDigit)
+                                      - (dot > D->firstSigDigit && dot < p)));
   }
 
-  /* Return the trailing fraction of a hexadecimal number.
-     DIGITVALUE is the first hex digit of the fraction, P points to
-     the next digit.  */
-  lostFraction
-  trailingHexadecimalFraction(const char *p, unsigned int digitValue)
-  {
-    unsigned int hexDigit;
+  D->lastSigDigit = p;
+}
 
-    /* If the first trailing digit isn't 0 or 8 we can work out the
-       fraction immediately.  */
-    if(digitValue > 8)
-      return lfMoreThanHalf;
-    else if(digitValue < 8 && digitValue > 0)
-      return lfLessThanHalf;
+/* Return the trailing fraction of a hexadecimal number.
+   DIGITVALUE is the first hex digit of the fraction, P points to
+   the next digit.  */
+static lostFraction
+trailingHexadecimalFraction(StringRef::iterator p, StringRef::iterator end,
+                            unsigned int digitValue)
+{
+  unsigned int hexDigit;
 
-    /* Otherwise we need to find the first non-zero digit.  */
-    while(*p == '0')
-      p++;
+  /* If the first trailing digit isn't 0 or 8 we can work out the
+     fraction immediately.  */
+  if(digitValue > 8)
+    return lfMoreThanHalf;
+  else if(digitValue < 8 && digitValue > 0)
+    return lfLessThanHalf;
 
-    hexDigit = hexDigitValue(*p);
+  /* Otherwise we need to find the first non-zero digit.  */
+  while(*p == '0')
+    p++;
 
-    /* If we ran off the end it is exactly zero or one-half, otherwise
-       a little more.  */
-    if(hexDigit == -1U)
-      return digitValue == 0 ? lfExactlyZero: lfExactlyHalf;
-    else
-      return digitValue == 0 ? lfLessThanHalf: lfMoreThanHalf;
-  }
+  assert(p != end && "Invalid trailing hexadecimal fraction!");
 
-  /* Return the fraction lost were a bignum truncated losing the least
-     significant BITS bits.  */
-  lostFraction
-  lostFractionThroughTruncation(const integerPart *parts,
-                                unsigned int partCount,
-                                unsigned int bits)
-  {
-    unsigned int lsb;
+  hexDigit = hexDigitValue(*p);
 
-    lsb = APInt::tcLSB(parts, partCount);
+  /* If we ran off the end it is exactly zero or one-half, otherwise
+     a little more.  */
+  if(hexDigit == -1U)
+    return digitValue == 0 ? lfExactlyZero: lfExactlyHalf;
+  else
+    return digitValue == 0 ? lfLessThanHalf: lfMoreThanHalf;
+}
 
-    /* Note this is guaranteed true if bits == 0, or LSB == -1U.  */
-    if(bits <= lsb)
-      return lfExactlyZero;
-    if(bits == lsb + 1)
-      return lfExactlyHalf;
-    if(bits <= partCount * integerPartWidth
-       && APInt::tcExtractBit(parts, bits - 1))
-      return lfMoreThanHalf;
+/* Return the fraction lost were a bignum truncated losing the least
+   significant BITS bits.  */
+static lostFraction
+lostFractionThroughTruncation(const integerPart *parts,
+                              unsigned int partCount,
+                              unsigned int bits)
+{
+  unsigned int lsb;
 
-    return lfLessThanHalf;
+  lsb = APInt::tcLSB(parts, partCount);
+
+  /* Note this is guaranteed true if bits == 0, or LSB == -1U.  */
+  if(bits <= lsb)
+    return lfExactlyZero;
+  if(bits == lsb + 1)
+    return lfExactlyHalf;
+  if(bits <= partCount * integerPartWidth
+     && APInt::tcExtractBit(parts, bits - 1))
+    return lfMoreThanHalf;
+
+  return lfLessThanHalf;
+}
+
+/* Shift DST right BITS bits noting lost fraction.  */
+static lostFraction
+shiftRight(integerPart *dst, unsigned int parts, unsigned int bits)
+{
+  lostFraction lost_fraction;
+
+  lost_fraction = lostFractionThroughTruncation(dst, parts, bits);
+
+  APInt::tcShiftRight(dst, parts, bits);
+
+  return lost_fraction;
+}
+
+/* Combine the effect of two lost fractions.  */
+static lostFraction
+combineLostFractions(lostFraction moreSignificant,
+                     lostFraction lessSignificant)
+{
+  if(lessSignificant != lfExactlyZero) {
+    if(moreSignificant == lfExactlyZero)
+      moreSignificant = lfLessThanHalf;
+    else if(moreSignificant == lfExactlyHalf)
+      moreSignificant = lfMoreThanHalf;
   }
 
-  /* Shift DST right BITS bits noting lost fraction.  */
-  lostFraction
-  shiftRight(integerPart *dst, unsigned int parts, unsigned int bits)
-  {
-    lostFraction lost_fraction;
+  return moreSignificant;
+}
+
+/* The error from the true value, in half-ulps, on multiplying two
+   floating point numbers, which differ from the value they
+   approximate by at most HUE1 and HUE2 half-ulps, is strictly less
+   than the returned value.
+
+   See "How to Read Floating Point Numbers Accurately" by William D
+   Clinger.  */
+static unsigned int
+HUerrBound(bool inexactMultiply, unsigned int HUerr1, unsigned int HUerr2)
+{
+  assert(HUerr1 < 2 || HUerr2 < 2 || (HUerr1 + HUerr2 < 8));
+
+  if (HUerr1 + HUerr2 == 0)
+    return inexactMultiply * 2;  /* <= inexactMultiply half-ulps.  */
+  else
+    return inexactMultiply + 2 * (HUerr1 + HUerr2);
+}
 
-    lost_fraction = lostFractionThroughTruncation(dst, parts, bits);
+/* The number of ulps from the boundary (zero, or half if ISNEAREST)
+   when the least significant BITS are truncated.  BITS cannot be
+   zero.  */
+static integerPart
+ulpsFromBoundary(const integerPart *parts, unsigned int bits, bool isNearest)
+{
+  unsigned int count, partBits;
+  integerPart part, boundary;
+
+  assert(bits != 0);
 
-    APInt::tcShiftRight(dst, parts, bits);
+  bits--;
+  count = bits / integerPartWidth;
+  partBits = bits % integerPartWidth + 1;
 
-    return lost_fraction;
+  part = parts[count] & (~(integerPart) 0 >> (integerPartWidth - partBits));
+
+  if (isNearest)
+    boundary = (integerPart) 1 << (partBits - 1);
+  else
+    boundary = 0;
+
+  if (count == 0) {
+    if (part - boundary <= boundary - part)
+      return part - boundary;
+    else
+      return boundary - part;
   }
 
-  /* Combine the effect of two lost fractions.  */
-  lostFraction
-  combineLostFractions(lostFraction moreSignificant,
-                       lostFraction lessSignificant)
-  {
-    if(lessSignificant != lfExactlyZero) {
-      if(moreSignificant == lfExactlyZero)
-        moreSignificant = lfLessThanHalf;
-      else if(moreSignificant == lfExactlyHalf)
-        moreSignificant = lfMoreThanHalf;
+  if (part == boundary) {
+    while (--count)
+      if (parts[count])
+        return ~(integerPart) 0; /* A lot.  */
+
+    return parts[0];
+  } else if (part == boundary - 1) {
+    while (--count)
+      if (~parts[count])
+        return ~(integerPart) 0; /* A lot.  */
+
+    return -parts[0];
+  }
+
+  return ~(integerPart) 0; /* A lot.  */
+}
+
+/* Place pow(5, power) in DST, and return the number of parts used.
+   DST must be at least one part larger than size of the answer.  */
+static unsigned int
+powerOf5(integerPart *dst, unsigned int power)
+{
+  static const integerPart firstEightPowers[] = { 1, 5, 25, 125, 625, 3125,
+                                                  15625, 78125 };
+  integerPart pow5s[maxPowerOfFiveParts * 2 + 5];
+  pow5s[0] = 78125 * 5;
+  
+  unsigned int partsCount[16] = { 1 };
+  integerPart scratch[maxPowerOfFiveParts], *p1, *p2, *pow5;
+  unsigned int result;
+  assert(power <= maxExponent);
+
+  p1 = dst;
+  p2 = scratch;
+
+  *p1 = firstEightPowers[power & 7];
+  power >>= 3;
+
+  result = 1;
+  pow5 = pow5s;
+
+  for (unsigned int n = 0; power; power >>= 1, n++) {
+    unsigned int pc;
+
+    pc = partsCount[n];
+
+    /* Calculate pow(5,pow(2,n+3)) if we haven't yet.  */
+    if (pc == 0) {
+      pc = partsCount[n - 1];
+      APInt::tcFullMultiply(pow5, pow5 - pc, pow5 - pc, pc, pc);
+      pc *= 2;
+      if (pow5[pc - 1] == 0)
+        pc--;
+      partsCount[n] = pc;
     }
 
-    return moreSignificant;
-  }
-
-  /* Zero at the end to avoid modular arithmetic when adding one; used
-     when rounding up during hexadecimal output.  */
-  static const char hexDigitsLower[] = "0123456789abcdef0";
-  static const char hexDigitsUpper[] = "0123456789ABCDEF0";
-  static const char infinityL[] = "infinity";
-  static const char infinityU[] = "INFINITY";
-  static const char NaNL[] = "nan";
-  static const char NaNU[] = "NAN";
-
-  /* Write out an integerPart in hexadecimal, starting with the most
-     significant nibble.  Write out exactly COUNT hexdigits, return
-     COUNT.  */
-  static unsigned int
-  partAsHex (char *dst, integerPart part, unsigned int count,
-             const char *hexDigitChars)
-  {
-    unsigned int result = count;
-
-    assert (count != 0 && count <= integerPartWidth / 4);
-
-    part >>= (integerPartWidth - 4 * count);
-    while (count--) {
-      dst[count] = hexDigitChars[part & 0xf];
-      part >>= 4;
+    if (power & 1) {
+      integerPart *tmp;
+
+      APInt::tcFullMultiply(p2, p1, pow5, result, pc);
+      result += pc;
+      if (p2[result - 1] == 0)
+        result--;
+
+      /* Now result is in p1 with partsCount parts and p2 is scratch
+         space.  */
+      tmp = p1, p1 = p2, p2 = tmp;
     }
 
-    return result;
+    pow5 += pc;
   }
 
-  /* Write out an unsigned decimal integer.  */
-  static char *
-  writeUnsignedDecimal (char *dst, unsigned int n)
-  {
-    char buff[40], *p;
+  if (p1 != dst)
+    APInt::tcAssign(dst, p1, result);
 
-    p = buff;
-    do
-      *p++ = '0' + n % 10;
-    while (n /= 10);
+  return result;
+}
 
-    do
-      *dst++ = *--p;
-    while (p != buff);
+/* Zero at the end to avoid modular arithmetic when adding one; used
+   when rounding up during hexadecimal output.  */
+static const char hexDigitsLower[] = "0123456789abcdef0";
+static const char hexDigitsUpper[] = "0123456789ABCDEF0";
+static const char infinityL[] = "infinity";
+static const char infinityU[] = "INFINITY";
+static const char NaNL[] = "nan";
+static const char NaNU[] = "NAN";
 
-    return dst;
-  }
+/* Write out an integerPart in hexadecimal, starting with the most
+   significant nibble.  Write out exactly COUNT hexdigits, return
+   COUNT.  */
+static unsigned int
+partAsHex (char *dst, integerPart part, unsigned int count,
+           const char *hexDigitChars)
+{
+  unsigned int result = count;
 
-  /* Write out a signed decimal integer.  */
-  static char *
-  writeSignedDecimal (char *dst, int value)
-  {
-    if (value < 0) {
-      *dst++ = '-';
-      dst = writeUnsignedDecimal(dst, -(unsigned) value);
-    } else
-      dst = writeUnsignedDecimal(dst, value);
+  assert(count != 0 && count <= integerPartWidth / 4);
 
-    return dst;
+  part >>= (integerPartWidth - 4 * count);
+  while (count--) {
+    dst[count] = hexDigitChars[part & 0xf];
+    part >>= 4;
   }
+
+  return result;
+}
+
+/* Write out an unsigned decimal integer.  */
+static char *
+writeUnsignedDecimal (char *dst, unsigned int n)
+{
+  char buff[40], *p;
+
+  p = buff;
+  do
+    *p++ = '0' + n % 10;
+  while (n /= 10);
+
+  do
+    *dst++ = *--p;
+  while (p != buff);
+
+  return dst;
+}
+
+/* Write out a signed decimal integer.  */
+static char *
+writeSignedDecimal (char *dst, int value)
+{
+  if (value < 0) {
+    *dst++ = '-';
+    dst = writeUnsignedDecimal(dst, -(unsigned) value);
+  } else
+    dst = writeUnsignedDecimal(dst, value);
+
+  return dst;
 }
 
 /* Constructors.  */
@@ -325,6 +606,8 @@ APFloat::assign(const APFloat &rhs)
   sign = rhs.sign;
   category = rhs.category;
   exponent = rhs.exponent;
+  sign2 = rhs.sign2;
+  exponent2 = rhs.exponent2;
   if(category == fcNormal || category == fcNaN)
     copySignificand(rhs);
 }
@@ -339,6 +622,22 @@ APFloat::copySignificand(const APFloat &rhs)
                   partCount());
 }
 
+/* Make this number a NaN, with an arbitrary but deterministic value
+   for the significand.  If double or longer, this is a signalling NaN,
+   which may not be ideal.  If float, this is QNaN(0).  */
+void
+APFloat::makeNaN(unsigned type)
+{
+  category = fcNaN;
+  // FIXME: Add double and long double support for QNaN(0).
+  if (semantics->precision == 24 && semantics->maxExponent == 127) {
+    type |=  0x7fc00000U;
+    type &= ~0x80000000U;
+  } else
+    type = ~0U;
+  APInt::tcSet(significandParts(), type, partCount());
+}
+
 APFloat &
 APFloat::operator=(const APFloat &rhs)
 {
@@ -361,10 +660,16 @@ APFloat::bitwiseIsEqual(const APFloat &rhs) const {
       category != rhs.category ||
       sign != rhs.sign)
     return false;
+  if (semantics==(const llvm::fltSemantics*)&PPCDoubleDouble &&
+      sign2 != rhs.sign2)
+    return false;
   if (category==fcZero || category==fcInfinity)
     return true;
   else if (category==fcNormal && exponent!=rhs.exponent)
     return false;
+  else if (semantics==(const llvm::fltSemantics*)&PPCDoubleDouble &&
+           exponent2!=rhs.exponent2)
+    return false;
   else {
     int i= partCount();
     const integerPart* p=significandParts();
@@ -379,6 +684,7 @@ APFloat::bitwiseIsEqual(const APFloat &rhs) const {
 
 APFloat::APFloat(const fltSemantics &ourSemantics, integerPart value)
 {
+  assertArithmeticOK(ourSemantics);
   initialize(&ourSemantics);
   sign = 0;
   zeroSignificand();
@@ -387,18 +693,30 @@ APFloat::APFloat(const fltSemantics &ourSemantics, integerPart value)
   normalize(rmNearestTiesToEven, lfExactlyZero);
 }
 
+APFloat::APFloat(const fltSemantics &ourSemantics) {
+  assertArithmeticOK(ourSemantics);
+  initialize(&ourSemantics);
+  category = fcZero;
+  sign = false;
+}
+
+
 APFloat::APFloat(const fltSemantics &ourSemantics,
-                 fltCategory ourCategory, bool negative)
+                 fltCategory ourCategory, bool negative, unsigned type)
 {
+  assertArithmeticOK(ourSemantics);
   initialize(&ourSemantics);
   category = ourCategory;
   sign = negative;
-  if(category == fcNormal)
+  if (category == fcNormal)
     category = fcZero;
+  else if (ourCategory == fcNaN)
+    makeNaN(type);
 }
 
-APFloat::APFloat(const fltSemantics &ourSemantics, const char *text)
+APFloat::APFloat(const fltSemantics &ourSemantics, const StringRef& text)
 {
+  assertArithmeticOK(ourSemantics);
   initialize(&ourSemantics);
   convertFromString(text, rmNearestTiesToEven);
 }
@@ -414,6 +732,11 @@ APFloat::~APFloat()
   freeSignificand();
 }
 
+// Profile - This method 'profiles' an APFloat for use with FoldingSet.
+void APFloat::Profile(FoldingSetNodeID& ID) const {
+  ID.Add(bitcastToAPInt());
+}
+
 unsigned int
 APFloat::partCount() const
 {
@@ -437,7 +760,7 @@ APFloat::significandParts()
 {
   assert(category == fcNormal || category == fcNaN);
 
-  if(partCount() > 1)
+  if (partCount() > 1)
     return significand.parts;
   else
     return &significand.part;
@@ -504,6 +827,7 @@ APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend)
   integerPart scratch[4];
   integerPart *fullSignificand;
   lostFraction lost_fraction;
+  bool ignored;
 
   assert(semantics == rhs.semantics);
 
@@ -552,7 +876,7 @@ APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend)
     semantics = &extendedSemantics;
 
     APFloat extendedAddend(*addend);
-    status = extendedAddend.convert(extendedSemantics, rmTowardZero);
+    status = extendedAddend.convert(extendedSemantics, rmTowardZero, &ignored);
     assert(status == opOK);
     lost_fraction = addOrSubtractSignificand(extendedAddend, false);
 
@@ -634,6 +958,9 @@ APFloat::divideSignificand(const APFloat &rhs)
     APInt::tcShiftLeft(dividend, partsCount, bit);
   }
 
+  /* Ensure the dividend >= divisor initially for the loop below.
+     Incidentally, this means that the division loop below is
+     guaranteed to set the integer bit to one.  */
   if(APInt::tcCompare(dividend, divisor, partsCount) < 0) {
     exponent--;
     APInt::tcShiftLeft(dividend, partsCount, 1);
@@ -773,9 +1100,9 @@ APFloat::roundAwayFromZero(roundingMode rounding_mode,
   /* Current callers never pass this so we don't handle it.  */
   assert(lost_fraction != lfExactlyZero);
 
-  switch(rounding_mode) {
+  switch (rounding_mode) {
   default:
-    assert(0);
+    llvm_unreachable(0);
 
   case rmNearestTiesToAway:
     return lost_fraction == lfExactlyHalf || lost_fraction == lfMoreThanHalf;
@@ -849,7 +1176,7 @@ APFloat::normalize(roundingMode rounding_mode,
 
       /* Keep OMSB up-to-date.  */
       if(omsb > (unsigned) exponentChange)
-        omsb -= (unsigned) exponentChange;
+        omsb -= exponentChange;
       else
         omsb = 0;
     }
@@ -900,7 +1227,6 @@ APFloat::normalize(roundingMode rounding_mode,
 
   /* We have a non-zero denormal.  */
   assert(omsb < semantics->precision);
-  assert(exponent == semantics->minExponent);
 
   /* Canonicalize zeroes.  */
   if(omsb == 0)
@@ -913,9 +1239,9 @@ APFloat::normalize(roundingMode rounding_mode,
 APFloat::opStatus
 APFloat::addOrSubtractSpecials(const APFloat &rhs, bool subtract)
 {
-  switch(convolve(category, rhs.category)) {
+  switch (convolve(category, rhs.category)) {
   default:
-    assert(0);
+    llvm_unreachable(0);
 
   case convolve(fcNaN, fcZero):
   case convolve(fcNaN, fcNormal):
@@ -951,10 +1277,8 @@ APFloat::addOrSubtractSpecials(const APFloat &rhs, bool subtract)
   case convolve(fcInfinity, fcInfinity):
     /* Differently signed infinities can only be validly
        subtracted.  */
-    if(sign ^ rhs.sign != subtract) {
-      category = fcNaN;
-      // Arbitrary but deterministic value for significand
-      APInt::tcSet(significandParts(), ~0U, partCount());
+    if(((sign ^ rhs.sign)!=0) != subtract) {
+      makeNaN();
       return opInvalidOp;
     }
 
@@ -975,7 +1299,7 @@ APFloat::addOrSubtractSignificand(const APFloat &rhs, bool subtract)
 
   /* Determine if the operation on the absolute values is effectively
      an addition or subtraction.  */
-  subtract ^= (sign ^ rhs.sign);
+  subtract ^= (sign ^ rhs.sign) ? true : false;
 
   /* Are we bigger exponent-wise than the RHS?  */
   bits = exponent - rhs.exponent;
@@ -1039,9 +1363,9 @@ APFloat::addOrSubtractSignificand(const APFloat &rhs, bool subtract)
 APFloat::opStatus
 APFloat::multiplySpecials(const APFloat &rhs)
 {
-  switch(convolve(category, rhs.category)) {
+  switch (convolve(category, rhs.category)) {
   default:
-    assert(0);
+    llvm_unreachable(0);
 
   case convolve(fcNaN, fcZero):
   case convolve(fcNaN, fcNormal):
@@ -1070,9 +1394,7 @@ APFloat::multiplySpecials(const APFloat &rhs)
 
   case convolve(fcZero, fcInfinity):
   case convolve(fcInfinity, fcZero):
-    category = fcNaN;
-    // Arbitrary but deterministic value for significand
-    APInt::tcSet(significandParts(), ~0U, partCount());
+    makeNaN();
     return opInvalidOp;
 
   case convolve(fcNormal, fcNormal):
@@ -1083,9 +1405,9 @@ APFloat::multiplySpecials(const APFloat &rhs)
 APFloat::opStatus
 APFloat::divideSpecials(const APFloat &rhs)
 {
-  switch(convolve(category, rhs.category)) {
+  switch (convolve(category, rhs.category)) {
   default:
-    assert(0);
+    llvm_unreachable(0);
 
   case convolve(fcNaN, fcZero):
   case convolve(fcNaN, fcNormal):
@@ -1114,9 +1436,43 @@ APFloat::divideSpecials(const APFloat &rhs)
 
   case convolve(fcInfinity, fcInfinity):
   case convolve(fcZero, fcZero):
+    makeNaN();
+    return opInvalidOp;
+
+  case convolve(fcNormal, fcNormal):
+    return opOK;
+  }
+}
+
+APFloat::opStatus
+APFloat::modSpecials(const APFloat &rhs)
+{
+  switch (convolve(category, rhs.category)) {
+  default:
+    llvm_unreachable(0);
+
+  case convolve(fcNaN, fcZero):
+  case convolve(fcNaN, fcNormal):
+  case convolve(fcNaN, fcInfinity):
+  case convolve(fcNaN, fcNaN):
+  case convolve(fcZero, fcInfinity):
+  case convolve(fcZero, fcNormal):
+  case convolve(fcNormal, fcInfinity):
+    return opOK;
+
+  case convolve(fcZero, fcNaN):
+  case convolve(fcNormal, fcNaN):
+  case convolve(fcInfinity, fcNaN):
     category = fcNaN;
-    // Arbitrary but deterministic value for significand
-    APInt::tcSet(significandParts(), ~0U, partCount());
+    copySignificand(rhs);
+    return opOK;
+
+  case convolve(fcNormal, fcZero):
+  case convolve(fcInfinity, fcZero):
+  case convolve(fcInfinity, fcNormal):
+  case convolve(fcInfinity, fcInfinity):
+  case convolve(fcZero, fcZero):
+    makeNaN();
     return opInvalidOp;
 
   case convolve(fcNormal, fcNormal):
@@ -1153,6 +1509,8 @@ APFloat::addOrSubtract(const APFloat &rhs, roundingMode rounding_mode,
 {
   opStatus fs;
 
+  assertArithmeticOK(*semantics);
+
   fs = addOrSubtractSpecials(rhs, subtract);
 
   /* This return code means it was not a simple case.  */
@@ -1197,6 +1555,7 @@ APFloat::multiply(const APFloat &rhs, roundingMode rounding_mode)
 {
   opStatus fs;
 
+  assertArithmeticOK(*semantics);
   sign ^= rhs.sign;
   fs = multiplySpecials(rhs);
 
@@ -1216,6 +1575,7 @@ APFloat::divide(const APFloat &rhs, roundingMode rounding_mode)
 {
   opStatus fs;
 
+  assertArithmeticOK(*semantics);
   sign ^= rhs.sign;
   fs = divideSpecials(rhs);
 
@@ -1229,21 +1589,24 @@ APFloat::divide(const APFloat &rhs, roundingMode rounding_mode)
   return fs;
 }
 
-/* Normalized remainder.  This is not currently doing TRT.  */
+/* Normalized remainder.  This is not currently correct in all cases.  */
 APFloat::opStatus
-APFloat::mod(const APFloat &rhs, roundingMode rounding_mode)
+APFloat::remainder(const APFloat &rhs)
 {
   opStatus fs;
   APFloat V = *this;
   unsigned int origSign = sign;
+
+  assertArithmeticOK(*semantics);
   fs = V.divide(rhs, rmNearestTiesToEven);
   if (fs == opDivByZero)
     return fs;
 
   int parts = partCount();
   integerPart *x = new integerPart[parts];
+  bool ignored;
   fs = V.convertToInteger(x, parts * integerPartWidth, true,
-                          rmNearestTiesToEven);
+                          rmNearestTiesToEven, &ignored);
   if (fs==opInvalidOp)
     return fs;
 
@@ -1251,10 +1614,10 @@ APFloat::mod(const APFloat &rhs, roundingMode rounding_mode)
                                         rmNearestTiesToEven);
   assert(fs==opOK);   // should always work
 
-  fs = V.multiply(rhs, rounding_mode);
+  fs = V.multiply(rhs, rmNearestTiesToEven);
   assert(fs==opOK || fs==opInexact);   // should not overflow or underflow
 
-  fs = subtract(V, rounding_mode);
+  fs = subtract(V, rmNearestTiesToEven);
   assert(fs==opOK || fs==opInexact);   // likewise
 
   if (isZero())
@@ -1263,6 +1626,48 @@ APFloat::mod(const APFloat &rhs, roundingMode rounding_mode)
   return fs;
 }
 
+/* Normalized llvm frem (C fmod).  
+   This is not currently correct in all cases.  */
+APFloat::opStatus
+APFloat::mod(const APFloat &rhs, roundingMode rounding_mode)
+{
+  opStatus fs;
+  assertArithmeticOK(*semantics);
+  fs = modSpecials(rhs);
+
+  if (category == fcNormal && rhs.category == fcNormal) {
+    APFloat V = *this;
+    unsigned int origSign = sign;
+
+    fs = V.divide(rhs, rmNearestTiesToEven);
+    if (fs == opDivByZero)
+      return fs;
+
+    int parts = partCount();
+    integerPart *x = new integerPart[parts];
+    bool ignored;
+    fs = V.convertToInteger(x, parts * integerPartWidth, true,
+                            rmTowardZero, &ignored);
+    if (fs==opInvalidOp)
+      return fs;
+
+    fs = V.convertFromZeroExtendedInteger(x, parts * integerPartWidth, true,
+                                          rmNearestTiesToEven);
+    assert(fs==opOK);   // should always work
+
+    fs = V.multiply(rhs, rounding_mode);
+    assert(fs==opOK || fs==opInexact);   // should not overflow or underflow
+
+    fs = subtract(V, rounding_mode);
+    assert(fs==opOK || fs==opInexact);   // likewise
+
+    if (isZero())
+      sign = origSign;    // IEEE754 requires this
+    delete[] x;
+  }
+  return fs;
+}
+
 /* Normalized fused-multiply-add.  */
 APFloat::opStatus
 APFloat::fusedMultiplyAdd(const APFloat &multiplicand,
@@ -1271,6 +1676,8 @@ APFloat::fusedMultiplyAdd(const APFloat &multiplicand,
 {
   opStatus fs;
 
+  assertArithmeticOK(*semantics);
+
   /* Post-multiplication sign, before addition.  */
   sign ^= multiplicand.sign;
 
@@ -1314,11 +1721,12 @@ APFloat::compare(const APFloat &rhs) const
 {
   cmpResult result;
 
+  assertArithmeticOK(*semantics);
   assert(semantics == rhs.semantics);
 
-  switch(convolve(category, rhs.category)) {
+  switch (convolve(category, rhs.category)) {
   default:
-    assert(0);
+    llvm_unreachable(0);
 
   case convolve(fcNaN, fcZero):
   case convolve(fcNaN, fcNormal):
@@ -1381,14 +1789,23 @@ APFloat::compare(const APFloat &rhs) const
   return result;
 }
 
+/// APFloat::convert - convert a value of one floating point type to another.
+/// The return value corresponds to the IEEE754 exceptions.  *losesInfo
+/// records whether the transformation lost information, i.e. whether
+/// converting the result back to the original type will produce the
+/// original value (this is almost the same as return value==fsOK, but there
+/// are edge cases where this is not so).
+
 APFloat::opStatus
 APFloat::convert(const fltSemantics &toSemantics,
-                 roundingMode rounding_mode)
+                 roundingMode rounding_mode, bool *losesInfo)
 {
   lostFraction lostFraction;
   unsigned int newPartCount, oldPartCount;
   opStatus fs;
 
+  assertArithmeticOK(*semantics);
+  assertArithmeticOK(toSemantics);
   lostFraction = lfExactlyZero;
   newPartCount = partCountForBits(toSemantics.precision + 1);
   oldPartCount = partCount();
@@ -1427,22 +1844,41 @@ APFloat::convert(const fltSemantics &toSemantics,
     exponent += toSemantics.precision - semantics->precision;
     semantics = &toSemantics;
     fs = normalize(rounding_mode, lostFraction);
+    *losesInfo = (fs != opOK);
   } else if (category == fcNaN) {
     int shift = toSemantics.precision - semantics->precision;
+    // Do this now so significandParts gets the right answer
+    const fltSemantics *oldSemantics = semantics;
+    semantics = &toSemantics;
+    *losesInfo = false;
     // No normalization here, just truncate
     if (shift>0)
       APInt::tcShiftLeft(significandParts(), newPartCount, shift);
-    else if (shift < 0)
-      APInt::tcShiftRight(significandParts(), newPartCount, -shift);
+    else if (shift < 0) {
+      unsigned ushift = -shift;
+      // Figure out if we are losing information.  This happens
+      // if are shifting out something other than 0s, or if the x87 long
+      // double input did not have its integer bit set (pseudo-NaN), or if the
+      // x87 long double input did not have its QNan bit set (because the x87
+      // hardware sets this bit when converting a lower-precision NaN to
+      // x87 long double).
+      if (APInt::tcLSB(significandParts(), newPartCount) < ushift)
+        *losesInfo = true;
+      if (oldSemantics == &APFloat::x87DoubleExtended && 
+          (!(*significandParts() & 0x8000000000000000ULL) ||
+           !(*significandParts() & 0x4000000000000000ULL)))
+        *losesInfo = true;
+      APInt::tcShiftRight(significandParts(), newPartCount, ushift);
+    }
     // gcc forces the Quiet bit on, which means (float)(double)(float_sNan)
     // does not give you back the same bits.  This is dubious, and we
     // don't currently do it.  You're really supposed to get
     // an invalid operation signal at runtime, but nobody does that.
-    semantics = &toSemantics;
     fs = opOK;
   } else {
     semantics = &toSemantics;
     fs = opOK;
+    *losesInfo = false;
   }
 
   return fs;
@@ -1450,7 +1886,8 @@ APFloat::convert(const fltSemantics &toSemantics,
 
 /* Convert a floating point number to an integer according to the
    rounding mode.  If the rounded integer value is out of range this
-   returns an invalid operation exception.  If the rounded value is in
+   returns an invalid operation exception and the contents of the
+   destination parts are unspecified.  If the rounded value is in
    range but the floating point number is not the exact integer, the C
    standard doesn't require an inexact exception to be raised.  IEEE
    854 does require it so we do that.
@@ -1458,94 +1895,147 @@ APFloat::convert(const fltSemantics &toSemantics,
    Note that for conversions to integer type the C standard requires
    round-to-zero to always be used.  */
 APFloat::opStatus
-APFloat::convertToInteger(integerPart *parts, unsigned int width,
-                          bool isSigned,
-                          roundingMode rounding_mode) const
+APFloat::convertToSignExtendedInteger(integerPart *parts, unsigned int width,
+                                      bool isSigned,
+                                      roundingMode rounding_mode,
+                                      bool *isExact) const
 {
   lostFraction lost_fraction;
-  unsigned int msb, partsCount;
-  int bits;
+  const integerPart *src;
+  unsigned int dstPartsCount, truncatedBits;
 
-  partsCount = partCountForBits(width);
+  assertArithmeticOK(*semantics);
 
-  /* Handle the three special cases first.  We produce
-     a deterministic result even for the Invalid cases. */
-  if (category == fcNaN) {
-    // Neither sign nor isSigned affects this.
-    APInt::tcSet(parts, 0, partsCount);
-    return opInvalidOp;
-  }
-  if (category == fcInfinity) {
-    if (!sign && isSigned)
-      APInt::tcSetLeastSignificantBits(parts, partsCount, width-1);
-    else if (!sign && !isSigned)
-      APInt::tcSetLeastSignificantBits(parts, partsCount, width);
-    else if (sign && isSigned) {
-      APInt::tcSetLeastSignificantBits(parts, partsCount, 1);
-      APInt::tcShiftLeft(parts, partsCount, width-1);
-    } else // sign && !isSigned
-      APInt::tcSet(parts, 0, partsCount);
+  *isExact = false;
+
+  /* Handle the three special cases first.  */
+  if(category == fcInfinity || category == fcNaN)
     return opInvalidOp;
-  }
-  if (category == fcZero) {
-    APInt::tcSet(parts, 0, partsCount);
+
+  dstPartsCount = partCountForBits(width);
+
+  if(category == fcZero) {
+    APInt::tcSet(parts, 0, dstPartsCount);
+    // Negative zero can't be represented as an int.
+    *isExact = !sign;
     return opOK;
   }
 
-  /* Shift the bit pattern so the fraction is lost.  */
-  APFloat tmp(*this);
-
-  bits = (int) semantics->precision - 1 - exponent;
+  src = significandParts();
 
-  if(bits > 0) {
-    lost_fraction = tmp.shiftSignificandRight(bits);
+  /* Step 1: place our absolute value, with any fraction truncated, in
+     the destination.  */
+  if (exponent < 0) {
+    /* Our absolute value is less than one; truncate everything.  */
+    APInt::tcSet(parts, 0, dstPartsCount);
+    /* For exponent -1 the integer bit represents .5, look at that.
+       For smaller exponents leftmost truncated bit is 0. */
+    truncatedBits = semantics->precision -1U - exponent;
   } else {
-    if (-bits >= semantics->precision) {
-      // Unrepresentably large.
-      if (!sign && isSigned)
-        APInt::tcSetLeastSignificantBits(parts, partsCount, width-1);
-      else if (!sign && !isSigned)
-        APInt::tcSetLeastSignificantBits(parts, partsCount, width);
-      else if (sign && isSigned) {
-        APInt::tcSetLeastSignificantBits(parts, partsCount, 1);
-        APInt::tcShiftLeft(parts, partsCount, width-1);
-      } else // sign && !isSigned
-        APInt::tcSet(parts, 0, partsCount);
-      return (opStatus)(opOverflow | opInexact);
+    /* We want the most significant (exponent + 1) bits; the rest are
+       truncated.  */
+    unsigned int bits = exponent + 1U;
+
+    /* Hopelessly large in magnitude?  */
+    if (bits > width)
+      return opInvalidOp;
+
+    if (bits < semantics->precision) {
+      /* We truncate (semantics->precision - bits) bits.  */
+      truncatedBits = semantics->precision - bits;
+      APInt::tcExtract(parts, dstPartsCount, src, bits, truncatedBits);
+    } else {
+      /* We want at least as many bits as are available.  */
+      APInt::tcExtract(parts, dstPartsCount, src, semantics->precision, 0);
+      APInt::tcShiftLeft(parts, dstPartsCount, bits - semantics->precision);
+      truncatedBits = 0;
+    }
+  }
+
+  /* Step 2: work out any lost fraction, and increment the absolute
+     value if we would round away from zero.  */
+  if (truncatedBits) {
+    lost_fraction = lostFractionThroughTruncation(src, partCount(),
+                                                  truncatedBits);
+    if (lost_fraction != lfExactlyZero
+        && roundAwayFromZero(rounding_mode, lost_fraction, truncatedBits)) {
+      if (APInt::tcIncrement(parts, dstPartsCount))
+        return opInvalidOp;     /* Overflow.  */
     }
-    tmp.shiftSignificandLeft(-bits);
+  } else {
     lost_fraction = lfExactlyZero;
   }
 
-  if(lost_fraction != lfExactlyZero
-     && tmp.roundAwayFromZero(rounding_mode, lost_fraction, 0))
-    tmp.incrementSignificand();
+  /* Step 3: check if we fit in the destination.  */
+  unsigned int omsb = APInt::tcMSB(parts, dstPartsCount) + 1;
 
-  msb = tmp.significandMSB();
+  if (sign) {
+    if (!isSigned) {
+      /* Negative numbers cannot be represented as unsigned.  */
+      if (omsb != 0)
+        return opInvalidOp;
+    } else {
+      /* It takes omsb bits to represent the unsigned integer value.
+         We lose a bit for the sign, but care is needed as the
+         maximally negative integer is a special case.  */
+      if (omsb == width && APInt::tcLSB(parts, dstPartsCount) + 1 != omsb)
+        return opInvalidOp;
+
+      /* This case can happen because of rounding.  */
+      if (omsb > width)
+        return opInvalidOp;
+    }
 
-  /* Negative numbers cannot be represented as unsigned.  */
-  if(!isSigned && tmp.sign && msb != -1U)
-    return opInvalidOp;
+    APInt::tcNegate (parts, dstPartsCount);
+  } else {
+    if (omsb >= width + !isSigned)
+      return opInvalidOp;
+  }
 
-  /* It takes exponent + 1 bits to represent the truncated floating
-     point number without its sign.  We lose a bit for the sign, but
-     the maximally negative integer is a special case.  */
-  if(msb + 1 > width)                /* !! Not same as msb >= width !! */
-    return opInvalidOp;
+  if (lost_fraction == lfExactlyZero) {
+    *isExact = true;
+    return opOK;
+  } else
+    return opInexact;
+}
 
-  if(isSigned && msb + 1 == width
-     && (!tmp.sign || tmp.significandLSB() != msb))
-    return opInvalidOp;
+/* Same as convertToSignExtendedInteger, except we provide
+   deterministic values in case of an invalid operation exception,
+   namely zero for NaNs and the minimal or maximal value respectively
+   for underflow or overflow.
+   The *isExact output tells whether the result is exact, in the sense
+   that converting it back to the original floating point type produces
+   the original value.  This is almost equivalent to result==opOK,
+   except for negative zeroes.
+*/
+APFloat::opStatus
+APFloat::convertToInteger(integerPart *parts, unsigned int width,
+                          bool isSigned,
+                          roundingMode rounding_mode, bool *isExact) const
+{
+  opStatus fs;
 
-  APInt::tcAssign(parts, tmp.significandParts(), partsCount);
+  fs = convertToSignExtendedInteger(parts, width, isSigned, rounding_mode, 
+                                    isExact);
 
-  if(tmp.sign)
-    APInt::tcNegate(parts, partsCount);
+  if (fs == opInvalidOp) {
+    unsigned int bits, dstPartsCount;
 
-  if(lost_fraction == lfExactlyZero)
-    return opOK;
-  else
-    return opInexact;
+    dstPartsCount = partCountForBits(width);
+
+    if (category == fcNaN)
+      bits = 0;
+    else if (sign)
+      bits = isSigned;
+    else
+      bits = width - isSigned;
+
+    APInt::tcSetLeastSignificantBits(parts, dstPartsCount, bits);
+    if (sign && isSigned)
+      APInt::tcShiftLeft(parts, dstPartsCount, width - 1);
+  }
+
+  return fs;
 }
 
 /* Convert an unsigned integer SRC to a floating point number,
@@ -1556,37 +2046,81 @@ APFloat::convertFromUnsignedParts(const integerPart *src,
                                   unsigned int srcCount,
                                   roundingMode rounding_mode)
 {
-  unsigned int dstCount;
-  lostFraction lost_fraction;
+  unsigned int omsb, precision, dstCount;
   integerPart *dst;
+  lostFraction lost_fraction;
 
+  assertArithmeticOK(*semantics);
   category = fcNormal;
-  exponent = semantics->precision - 1;
-
+  omsb = APInt::tcMSB(src, srcCount) + 1;
   dst = significandParts();
   dstCount = partCount();
+  precision = semantics->precision;
 
-  /* We need to capture the non-zero most significant parts.  */
-  while (srcCount > dstCount && src[srcCount - 1] == 0)
-    srcCount--;
-
-  /* Copy the bit image of as many parts as we can.  If we are wider,
-     zero-out remaining parts.  */
-  if (dstCount >= srcCount) {
-    APInt::tcAssign(dst, src, srcCount);
-    while (srcCount < dstCount)
-      dst[srcCount++] = 0;
-    lost_fraction = lfExactlyZero;
-  } else {
-    exponent += (srcCount - dstCount) * integerPartWidth;
-    APInt::tcAssign(dst, src + (srcCount - dstCount), dstCount);
+  /* We want the most significant PRECISON bits of SRC.  There may not
+     be that many; extract what we can.  */
+  if (precision <= omsb) {
+    exponent = omsb - 1;
     lost_fraction = lostFractionThroughTruncation(src, srcCount,
-                                                  dstCount * integerPartWidth);
+                                                  omsb - precision);
+    APInt::tcExtract(dst, dstCount, src, precision, omsb - precision);
+  } else {
+    exponent = precision - 1;
+    lost_fraction = lfExactlyZero;
+    APInt::tcExtract(dst, dstCount, src, omsb, 0);
   }
 
   return normalize(rounding_mode, lost_fraction);
 }
 
+APFloat::opStatus
+APFloat::convertFromAPInt(const APInt &Val,
+                          bool isSigned,
+                          roundingMode rounding_mode)
+{
+  unsigned int partCount = Val.getNumWords();
+  APInt api = Val;
+
+  sign = false;
+  if (isSigned && api.isNegative()) {
+    sign = true;
+    api = -api;
+  }
+
+  return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);
+}
+
+/* Convert a two's complement integer SRC to a floating point number,
+   rounding according to ROUNDING_MODE.  ISSIGNED is true if the
+   integer is signed, in which case it must be sign-extended.  */
+APFloat::opStatus
+APFloat::convertFromSignExtendedInteger(const integerPart *src,
+                                        unsigned int srcCount,
+                                        bool isSigned,
+                                        roundingMode rounding_mode)
+{
+  opStatus status;
+
+  assertArithmeticOK(*semantics);
+  if (isSigned
+      && APInt::tcExtractBit(src, srcCount * integerPartWidth - 1)) {
+    integerPart *copy;
+
+    /* If we're signed and negative negate a copy.  */
+    sign = true;
+    copy = new integerPart[srcCount];
+    APInt::tcAssign(copy, src, srcCount);
+    APInt::tcNegate(copy, srcCount);
+    status = convertFromUnsignedParts(copy, srcCount, rounding_mode);
+    delete [] copy;
+  } else {
+    sign = false;
+    status = convertFromUnsignedParts(src, srcCount, rounding_mode);
+  }
+
+  return status;
+}
+
 /* FIXME: should this just take a const APInt reference?  */
 APFloat::opStatus
 APFloat::convertFromZeroExtendedInteger(const integerPart *parts,
@@ -1594,9 +2128,7 @@ APFloat::convertFromZeroExtendedInteger(const integerPart *parts,
                                         roundingMode rounding_mode)
 {
   unsigned int partCount = partCountForBits(width);
-  opStatus status;
   APInt api = APInt(width, partCount, parts);
-  integerPart *copy = new integerPart[partCount];
 
   sign = false;
   if(isSigned && APInt::tcExtractBit(parts, width - 1)) {
@@ -1604,19 +2136,17 @@ APFloat::convertFromZeroExtendedInteger(const integerPart *parts,
     api = -api;
   }
 
-  APInt::tcAssign(copy, api.getRawData(), partCount);
-  status = convertFromUnsignedParts(copy, partCount, rounding_mode);
-  return status;
+  return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);
 }
 
 APFloat::opStatus
-APFloat::convertFromHexadecimalString(const char *p,
+APFloat::convertFromHexadecimalString(const StringRef &s,
                                       roundingMode rounding_mode)
 {
-  lostFraction lost_fraction;
+  lostFraction lost_fraction = lfExactlyZero;
   integerPart *significand;
   unsigned int bitPos, partsCount;
-  const char *dot, *firstSignificantDigit;
+  StringRef::iterator dot, firstSignificantDigit;
 
   zeroSignificand();
   exponent = 0;
@@ -1627,52 +2157,63 @@ APFloat::convertFromHexadecimalString(const char *p,
   bitPos = partsCount * integerPartWidth;
 
   /* Skip leading zeroes and any (hexa)decimal point.  */
-  p = skipLeadingZeroesAndAnyDot(p, &dot);
+  StringRef::iterator begin = s.begin();
+  StringRef::iterator end = s.end();
+  StringRef::iterator p = skipLeadingZeroesAndAnyDot(begin, end, &dot);
   firstSignificantDigit = p;
 
-  for(;;) {
+  for(; p != end;) {
     integerPart hex_value;
 
     if(*p == '.') {
-      assert(dot == 0);
+      assert(dot == end && "String contains multiple dots");
       dot = p++;
+      if (p == end) {
+        break;
+      }
     }
 
     hex_value = hexDigitValue(*p);
     if(hex_value == -1U) {
-      lost_fraction = lfExactlyZero;
       break;
     }
 
     p++;
 
-    /* Store the number whilst 4-bit nibbles remain.  */
-    if(bitPos) {
-      bitPos -= 4;
-      hex_value <<= bitPos % integerPartWidth;
-      significand[bitPos / integerPartWidth] |= hex_value;
-    } else {
-      lost_fraction = trailingHexadecimalFraction(p, hex_value);
-      while(hexDigitValue(*p) != -1U)
-        p++;
+    if (p == end) {
       break;
+    } else {
+      /* Store the number whilst 4-bit nibbles remain.  */
+      if(bitPos) {
+        bitPos -= 4;
+        hex_value <<= bitPos % integerPartWidth;
+        significand[bitPos / integerPartWidth] |= hex_value;
+      } else {
+        lost_fraction = trailingHexadecimalFraction(p, end, hex_value);
+        while(p != end && hexDigitValue(*p) != -1U)
+          p++;
+        break;
+      }
     }
   }
 
   /* Hex floats require an exponent but not a hexadecimal point.  */
-  assert(*p == 'p' || *p == 'P');
+  assert(p != end && "Hex strings require an exponent");
+  assert((*p == 'p' || *p == 'P') && "Invalid character in significand");
+  assert(p != begin && "Significand has no digits");
+  assert((dot == end || p - begin != 1) && "Significand has no digits");
 
   /* Ignore the exponent if we are zero.  */
   if(p != firstSignificantDigit) {
     int expAdjustment;
 
     /* Implicit hexadecimal point?  */
-    if(!dot)
+    if (dot == end)
       dot = p;
 
     /* Calculate the exponent adjustment implicit in the number of
        significant digits.  */
-    expAdjustment = dot - firstSignificantDigit;
+    expAdjustment = static_cast<int>(dot - firstSignificantDigit);
     if(expAdjustment < 0)
       expAdjustment++;
     expAdjustment = expAdjustment * 4 - 1;
@@ -1683,26 +2224,217 @@ APFloat::convertFromHexadecimalString(const char *p,
     expAdjustment -= partsCount * integerPartWidth;
 
     /* Adjust for the given exponent.  */
-    exponent = totalExponent(p, expAdjustment);
+    exponent = totalExponent(p + 1, end, expAdjustment);
   }
 
   return normalize(rounding_mode, lost_fraction);
 }
 
 APFloat::opStatus
-APFloat::convertFromString(const char *p, roundingMode rounding_mode)
+APFloat::roundSignificandWithExponent(const integerPart *decSigParts,
+                                      unsigned sigPartCount, int exp,
+                                      roundingMode rounding_mode)
 {
+  unsigned int parts, pow5PartCount;
+  fltSemantics calcSemantics = { 32767, -32767, 0, true };
+  integerPart pow5Parts[maxPowerOfFiveParts];
+  bool isNearest;
+
+  isNearest = (rounding_mode == rmNearestTiesToEven
+               || rounding_mode == rmNearestTiesToAway);
+
+  parts = partCountForBits(semantics->precision + 11);
+
+  /* Calculate pow(5, abs(exp)).  */
+  pow5PartCount = powerOf5(pow5Parts, exp >= 0 ? exp: -exp);
+
+  for (;; parts *= 2) {
+    opStatus sigStatus, powStatus;
+    unsigned int excessPrecision, truncatedBits;
+
+    calcSemantics.precision = parts * integerPartWidth - 1;
+    excessPrecision = calcSemantics.precision - semantics->precision;
+    truncatedBits = excessPrecision;
+
+    APFloat decSig(calcSemantics, fcZero, sign);
+    APFloat pow5(calcSemantics, fcZero, false);
+
+    sigStatus = decSig.convertFromUnsignedParts(decSigParts, sigPartCount,
+                                                rmNearestTiesToEven);
+    powStatus = pow5.convertFromUnsignedParts(pow5Parts, pow5PartCount,
+                                              rmNearestTiesToEven);
+    /* Add exp, as 10^n = 5^n * 2^n.  */
+    decSig.exponent += exp;
+
+    lostFraction calcLostFraction;
+    integerPart HUerr, HUdistance;
+    unsigned int powHUerr;
+
+    if (exp >= 0) {
+      /* multiplySignificand leaves the precision-th bit set to 1.  */
+      calcLostFraction = decSig.multiplySignificand(pow5, NULL);
+      powHUerr = powStatus != opOK;
+    } else {
+      calcLostFraction = decSig.divideSignificand(pow5);
+      /* Denormal numbers have less precision.  */
+      if (decSig.exponent < semantics->minExponent) {
+        excessPrecision += (semantics->minExponent - decSig.exponent);
+        truncatedBits = excessPrecision;
+        if (excessPrecision > calcSemantics.precision)
+          excessPrecision = calcSemantics.precision;
+      }
+      /* Extra half-ulp lost in reciprocal of exponent.  */
+      powHUerr = (powStatus == opOK && calcLostFraction == lfExactlyZero) ? 0:2;
+    }
+
+    /* Both multiplySignificand and divideSignificand return the
+       result with the integer bit set.  */
+    assert(APInt::tcExtractBit
+           (decSig.significandParts(), calcSemantics.precision - 1) == 1);
+
+    HUerr = HUerrBound(calcLostFraction != lfExactlyZero, sigStatus != opOK,
+                       powHUerr);
+    HUdistance = 2 * ulpsFromBoundary(decSig.significandParts(),
+                                      excessPrecision, isNearest);
+
+    /* Are we guaranteed to round correctly if we truncate?  */
+    if (HUdistance >= HUerr) {
+      APInt::tcExtract(significandParts(), partCount(), decSig.significandParts(),
+                       calcSemantics.precision - excessPrecision,
+                       excessPrecision);
+      /* Take the exponent of decSig.  If we tcExtract-ed less bits
+         above we must adjust our exponent to compensate for the
+         implicit right shift.  */
+      exponent = (decSig.exponent + semantics->precision
+                  - (calcSemantics.precision - excessPrecision));
+      calcLostFraction = lostFractionThroughTruncation(decSig.significandParts(),
+                                                       decSig.partCount(),
+                                                       truncatedBits);
+      return normalize(rounding_mode, calcLostFraction);
+    }
+  }
+}
+
+APFloat::opStatus
+APFloat::convertFromDecimalString(const StringRef &str, roundingMode rounding_mode)
+{
+  decimalInfo D;
+  opStatus fs;
+
+  /* Scan the text.  */
+  StringRef::iterator p = str.begin();
+  interpretDecimal(p, str.end(), &D);
+
+  /* Handle the quick cases.  First the case of no significant digits,
+     i.e. zero, and then exponents that are obviously too large or too
+     small.  Writing L for log 10 / log 2, a number d.ddddd*10^exp
+     definitely overflows if
+
+           (exp - 1) * L >= maxExponent
+
+     and definitely underflows to zero where
+
+           (exp + 1) * L <= minExponent - precision
+
+     With integer arithmetic the tightest bounds for L are
+
+           93/28 < L < 196/59            [ numerator <= 256 ]
+           42039/12655 < L < 28738/8651  [ numerator <= 65536 ]
+  */
+
+  if (decDigitValue(*D.firstSigDigit) >= 10U) {
+    category = fcZero;
+    fs = opOK;
+  } else if ((D.normalizedExponent + 1) * 28738
+             <= 8651 * (semantics->minExponent - (int) semantics->precision)) {
+    /* Underflow to zero and round.  */
+    zeroSignificand();
+    fs = normalize(rounding_mode, lfLessThanHalf);
+  } else if ((D.normalizedExponent - 1) * 42039
+             >= 12655 * semantics->maxExponent) {
+    /* Overflow and round.  */
+    fs = handleOverflow(rounding_mode);
+  } else {
+    integerPart *decSignificand;
+    unsigned int partCount;
+
+    /* A tight upper bound on number of bits required to hold an
+       N-digit decimal integer is N * 196 / 59.  Allocate enough space
+       to hold the full significand, and an extra part required by
+       tcMultiplyPart.  */
+    partCount = static_cast<unsigned int>(D.lastSigDigit - D.firstSigDigit) + 1;
+    partCount = partCountForBits(1 + 196 * partCount / 59);
+    decSignificand = new integerPart[partCount + 1];
+    partCount = 0;
+
+    /* Convert to binary efficiently - we do almost all multiplication
+       in an integerPart.  When this would overflow do we do a single
+       bignum multiplication, and then revert again to multiplication
+       in an integerPart.  */
+    do {
+      integerPart decValue, val, multiplier;
+
+      val = 0;
+      multiplier = 1;
+
+      do {
+        if (*p == '.') {
+          p++;
+          if (p == str.end()) {
+            break;
+          }
+        }
+        decValue = decDigitValue(*p++);
+        assert(decValue < 10U && "Invalid character in significand");
+        multiplier *= 10;
+        val = val * 10 + decValue;
+        /* The maximum number that can be multiplied by ten with any
+           digit added without overflowing an integerPart.  */
+      } while (p <= D.lastSigDigit && multiplier <= (~ (integerPart) 0 - 9) / 10);
+
+      /* Multiply out the current part.  */
+      APInt::tcMultiplyPart(decSignificand, decSignificand, multiplier, val,
+                            partCount, partCount + 1, false);
+
+      /* If we used another part (likely but not guaranteed), increase
+         the count.  */
+      if (decSignificand[partCount])
+        partCount++;
+    } while (p <= D.lastSigDigit);
+
+    category = fcNormal;
+    fs = roundSignificandWithExponent(decSignificand, partCount,
+                                      D.exponent, rounding_mode);
+
+    delete [] decSignificand;
+  }
+
+  return fs;
+}
+
+APFloat::opStatus
+APFloat::convertFromString(const StringRef &str, roundingMode rounding_mode)
+{
+  assertArithmeticOK(*semantics);
+  assert(!str.empty() && "Invalid string length");
+
   /* Handle a leading minus sign.  */
-  if(*p == '-')
-    sign = 1, p++;
-  else
-    sign = 0;
+  StringRef::iterator p = str.begin();
+  size_t slen = str.size();
+  sign = *p == '-' ? 1 : 0;
+  if(*p == '-' || *p == '+') {
+    p++;
+    slen--;
+    assert(slen && "String has no digits");
+  }
 
-  if(p[0] == '0' && (p[1] == 'x' || p[1] == 'X'))
-    return convertFromHexadecimalString(p + 2, rounding_mode);
+  if(slen >= 2 && p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) {
+    assert(slen - 2 && "Invalid string");
+    return convertFromHexadecimalString(StringRef(p + 2, slen - 2),
+                                        rounding_mode);
+  }
 
-  assert(0 && "Decimal to binary conversions not yet implemented");
-  abort();
+  return convertFromDecimalString(StringRef(p, slen), rounding_mode);
 }
 
 /* Write out a hexadecimal representation of the floating point value
@@ -1735,6 +2467,8 @@ APFloat::convertToHexString(char *dst, unsigned int hexDigits,
 {
   char *p;
 
+  assertArithmeticOK(*semantics);
+
   p = dst;
   if (sign)
     *dst++ = '-';
@@ -1770,7 +2504,7 @@ APFloat::convertToHexString(char *dst, unsigned int hexDigits,
 
   *dst = 0;
 
-  return dst - p;
+  return static_cast<unsigned int>(dst - p);
 }
 
 /* Does the hard work of outputting the correctly rounded hexadecimal
@@ -1859,7 +2593,7 @@ APFloat::convertNormalToHexString(char *dst, unsigned int hexDigits,
       q--;
       *q = hexDigitChars[hexDigitValue (*q) + 1];
     } while (*q == '0');
-    assert (q >= p);
+    assert(q >= p);
   } else {
     /* Add trailing zeroes.  */
     memset (dst, '0', outputDigits);
@@ -1893,7 +2627,7 @@ APFloat::getHashValue() const
     uint32_t hash = sign<<11 | semantics->precision | exponent<<12;
     const integerPart* p = significandParts();
     for (int i=partCount(); i>0; i--, p++)
-      hash ^= ((uint32_t)*p) ^ (*p)>>32;
+      hash ^= ((uint32_t)*p) ^ (uint32_t)((*p)>>32);
     return hash;
   }
 }
@@ -1910,8 +2644,8 @@ APFloat::getHashValue() const
 APInt
 APFloat::convertF80LongDoubleAPFloatToAPInt() const
 {
-  assert(semantics == (const llvm::fltSemantics* const)&x87DoubleExtended);
-  assert (partCount()==2);
+  assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended);
+  assert(partCount()==2);
 
   uint64_t myexponent, mysignificand;
 
@@ -1933,18 +2667,98 @@ APFloat::convertF80LongDoubleAPFloatToAPInt() const
   }
 
   uint64_t words[2];
-  words[0] =  (((uint64_t)sign & 1) << 63) |
-              ((myexponent & 0x7fff) <<  48) |
-              ((mysignificand >>16) & 0xffffffffffffLL);
-  words[1] = mysignificand & 0xffff;
+  words[0] = mysignificand;
+  words[1] =  ((uint64_t)(sign & 1) << 15) |
+              (myexponent & 0x7fffLL);
   return APInt(80, 2, words);
 }
 
+APInt
+APFloat::convertPPCDoubleDoubleAPFloatToAPInt() const
+{
+  assert(semantics == (const llvm::fltSemantics*)&PPCDoubleDouble);
+  assert(partCount()==2);
+
+  uint64_t myexponent, mysignificand, myexponent2, mysignificand2;
+
+  if (category==fcNormal) {
+    myexponent = exponent + 1023; //bias
+    myexponent2 = exponent2 + 1023;
+    mysignificand = significandParts()[0];
+    mysignificand2 = significandParts()[1];
+    if (myexponent==1 && !(mysignificand & 0x10000000000000LL))
+      myexponent = 0;   // denormal
+    if (myexponent2==1 && !(mysignificand2 & 0x10000000000000LL))
+      myexponent2 = 0;   // denormal
+  } else if (category==fcZero) {
+    myexponent = 0;
+    mysignificand = 0;
+    myexponent2 = 0;
+    mysignificand2 = 0;
+  } else if (category==fcInfinity) {
+    myexponent = 0x7ff;
+    myexponent2 = 0;
+    mysignificand = 0;
+    mysignificand2 = 0;
+  } else {
+    assert(category == fcNaN && "Unknown category");
+    myexponent = 0x7ff;
+    mysignificand = significandParts()[0];
+    myexponent2 = exponent2;
+    mysignificand2 = significandParts()[1];
+  }
+
+  uint64_t words[2];
+  words[0] =  ((uint64_t)(sign & 1) << 63) |
+              ((myexponent & 0x7ff) <<  52) |
+              (mysignificand & 0xfffffffffffffLL);
+  words[1] =  ((uint64_t)(sign2 & 1) << 63) |
+              ((myexponent2 & 0x7ff) <<  52) |
+              (mysignificand2 & 0xfffffffffffffLL);
+  return APInt(128, 2, words);
+}
+
+APInt
+APFloat::convertQuadrupleAPFloatToAPInt() const
+{
+  assert(semantics == (const llvm::fltSemantics*)&IEEEquad);
+  assert(partCount()==2);
+
+  uint64_t myexponent, mysignificand, mysignificand2;
+
+  if (category==fcNormal) {
+    myexponent = exponent+16383; //bias
+    mysignificand = significandParts()[0];
+    mysignificand2 = significandParts()[1];
+    if (myexponent==1 && !(mysignificand2 & 0x1000000000000LL))
+      myexponent = 0;   // denormal
+  } else if (category==fcZero) {
+    myexponent = 0;
+    mysignificand = mysignificand2 = 0;
+  } else if (category==fcInfinity) {
+    myexponent = 0x7fff;
+    mysignificand = mysignificand2 = 0;
+  } else {
+    assert(category == fcNaN && "Unknown category!");
+    myexponent = 0x7fff;
+    mysignificand = significandParts()[0];
+    mysignificand2 = significandParts()[1];
+  }
+
+  uint64_t words[2];
+  words[0] = mysignificand;
+  words[1] = ((uint64_t)(sign & 1) << 63) |
+             ((myexponent & 0x7fff) << 48) |
+             (mysignificand2 & 0xffffffffffffLL);
+
+  return APInt(128, 2, words);
+}
+
 APInt
 APFloat::convertDoubleAPFloatToAPInt() const
 {
   assert(semantics == (const llvm::fltSemantics*)&IEEEdouble);
-  assert (partCount()==1);
+  assert(partCount()==1);
 
   uint64_t myexponent, mysignificand;
 
@@ -1965,7 +2779,7 @@ APFloat::convertDoubleAPFloatToAPInt() const
     mysignificand = *significandParts();
   }
 
-  return APInt(64, (((((uint64_t)sign & 1) << 63) |
+  return APInt(64, ((((uint64_t)(sign & 1) << 63) |
                      ((myexponent & 0x7ff) <<  52) |
                      (mysignificand & 0xfffffffffffffLL))));
 }
@@ -1974,14 +2788,14 @@ APInt
 APFloat::convertFloatAPFloatToAPInt() const
 {
   assert(semantics == (const llvm::fltSemantics*)&IEEEsingle);
-  assert (partCount()==1);
+  assert(partCount()==1);
 
   uint32_t myexponent, mysignificand;
 
   if (category==fcNormal) {
     myexponent = exponent+127; //bias
-    mysignificand = *significandParts();
-    if (myexponent == 1 && !(mysignificand & 0x400000))
+    mysignificand = (uint32_t)*significandParts();
+    if (myexponent == 1 && !(mysignificand & 0x800000))
       myexponent = 0;   // denormal
   } else if (category==fcZero) {
     myexponent = 0;
@@ -1992,7 +2806,7 @@ APFloat::convertFloatAPFloatToAPInt() const
   } else {
     assert(category == fcNaN && "Unknown category!");
     myexponent = 0xff;
-    mysignificand = *significandParts();
+    mysignificand = (uint32_t)*significandParts();
   }
 
   return APInt(32, (((sign&1) << 31) | ((myexponent&0xff) << 23) |
@@ -2000,15 +2814,57 @@ APFloat::convertFloatAPFloatToAPInt() const
 }
 
 APInt
-APFloat::convertToAPInt() const
+APFloat::convertHalfAPFloatToAPInt() const
 {
-  if (semantics == (const llvm::fltSemantics* const)&IEEEsingle)
+  assert(semantics == (const llvm::fltSemantics*)&IEEEhalf);
+  assert(partCount()==1);
+
+  uint32_t myexponent, mysignificand;
+
+  if (category==fcNormal) {
+    myexponent = exponent+15; //bias
+    mysignificand = (uint32_t)*significandParts();
+    if (myexponent == 1 && !(mysignificand & 0x400))
+      myexponent = 0;   // denormal
+  } else if (category==fcZero) {
+    myexponent = 0;
+    mysignificand = 0;
+  } else if (category==fcInfinity) {
+    myexponent = 0x1f;
+    mysignificand = 0;
+  } else {
+    assert(category == fcNaN && "Unknown category!");
+    myexponent = 0x1f;
+    mysignificand = (uint32_t)*significandParts();
+  }
+
+  return APInt(16, (((sign&1) << 15) | ((myexponent&0x1f) << 10) |
+                    (mysignificand & 0x3ff)));
+}
+
+// This function creates an APInt that is just a bit map of the floating
+// point constant as it would appear in memory.  It is not a conversion,
+// and treating the result as a normal integer is unlikely to be useful.
+
+APInt
+APFloat::bitcastToAPInt() const
+{
+  if (semantics == (const llvm::fltSemantics*)&IEEEhalf)
+    return convertHalfAPFloatToAPInt();
+
+  if (semantics == (const llvm::fltSemantics*)&IEEEsingle)
     return convertFloatAPFloatToAPInt();
-  
-  if (semantics == (const llvm::fltSemantics* const)&IEEEdouble)
+
+  if (semantics == (const llvm::fltSemantics*)&IEEEdouble)
     return convertDoubleAPFloatToAPInt();
 
-  assert(semantics == (const llvm::fltSemantics* const)&x87DoubleExtended &&
+  if (semantics == (const llvm::fltSemantics*)&IEEEquad)
+    return convertQuadrupleAPFloatToAPInt();
+
+  if (semantics == (const llvm::fltSemantics*)&PPCDoubleDouble)
+    return convertPPCDoubleDoubleAPFloatToAPInt();
+
+  assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended &&
          "unknown format!");
   return convertF80LongDoubleAPFloatToAPInt();
 }
@@ -2016,38 +2872,41 @@ APFloat::convertToAPInt() const
 float
 APFloat::convertToFloat() const
 {
-  assert(semantics == (const llvm::fltSemantics* const)&IEEEsingle);
-  APInt api = convertToAPInt();
+  assert(semantics == (const llvm::fltSemantics*)&IEEEsingle &&
+         "Float semantics are not IEEEsingle");
+  APInt api = bitcastToAPInt();
   return api.bitsToFloat();
 }
 
 double
 APFloat::convertToDouble() const
 {
-  assert(semantics == (const llvm::fltSemantics* const)&IEEEdouble);
-  APInt api = convertToAPInt();
+  assert(semantics == (const llvm::fltSemantics*)&IEEEdouble &&
+         "Float semantics are not IEEEdouble");
+  APInt api = bitcastToAPInt();
   return api.bitsToDouble();
 }
 
-/// Integer bit is explicit in this format.  Current Intel book does not
-/// define meaning of:
-///  exponent = all 1's, integer bit not set.
-///  exponent = 0, integer bit set. (formerly "psuedodenormals")
-///  exponent!=0 nor all 1's, integer bit not set. (formerly "unnormals")
+/// Integer bit is explicit in this format.  Intel hardware (387 and later)
+/// does not support these bit patterns:
+///  exponent = all 1's, integer bit 0, significand 0 ("pseudoinfinity")
+///  exponent = all 1's, integer bit 0, significand nonzero ("pseudoNaN")
+///  exponent = 0, integer bit 1 ("pseudodenormal")
+///  exponent!=0 nor all 1's, integer bit 0 ("unnormal")
+/// At the moment, the first two are treated as NaNs, the second two as Normal.
 void
 APFloat::initFromF80LongDoubleAPInt(const APInt &api)
 {
   assert(api.getBitWidth()==80);
   uint64_t i1 = api.getRawData()[0];
   uint64_t i2 = api.getRawData()[1];
-  uint64_t myexponent = (i1 >> 48) & 0x7fff;
-  uint64_t mysignificand = ((i1 << 16) &  0xffffffffffff0000ULL) |
-                          (i2 & 0xffff);
+  uint64_t myexponent = (i2 & 0x7fff);
+  uint64_t mysignificand = i1;
 
   initialize(&APFloat::x87DoubleExtended);
   assert(partCount()==2);
 
-  sign = i1>>63;
+  sign = static_cast<unsigned int>(i2>>15);
   if (myexponent==0 && mysignificand==0) {
     // exponent, significand meaningless
     category = fcZero;
@@ -2069,6 +2928,96 @@ APFloat::initFromF80LongDoubleAPInt(const APInt &api)
   }
 }
 
+void
+APFloat::initFromPPCDoubleDoubleAPInt(const APInt &api)
+{
+  assert(api.getBitWidth()==128);
+  uint64_t i1 = api.getRawData()[0];
+  uint64_t i2 = api.getRawData()[1];
+  uint64_t myexponent = (i1 >> 52) & 0x7ff;
+  uint64_t mysignificand = i1 & 0xfffffffffffffLL;
+  uint64_t myexponent2 = (i2 >> 52) & 0x7ff;
+  uint64_t mysignificand2 = i2 & 0xfffffffffffffLL;
+
+  initialize(&APFloat::PPCDoubleDouble);
+  assert(partCount()==2);
+
+  sign = static_cast<unsigned int>(i1>>63);
+  sign2 = static_cast<unsigned int>(i2>>63);
+  if (myexponent==0 && mysignificand==0) {
+    // exponent, significand meaningless
+    // exponent2 and significand2 are required to be 0; we don't check
+    category = fcZero;
+  } else if (myexponent==0x7ff && mysignificand==0) {
+    // exponent, significand meaningless
+    // exponent2 and significand2 are required to be 0; we don't check
+    category = fcInfinity;
+  } else if (myexponent==0x7ff && mysignificand!=0) {
+    // exponent meaningless.  So is the whole second word, but keep it 
+    // for determinism.
+    category = fcNaN;
+    exponent2 = myexponent2;
+    significandParts()[0] = mysignificand;
+    significandParts()[1] = mysignificand2;
+  } else {
+    category = fcNormal;
+    // Note there is no category2; the second word is treated as if it is
+    // fcNormal, although it might be something else considered by itself.
+    exponent = myexponent - 1023;
+    exponent2 = myexponent2 - 1023;
+    significandParts()[0] = mysignificand;
+    significandParts()[1] = mysignificand2;
+    if (myexponent==0)          // denormal
+      exponent = -1022;
+    else
+      significandParts()[0] |= 0x10000000000000LL;  // integer bit
+    if (myexponent2==0) 
+      exponent2 = -1022;
+    else
+      significandParts()[1] |= 0x10000000000000LL;  // integer bit
+  }
+}
+
+void
+APFloat::initFromQuadrupleAPInt(const APInt &api)
+{
+  assert(api.getBitWidth()==128);
+  uint64_t i1 = api.getRawData()[0];
+  uint64_t i2 = api.getRawData()[1];
+  uint64_t myexponent = (i2 >> 48) & 0x7fff;
+  uint64_t mysignificand  = i1;
+  uint64_t mysignificand2 = i2 & 0xffffffffffffLL;
+
+  initialize(&APFloat::IEEEquad);
+  assert(partCount()==2);
+
+  sign = static_cast<unsigned int>(i2>>63);
+  if (myexponent==0 &&
+      (mysignificand==0 && mysignificand2==0)) {
+    // exponent, significand meaningless
+    category = fcZero;
+  } else if (myexponent==0x7fff &&
+             (mysignificand==0 && mysignificand2==0)) {
+    // exponent, significand meaningless
+    category = fcInfinity;
+  } else if (myexponent==0x7fff &&
+             (mysignificand!=0 || mysignificand2 !=0)) {
+    // exponent meaningless
+    category = fcNaN;
+    significandParts()[0] = mysignificand;
+    significandParts()[1] = mysignificand2;
+  } else {
+    category = fcNormal;
+    exponent = myexponent - 16383;
+    significandParts()[0] = mysignificand;
+    significandParts()[1] = mysignificand2;
+    if (myexponent==0)          // denormal
+      exponent = -16382;
+    else
+      significandParts()[1] |= 0x1000000000000LL;  // integer bit
+  }
+}
+
 void
 APFloat::initFromDoubleAPInt(const APInt &api)
 {
@@ -2080,7 +3029,7 @@ APFloat::initFromDoubleAPInt(const APInt &api)
   initialize(&APFloat::IEEEdouble);
   assert(partCount()==1);
 
-  sign = i>>63;
+  sign = static_cast<unsigned int>(i>>63);
   if (myexponent==0 && mysignificand==0) {
     // exponent, significand meaningless
     category = fcZero;
@@ -2135,26 +3084,64 @@ APFloat::initFromFloatAPInt(const APInt & api)
   }
 }
 
+void
+APFloat::initFromHalfAPInt(const APInt & api)
+{
+  assert(api.getBitWidth()==16);
+  uint32_t i = (uint32_t)*api.getRawData();
+  uint32_t myexponent = (i >> 10) & 0x1f;
+  uint32_t mysignificand = i & 0x3ff;
+
+  initialize(&APFloat::IEEEhalf);
+  assert(partCount()==1);
+
+  sign = i >> 15;
+  if (myexponent==0 && mysignificand==0) {
+    // exponent, significand meaningless
+    category = fcZero;
+  } else if (myexponent==0x1f && mysignificand==0) {
+    // exponent, significand meaningless
+    category = fcInfinity;
+  } else if (myexponent==0x1f && mysignificand!=0) {
+    // sign, exponent, significand meaningless
+    category = fcNaN;
+    *significandParts() = mysignificand;
+  } else {
+    category = fcNormal;
+    exponent = myexponent - 15;  //bias
+    *significandParts() = mysignificand;
+    if (myexponent==0)    // denormal
+      exponent = -14;
+    else
+      *significandParts() |= 0x400; // integer bit
+  }
+}
+
 /// Treat api as containing the bits of a floating point number.  Currently
-/// we infer the floating point type from the size of the APInt.  FIXME: This
-/// breaks when we get to PPC128 and IEEE128 (but both cannot exist in the
-/// same compile...)
+/// we infer the floating point type from the size of the APInt.  The
+/// isIEEE argument distinguishes between PPC128 and IEEE128 (not meaningful
+/// when the size is anything else).
 void
-APFloat::initFromAPInt(const APInt& api)
+APFloat::initFromAPInt(const APInt& api, bool isIEEE)
 {
-  if (api.getBitWidth() == 32)
+  if (api.getBitWidth() == 16)
+    return initFromHalfAPInt(api);
+  else if (api.getBitWidth() == 32)
     return initFromFloatAPInt(api);
   else if (api.getBitWidth()==64)
     return initFromDoubleAPInt(api);
   else if (api.getBitWidth()==80)
     return initFromF80LongDoubleAPInt(api);
+  else if (api.getBitWidth()==128)
+    return (isIEEE ?
+            initFromQuadrupleAPInt(api) : initFromPPCDoubleDoubleAPInt(api));
   else
-    assert(0);
+    llvm_unreachable(0);
 }
 
-APFloat::APFloat(const APInt& api)
+APFloat::APFloat(const APInt& api, bool isIEEE)
 {
-  initFromAPInt(api);
+  initFromAPInt(api, isIEEE);
 }
 
 APFloat::APFloat(float f)