Don't overwrite previous value, if it succeeded.
[oota-llvm.git] / lib / ExecutionEngine / Interpreter / ExternalFunctions.cpp
index c6dde95149980f71813fdb2c1fc3ea9a3a6ca01c..8add3f56d7dc8c2f1d082a86f0766dbac36cf654 100644 (file)
 //  This file contains both code to deal with invoking "external" functions, but
 //  also contains code that implements "exported" external functions.
 //
-//  External functions in the interpreter are implemented by
-//  using the system's dynamic loader to look up the address of the function
-//  we want to invoke.  If a function is found, then one of the
-//  many lle_* wrapper functions in this file will translate its arguments from
-//  GenericValues to the types the function is actually expecting, before the
-//  function is called.
+//  There are currently two mechanisms for handling external functions in the
+//  Interpreter.  The first is to implement lle_* wrapper functions that are
+//  specific to well-known library functions which manually translate the
+//  arguments from GenericValues and make the call.  If such a wrapper does
+//  not exist, and libffi is available, then the Interpreter will attempt to
+//  invoke the function using libffi, after finding its address.
 //
 //===----------------------------------------------------------------------===//
 
 #include "Interpreter.h"
 #include "llvm/DerivedTypes.h"
 #include "llvm/Module.h"
-#include "llvm/Support/Streams.h"
+#include "llvm/Config/config.h"     // Detect libffi
+#include "llvm/Support/ErrorHandling.h"
 #include "llvm/System/DynamicLibrary.h"
 #include "llvm/Target/TargetData.h"
 #include "llvm/Support/ManagedStatic.h"
+#include "llvm/System/Mutex.h"
 #include <csignal>
+#include <cstdio>
 #include <map>
 #include <cmath>
-
-#ifdef __linux__
-#include <cxxabi.h>
+#include <cstring>
+
+#ifdef HAVE_FFI_CALL
+#ifdef HAVE_FFI_H
+#include <ffi.h>
+#define USE_LIBFFI
+#elif HAVE_FFI_FFI_H
+#include <ffi/ffi.h>
+#define USE_LIBFFI
+#endif
 #endif
-
-using std::vector;
 
 using namespace llvm;
 
-typedef GenericValue (*ExFunc)(FunctionType *, const vector<GenericValue> &);
-static ManagedStatic<std::map<const Function *, ExFunc> > Functions;
+static ManagedStatic<sys::Mutex> FunctionsLock;
+
+typedef GenericValue (*ExFunc)(const FunctionType *,
+                               const std::vector<GenericValue> &);
+static ManagedStatic<std::map<const Function *, ExFunc> > ExportedFunctions;
 static std::map<std::string, ExFunc> FuncNames;
 
+#ifdef USE_LIBFFI
+typedef void (*RawFunc)();
+static ManagedStatic<std::map<const Function *, RawFunc> > RawFunctions;
+#endif
+
 static Interpreter *TheInterpreter;
 
 static char getTypeID(const Type *Ty) {
@@ -79,68 +95,218 @@ static ExFunc lookupFunction(const Function *F) {
   const FunctionType *FT = F->getFunctionType();
   for (unsigned i = 0, e = FT->getNumContainedTypes(); i != e; ++i)
     ExtName += getTypeID(FT->getContainedType(i));
-  ExtName += "_" + F->getName();
+  ExtName + "_" + F->getNameStr();
 
+  sys::ScopedLock Writer(*FunctionsLock);
   ExFunc FnPtr = FuncNames[ExtName];
   if (FnPtr == 0)
-    FnPtr = FuncNames["lle_X_"+F->getName()];
+    FnPtr = FuncNames["lle_X_" + F->getNameStr()];
   if (FnPtr == 0)  // Try calling a generic function... if it exists...
-    FnPtr = (ExFunc)(intptr_t)sys::DynamicLibrary::SearchForAddressOfSymbol(
-            ("lle_X_"+F->getName()).c_str());
-  if (FnPtr == 0)
     FnPtr = (ExFunc)(intptr_t)
-      sys::DynamicLibrary::SearchForAddressOfSymbol(F->getName());
+      sys::DynamicLibrary::SearchForAddressOfSymbol("lle_X_"+F->getNameStr());
   if (FnPtr != 0)
-    Functions->insert(std::make_pair(F, FnPtr));  // Cache for later
+    ExportedFunctions->insert(std::make_pair(F, FnPtr));  // Cache for later
   return FnPtr;
 }
 
+#ifdef USE_LIBFFI
+static ffi_type *ffiTypeFor(const Type *Ty) {
+  switch (Ty->getTypeID()) {
+    case Type::VoidTyID: return &ffi_type_void;
+    case Type::IntegerTyID:
+      switch (cast<IntegerType>(Ty)->getBitWidth()) {
+        case 8:  return &ffi_type_sint8;
+        case 16: return &ffi_type_sint16;
+        case 32: return &ffi_type_sint32;
+        case 64: return &ffi_type_sint64;
+      }
+    case Type::FloatTyID:   return &ffi_type_float;
+    case Type::DoubleTyID:  return &ffi_type_double;
+    case Type::PointerTyID: return &ffi_type_pointer;
+    default: break;
+  }
+  // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
+  llvm_report_error("Type could not be mapped for use with libffi.");
+  return NULL;
+}
+
+static void *ffiValueFor(const Type *Ty, const GenericValue &AV,
+                         void *ArgDataPtr) {
+  switch (Ty->getTypeID()) {
+    case Type::IntegerTyID:
+      switch (cast<IntegerType>(Ty)->getBitWidth()) {
+        case 8: {
+          int8_t *I8Ptr = (int8_t *) ArgDataPtr;
+          *I8Ptr = (int8_t) AV.IntVal.getZExtValue();
+          return ArgDataPtr;
+        }
+        case 16: {
+          int16_t *I16Ptr = (int16_t *) ArgDataPtr;
+          *I16Ptr = (int16_t) AV.IntVal.getZExtValue();
+          return ArgDataPtr;
+        }
+        case 32: {
+          int32_t *I32Ptr = (int32_t *) ArgDataPtr;
+          *I32Ptr = (int32_t) AV.IntVal.getZExtValue();
+          return ArgDataPtr;
+        }
+        case 64: {
+          int64_t *I64Ptr = (int64_t *) ArgDataPtr;
+          *I64Ptr = (int64_t) AV.IntVal.getZExtValue();
+          return ArgDataPtr;
+        }
+      }
+    case Type::FloatTyID: {
+      float *FloatPtr = (float *) ArgDataPtr;
+      *FloatPtr = AV.FloatVal;
+      return ArgDataPtr;
+    }
+    case Type::DoubleTyID: {
+      double *DoublePtr = (double *) ArgDataPtr;
+      *DoublePtr = AV.DoubleVal;
+      return ArgDataPtr;
+    }
+    case Type::PointerTyID: {
+      void **PtrPtr = (void **) ArgDataPtr;
+      *PtrPtr = GVTOP(AV);
+      return ArgDataPtr;
+    }
+    default: break;
+  }
+  // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
+  llvm_report_error("Type value could not be mapped for use with libffi.");
+  return NULL;
+}
+
+static bool ffiInvoke(RawFunc Fn, Function *F,
+                      const std::vector<GenericValue> &ArgVals,
+                      const TargetData *TD, GenericValue &Result) {
+  ffi_cif cif;
+  const FunctionType *FTy = F->getFunctionType();
+  const unsigned NumArgs = F->arg_size();
+
+  // TODO: We don't have type information about the remaining arguments, because
+  // this information is never passed into ExecutionEngine::runFunction().
+  if (ArgVals.size() > NumArgs && F->isVarArg()) {
+    llvm_report_error("Calling external var arg function '" + F->getName()
+                      + "' is not supported by the Interpreter.");
+  }
+
+  unsigned ArgBytes = 0;
+
+  std::vector<ffi_type*> args(NumArgs);
+  for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
+       A != E; ++A) {
+    const unsigned ArgNo = A->getArgNo();
+    const Type *ArgTy = FTy->getParamType(ArgNo);
+    args[ArgNo] = ffiTypeFor(ArgTy);
+    ArgBytes += TD->getTypeStoreSize(ArgTy);
+  }
+
+  SmallVector<uint8_t, 128> ArgData;
+  ArgData.resize(ArgBytes);
+  uint8_t *ArgDataPtr = ArgData.data();
+  SmallVector<void*, 16> values(NumArgs);
+  for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
+       A != E; ++A) {
+    const unsigned ArgNo = A->getArgNo();
+    const Type *ArgTy = FTy->getParamType(ArgNo);
+    values[ArgNo] = ffiValueFor(ArgTy, ArgVals[ArgNo], ArgDataPtr);
+    ArgDataPtr += TD->getTypeStoreSize(ArgTy);
+  }
+
+  const Type *RetTy = FTy->getReturnType();
+  ffi_type *rtype = ffiTypeFor(RetTy);
+
+  if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, NumArgs, rtype, &args[0]) == FFI_OK) {
+    SmallVector<uint8_t, 128> ret;
+    if (RetTy->getTypeID() != Type::VoidTyID)
+      ret.resize(TD->getTypeStoreSize(RetTy));
+    ffi_call(&cif, Fn, ret.data(), values.data());
+    switch (RetTy->getTypeID()) {
+      case Type::IntegerTyID:
+        switch (cast<IntegerType>(RetTy)->getBitWidth()) {
+          case 8:  Result.IntVal = APInt(8 , *(int8_t *) ret.data()); break;
+          case 16: Result.IntVal = APInt(16, *(int16_t*) ret.data()); break;
+          case 32: Result.IntVal = APInt(32, *(int32_t*) ret.data()); break;
+          case 64: Result.IntVal = APInt(64, *(int64_t*) ret.data()); break;
+        }
+        break;
+      case Type::FloatTyID:   Result.FloatVal   = *(float *) ret.data(); break;
+      case Type::DoubleTyID:  Result.DoubleVal  = *(double*) ret.data(); break;
+      case Type::PointerTyID: Result.PointerVal = *(void **) ret.data(); break;
+      default: break;
+    }
+    return true;
+  }
+
+  return false;
+}
+#endif // USE_LIBFFI
+
 GenericValue Interpreter::callExternalFunction(Function *F,
                                      const std::vector<GenericValue> &ArgVals) {
   TheInterpreter = this;
 
+  FunctionsLock->acquire();
+
   // Do a lookup to see if the function is in our cache... this should just be a
   // deferred annotation!
-  std::map<const Function *, ExFunc>::iterator FI = Functions->find(F);
-  ExFunc Fn = (FI == Functions->end()) ? lookupFunction(F) : FI->second;
-  if (Fn == 0) {
-    cerr << "Tried to execute an unknown external function: "
-         << F->getType()->getDescription() << " " << F->getName() << "\n";
-    if (F->getName() == "__main")
-      return GenericValue();
-    abort();
+  std::map<const Function *, ExFunc>::iterator FI = ExportedFunctions->find(F);
+  if (ExFunc Fn = (FI == ExportedFunctions->end()) ? lookupFunction(F)
+                                                   : FI->second) {
+    FunctionsLock->release();
+    return Fn(F->getFunctionType(), ArgVals);
+  }
+
+#ifdef USE_LIBFFI
+  std::map<const Function *, RawFunc>::iterator RF = RawFunctions->find(F);
+  RawFunc RawFn;
+  if (RF == RawFunctions->end()) {
+    RawFn = (RawFunc)(intptr_t)
+      sys::DynamicLibrary::SearchForAddressOfSymbol(F->getName());
+    if (!RawnFn)
+       RawFn = (RawFunc)(intptr_t)getPointerToGlobalIfAvailable(F);
+    if (RawFn != 0)
+      RawFunctions->insert(std::make_pair(F, RawFn));  // Cache for later
+  } else {
+    RawFn = RF->second;
   }
 
-  // TODO: FIXME when types are not const!
-  GenericValue Result = Fn(const_cast<FunctionType*>(F->getFunctionType()),
-                           ArgVals);
-  return Result;
+  FunctionsLock->release();
+
+  GenericValue Result;
+  if (RawFn != 0 && ffiInvoke(RawFn, F, ArgVals, getTargetData(), Result))
+    return Result;
+#endif // USE_LIBFFI
+
+  if (F->getName() == "__main")
+    errs() << "Tried to execute an unknown external function: "
+      << F->getType()->getDescription() << " __main\n";
+  else
+    llvm_report_error("Tried to execute an unknown external function: " +
+                      F->getType()->getDescription() + " " +F->getName());
+#ifndef USE_LIBFFI
+  errs() << "Recompiling LLVM with --enable-libffi might help.\n";
+#endif
+  return GenericValue();
 }
 
 
 //===----------------------------------------------------------------------===//
 //  Functions "exported" to the running application...
 //
-extern "C" {  // Don't add C++ manglings to llvm mangling :)
-
-// void putchar(ubyte)
-GenericValue lle_X_putchar(FunctionType *FT, const vector<GenericValue> &Args){
-  cout << ((char)Args[0].IntVal.getZExtValue()) << std::flush;
-  return Args[0];
-}
 
-// void _IO_putc(int c, FILE* fp)
-GenericValue lle_X__IO_putc(FunctionType *FT, const vector<GenericValue> &Args){
-#ifdef __linux__
-  _IO_putc((char)Args[0].IntVal.getZExtValue(), (FILE*) Args[1].PointerVal);
-#else
-  assert(0 && "Can't call _IO_putc on this platform");
+// Visual Studio warns about returning GenericValue in extern "C" linkage
+#ifdef _MSC_VER
+    #pragma warning(disable : 4190)
 #endif
-  return Args[0];
-}
+
+extern "C" {  // Don't add C++ manglings to llvm mangling :)
 
 // void atexit(Function*)
-GenericValue lle_X_atexit(FunctionType *FT, const vector<GenericValue> &Args) {
+GenericValue lle_X_atexit(const FunctionType *FT,
+                          const std::vector<GenericValue> &Args) {
   assert(Args.size() == 1);
   TheInterpreter->addAtExitHandler((Function*)GVTOP(Args[0]));
   GenericValue GV;
@@ -149,170 +315,32 @@ GenericValue lle_X_atexit(FunctionType *FT, const vector<GenericValue> &Args) {
 }
 
 // void exit(int)
-GenericValue lle_X_exit(FunctionType *FT, const vector<GenericValue> &Args) {
+GenericValue lle_X_exit(const FunctionType *FT,
+                        const std::vector<GenericValue> &Args) {
   TheInterpreter->exitCalled(Args[0]);
   return GenericValue();
 }
 
 // void abort(void)
-GenericValue lle_X_abort(FunctionType *FT, const vector<GenericValue> &Args) {
+GenericValue lle_X_abort(const FunctionType *FT,
+                         const std::vector<GenericValue> &Args) {
+  //FIXME: should we report or raise here?
+  //llvm_report_error("Interpreted program raised SIGABRT");
   raise (SIGABRT);
   return GenericValue();
 }
 
-// void *malloc(uint)
-GenericValue lle_X_malloc(FunctionType *FT, const vector<GenericValue> &Args) {
-  assert(Args.size() == 1 && "Malloc expects one argument!");
-  assert(isa<PointerType>(FT->getReturnType()) && "malloc must return pointer");
-  return PTOGV(malloc(Args[0].IntVal.getZExtValue()));
-}
-
-// void *calloc(uint, uint)
-GenericValue lle_X_calloc(FunctionType *FT, const vector<GenericValue> &Args) {
-  assert(Args.size() == 2 && "calloc expects two arguments!");
-  assert(isa<PointerType>(FT->getReturnType()) && "calloc must return pointer");
-  return PTOGV(calloc(Args[0].IntVal.getZExtValue(), 
-                      Args[1].IntVal.getZExtValue()));
-}
-
-// void *calloc(uint, uint)
-GenericValue lle_X_realloc(FunctionType *FT, const vector<GenericValue> &Args) {
-  assert(Args.size() == 2 && "calloc expects two arguments!");
-  assert(isa<PointerType>(FT->getReturnType()) &&"realloc must return pointer");
-  return PTOGV(realloc(GVTOP(Args[0]), Args[1].IntVal.getZExtValue()));
-}
-
-// void free(void *)
-GenericValue lle_X_free(FunctionType *FT, const vector<GenericValue> &Args) {
-  assert(Args.size() == 1);
-  free(GVTOP(Args[0]));
-  return GenericValue();
-}
-
-// int atoi(char *)
-GenericValue lle_X_atoi(FunctionType *FT, const vector<GenericValue> &Args) {
-  assert(Args.size() == 1);
-  GenericValue GV;
-  GV.IntVal = APInt(32, atoi((char*)GVTOP(Args[0])));
-  return GV;
-}
-
-// double pow(double, double)
-GenericValue lle_X_pow(FunctionType *FT, const vector<GenericValue> &Args) {
-  assert(Args.size() == 2);
-  GenericValue GV;
-  GV.DoubleVal = pow(Args[0].DoubleVal, Args[1].DoubleVal);
-  return GV;
-}
-
-// double sin(double)
-GenericValue lle_X_sin(FunctionType *FT, const vector<GenericValue> &Args) {
-  assert(Args.size() == 1);
-  GenericValue GV;
-  GV.DoubleVal = sin(Args[0].DoubleVal);
-  return GV;
-}
-
-// double cos(double)
-GenericValue lle_X_cos(FunctionType *FT, const vector<GenericValue> &Args) {
-  assert(Args.size() == 1);
-  GenericValue GV;
-  GV.DoubleVal = cos(Args[0].DoubleVal);
-  return GV;
-}
-
-// double exp(double)
-GenericValue lle_X_exp(FunctionType *FT, const vector<GenericValue> &Args) {
-  assert(Args.size() == 1);
-  GenericValue GV;
-  GV.DoubleVal = exp(Args[0].DoubleVal);
-  return GV;
-}
-
-// double sqrt(double)
-GenericValue lle_X_sqrt(FunctionType *FT, const vector<GenericValue> &Args) {
-  assert(Args.size() == 1);
-  GenericValue GV;
-  GV.DoubleVal = sqrt(Args[0].DoubleVal);
-  return GV;
-}
-
-// double log(double)
-GenericValue lle_X_log(FunctionType *FT, const vector<GenericValue> &Args) {
-  assert(Args.size() == 1);
-  GenericValue GV;
-  GV.DoubleVal = log(Args[0].DoubleVal);
-  return GV;
-}
-
-// double floor(double)
-GenericValue lle_X_floor(FunctionType *FT, const vector<GenericValue> &Args) {
-  assert(Args.size() == 1);
-  GenericValue GV;
-  GV.DoubleVal = floor(Args[0].DoubleVal);
-  return GV;
-}
-
-#ifdef HAVE_RAND48
-
-// double drand48()
-GenericValue lle_X_drand48(FunctionType *FT, const vector<GenericValue> &Args) {
-  assert(Args.empty());
-  GenericValue GV;
-  GV.DoubleVal = drand48();
-  return GV;
-}
-
-// long lrand48()
-GenericValue lle_X_lrand48(FunctionType *FT, const vector<GenericValue> &Args) {
-  assert(Args.empty());
-  GenericValue GV;
-  GV.IntVal = APInt(32, lrand48());
-  return GV;
-}
-
-// void srand48(long)
-GenericValue lle_X_srand48(FunctionType *FT, const vector<GenericValue> &Args) {
-  assert(Args.size() == 1);
-  srand48(Args[0].IntVal.getZExtValue());
-  return GenericValue();
-}
-
-#endif
-
-// int rand()
-GenericValue lle_X_rand(FunctionType *FT, const vector<GenericValue> &Args) {
-  assert(Args.empty());
-  GenericValue GV;
-  GV.IntVal = APInt(32, rand());
-  return GV;
-}
-
-// void srand(uint)
-GenericValue lle_X_srand(FunctionType *FT, const vector<GenericValue> &Args) {
-  assert(Args.size() == 1);
-  srand(Args[0].IntVal.getZExtValue());
-  return GenericValue();
-}
-
-// int puts(const char*)
-GenericValue lle_X_puts(FunctionType *FT, const vector<GenericValue> &Args) {
-  assert(Args.size() == 1);
-  GenericValue GV;
-  GV.IntVal = APInt(32, puts((char*)GVTOP(Args[0])));
-  return GV;
-}
-
-// int sprintf(sbyte *, sbyte *, ...) - a very rough implementation to make
+// int sprintf(char *, const char *, ...) - a very rough implementation to make
 // output useful.
-GenericValue lle_X_sprintf(FunctionType *FT, const vector<GenericValue> &Args) {
+GenericValue lle_X_sprintf(const FunctionType *FT,
+                           const std::vector<GenericValue> &Args) {
   char *OutputBuffer = (char *)GVTOP(Args[0]);
   const char *FmtStr = (const char *)GVTOP(Args[1]);
   unsigned ArgNo = 2;
 
   // printf should return # chars printed.  This is completely incorrect, but
   // close enough for now.
-  GenericValue GV; 
+  GenericValue GV;
   GV.IntVal = APInt(32, strlen(FmtStr));
   while (1) {
     switch (*FmtStr) {
@@ -342,7 +370,7 @@ GenericValue lle_X_sprintf(FunctionType *FT, const vector<GenericValue> &Args) {
 
       switch (Last) {
       case '%':
-        sprintf(Buffer, FmtBuf); break;
+        memcpy(Buffer, "%", 2); break;
       case 'c':
         sprintf(Buffer, FmtBuf, uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
         break;
@@ -370,11 +398,13 @@ GenericValue lle_X_sprintf(FunctionType *FT, const vector<GenericValue> &Args) {
         sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break;
       case 's':
         sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break;
-      default:  cerr << "<unknown printf code '" << *FmtStr << "'!>";
+      default:
+        errs() << "<unknown printf code '" << *FmtStr << "'!>";
         ArgNo++; break;
       }
-      strcpy(OutputBuffer, Buffer);
-      OutputBuffer += strlen(Buffer);
+      size_t Len = strlen(Buffer);
+      memcpy(OutputBuffer, Buffer, Len + 1);
+      OutputBuffer += Len;
       }
       break;
     }
@@ -382,95 +412,22 @@ GenericValue lle_X_sprintf(FunctionType *FT, const vector<GenericValue> &Args) {
   return GV;
 }
 
-// int printf(sbyte *, ...) - a very rough implementation to make output useful.
-GenericValue lle_X_printf(FunctionType *FT, const vector<GenericValue> &Args) {
+// int printf(const char *, ...) - a very rough implementation to make output
+// useful.
+GenericValue lle_X_printf(const FunctionType *FT,
+                          const std::vector<GenericValue> &Args) {
   char Buffer[10000];
-  vector<GenericValue> NewArgs;
+  std::vector<GenericValue> NewArgs;
   NewArgs.push_back(PTOGV((void*)&Buffer[0]));
   NewArgs.insert(NewArgs.end(), Args.begin(), Args.end());
   GenericValue GV = lle_X_sprintf(FT, NewArgs);
-  cout << Buffer;
+  outs() << Buffer;
   return GV;
 }
 
-static void ByteswapSCANFResults(const char *Fmt, void *Arg0, void *Arg1,
-                                 void *Arg2, void *Arg3, void *Arg4, void *Arg5,
-                                 void *Arg6, void *Arg7, void *Arg8) {
-  void *Args[] = { Arg0, Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8, 0 };
-
-  // Loop over the format string, munging read values as appropriate (performs
-  // byteswaps as necessary).
-  unsigned ArgNo = 0;
-  while (*Fmt) {
-    if (*Fmt++ == '%') {
-      // Read any flag characters that may be present...
-      bool Suppress = false;
-      bool Half = false;
-      bool Long = false;
-      bool LongLong = false;  // long long or long double
-
-      while (1) {
-        switch (*Fmt++) {
-        case '*': Suppress = true; break;
-        case 'a': /*Allocate = true;*/ break;  // We don't need to track this
-        case 'h': Half = true; break;
-        case 'l': Long = true; break;
-        case 'q':
-        case 'L': LongLong = true; break;
-        default:
-          if (Fmt[-1] > '9' || Fmt[-1] < '0')   // Ignore field width specs
-            goto Out;
-        }
-      }
-    Out:
-
-      // Read the conversion character
-      if (!Suppress && Fmt[-1] != '%') { // Nothing to do?
-        unsigned Size = 0;
-        const Type *Ty = 0;
-
-        switch (Fmt[-1]) {
-        case 'i': case 'o': case 'u': case 'x': case 'X': case 'n': case 'p':
-        case 'd':
-          if (Long || LongLong) {
-            Size = 8; Ty = Type::Int64Ty;
-          } else if (Half) {
-            Size = 4; Ty = Type::Int16Ty;
-          } else {
-            Size = 4; Ty = Type::Int32Ty;
-          }
-          break;
-
-        case 'e': case 'g': case 'E':
-        case 'f':
-          if (Long || LongLong) {
-            Size = 8; Ty = Type::DoubleTy;
-          } else {
-            Size = 4; Ty = Type::FloatTy;
-          }
-          break;
-
-        case 's': case 'c': case '[':  // No byteswap needed
-          Size = 1;
-          Ty = Type::Int8Ty;
-          break;
-
-        default: break;
-        }
-
-        if (Size) {
-          GenericValue GV;
-          void *Arg = Args[ArgNo++];
-          memcpy(&GV, Arg, Size);
-          TheInterpreter->StoreValueToMemory(GV, (GenericValue*)Arg, Ty);
-        }
-      }
-    }
-  }
-}
-
 // int sscanf(const char *format, ...);
-GenericValue lle_X_sscanf(FunctionType *FT, const vector<GenericValue> &args) {
+GenericValue lle_X_sscanf(const FunctionType *FT,
+                          const std::vector<GenericValue> &args) {
   assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!");
 
   char *Args[10];
@@ -480,13 +437,12 @@ GenericValue lle_X_sscanf(FunctionType *FT, const vector<GenericValue> &args) {
   GenericValue GV;
   GV.IntVal = APInt(32, sscanf(Args[0], Args[1], Args[2], Args[3], Args[4],
                         Args[5], Args[6], Args[7], Args[8], Args[9]));
-  ByteswapSCANFResults(Args[1], Args[2], Args[3], Args[4],
-                       Args[5], Args[6], Args[7], Args[8], Args[9], 0);
   return GV;
 }
 
 // int scanf(const char *format, ...);
-GenericValue lle_X_scanf(FunctionType *FT, const vector<GenericValue> &args) {
+GenericValue lle_X_scanf(const FunctionType *FT,
+                         const std::vector<GenericValue> &args) {
   assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!");
 
   char *Args[10];
@@ -496,329 +452,41 @@ GenericValue lle_X_scanf(FunctionType *FT, const vector<GenericValue> &args) {
   GenericValue GV;
   GV.IntVal = APInt(32, scanf( Args[0], Args[1], Args[2], Args[3], Args[4],
                         Args[5], Args[6], Args[7], Args[8], Args[9]));
-  ByteswapSCANFResults(Args[0], Args[1], Args[2], Args[3], Args[4],
-                       Args[5], Args[6], Args[7], Args[8], Args[9]);
-  return GV;
-}
-
-
-// int clock(void) - Profiling implementation
-GenericValue lle_i_clock(FunctionType *FT, const vector<GenericValue> &Args) {
-  extern unsigned int clock(void);
-  GenericValue GV; 
-  GV.IntVal = APInt(32, clock());
-  return GV;
-}
-
-
-//===----------------------------------------------------------------------===//
-// String Functions...
-//===----------------------------------------------------------------------===//
-
-// int strcmp(const char *S1, const char *S2);
-GenericValue lle_X_strcmp(FunctionType *FT, const vector<GenericValue> &Args) {
-  assert(Args.size() == 2);
-  GenericValue Ret;
-  Ret.IntVal = APInt(32, strcmp((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1])));
-  return Ret;
-}
-
-// char *strcat(char *Dest, const char *src);
-GenericValue lle_X_strcat(FunctionType *FT, const vector<GenericValue> &Args) {
-  assert(Args.size() == 2);
-  assert(isa<PointerType>(FT->getReturnType()) &&"strcat must return pointer");
-  return PTOGV(strcat((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1])));
-}
-
-// char *strcpy(char *Dest, const char *src);
-GenericValue lle_X_strcpy(FunctionType *FT, const vector<GenericValue> &Args) {
-  assert(Args.size() == 2);
-  assert(isa<PointerType>(FT->getReturnType()) &&"strcpy must return pointer");
-  return PTOGV(strcpy((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1])));
-}
-
-static GenericValue size_t_to_GV (size_t n) {
-  GenericValue Ret;
-  if (sizeof (size_t) == sizeof (uint64_t)) {
-    Ret.IntVal = APInt(64, n);
-  } else {
-    assert (sizeof (size_t) == sizeof (unsigned int));
-    Ret.IntVal = APInt(32, n);
-  }
-  return Ret;
-}
-
-static size_t GV_to_size_t (GenericValue GV) {
-  size_t count;
-  if (sizeof (size_t) == sizeof (uint64_t)) {
-    count = (size_t)GV.IntVal.getZExtValue();
-  } else {
-    assert (sizeof (size_t) == sizeof (unsigned int));
-    count = (size_t)GV.IntVal.getZExtValue();
-  }
-  return count;
-}
-
-// size_t strlen(const char *src);
-GenericValue lle_X_strlen(FunctionType *FT, const vector<GenericValue> &Args) {
-  assert(Args.size() == 1);
-  size_t strlenResult = strlen ((char *) GVTOP (Args[0]));
-  return size_t_to_GV (strlenResult);
-}
-
-// char *strdup(const char *src);
-GenericValue lle_X_strdup(FunctionType *FT, const vector<GenericValue> &Args) {
-  assert(Args.size() == 1);
-  assert(isa<PointerType>(FT->getReturnType()) && "strdup must return pointer");
-  return PTOGV(strdup((char*)GVTOP(Args[0])));
-}
-
-// char *__strdup(const char *src);
-GenericValue lle_X___strdup(FunctionType *FT, const vector<GenericValue> &Args) {
-  assert(Args.size() == 1);
-  assert(isa<PointerType>(FT->getReturnType()) &&"_strdup must return pointer");
-  return PTOGV(strdup((char*)GVTOP(Args[0])));
-}
-
-// void *memset(void *S, int C, size_t N)
-GenericValue lle_X_memset(FunctionType *FT, const vector<GenericValue> &Args) {
-  assert(Args.size() == 3);
-  size_t count = GV_to_size_t (Args[2]);
-  assert(isa<PointerType>(FT->getReturnType()) && "memset must return pointer");
-  return PTOGV(memset(GVTOP(Args[0]), uint32_t(Args[1].IntVal.getZExtValue()), 
-                      count));
-}
-
-// void *memcpy(void *Dest, void *src, size_t Size);
-GenericValue lle_X_memcpy(FunctionType *FT, const vector<GenericValue> &Args) {
-  assert(Args.size() == 3);
-  assert(isa<PointerType>(FT->getReturnType()) && "memcpy must return pointer");
-  size_t count = GV_to_size_t (Args[2]);
-  return PTOGV(memcpy((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]), count));
-}
-
-// void *memcpy(void *Dest, void *src, size_t Size);
-GenericValue lle_X_memmove(FunctionType *FT, const vector<GenericValue> &Args) {
-  assert(Args.size() == 3);
-  assert(isa<PointerType>(FT->getReturnType()) && "memmove must return pointer");
-  size_t count = GV_to_size_t (Args[2]);
-  return PTOGV(memmove((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]), count));
-}
-
-//===----------------------------------------------------------------------===//
-// IO Functions...
-//===----------------------------------------------------------------------===//
-
-// getFILE - Turn a pointer in the host address space into a legit pointer in
-// the interpreter address space.  This is an identity transformation.
-#define getFILE(ptr) ((FILE*)ptr)
-
-// FILE *fopen(const char *filename, const char *mode);
-GenericValue lle_X_fopen(FunctionType *FT, const vector<GenericValue> &Args) {
-  assert(Args.size() == 2);
-  assert(isa<PointerType>(FT->getReturnType()) && "fopen must return pointer");
-  return PTOGV(fopen((const char *)GVTOP(Args[0]),
-                     (const char *)GVTOP(Args[1])));
-}
-
-// int fclose(FILE *F);
-GenericValue lle_X_fclose(FunctionType *FT, const vector<GenericValue> &Args) {
-  assert(Args.size() == 1);
-  GenericValue GV;
-  GV.IntVal = APInt(32, fclose(getFILE(GVTOP(Args[0]))));
-  return GV;
-}
-
-// int feof(FILE *stream);
-GenericValue lle_X_feof(FunctionType *FT, const vector<GenericValue> &Args) {
-  assert(Args.size() == 1);
-  GenericValue GV;
-
-  GV.IntVal = APInt(32, feof(getFILE(GVTOP(Args[0]))));
-  return GV;
-}
-
-// size_t fread(void *ptr, size_t size, size_t nitems, FILE *stream);
-GenericValue lle_X_fread(FunctionType *FT, const vector<GenericValue> &Args) {
-  assert(Args.size() == 4);
-  size_t result;
-
-  result = fread((void*)GVTOP(Args[0]), GV_to_size_t (Args[1]),
-                 GV_to_size_t (Args[2]), getFILE(GVTOP(Args[3])));
-  return size_t_to_GV (result);
-}
-
-// size_t fwrite(const void *ptr, size_t size, size_t nitems, FILE *stream);
-GenericValue lle_X_fwrite(FunctionType *FT, const vector<GenericValue> &Args) {
-  assert(Args.size() == 4);
-  size_t result;
-
-  result = fwrite((void*)GVTOP(Args[0]), GV_to_size_t (Args[1]),
-                  GV_to_size_t (Args[2]), getFILE(GVTOP(Args[3])));
-  return size_t_to_GV (result);
-}
-
-// char *fgets(char *s, int n, FILE *stream);
-GenericValue lle_X_fgets(FunctionType *FT, const vector<GenericValue> &Args) {
-  assert(Args.size() == 3);
-  return PTOGV(fgets((char*)GVTOP(Args[0]), Args[1].IntVal.getZExtValue(),
-                     getFILE(GVTOP(Args[2]))));
-}
-
-// FILE *freopen(const char *path, const char *mode, FILE *stream);
-GenericValue lle_X_freopen(FunctionType *FT, const vector<GenericValue> &Args) {
-  assert(Args.size() == 3);
-  assert(isa<PointerType>(FT->getReturnType()) &&"freopen must return pointer");
-  return PTOGV(freopen((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]),
-                       getFILE(GVTOP(Args[2]))));
-}
-
-// int fflush(FILE *stream);
-GenericValue lle_X_fflush(FunctionType *FT, const vector<GenericValue> &Args) {
-  assert(Args.size() == 1);
-  GenericValue GV;
-  GV.IntVal = APInt(32, fflush(getFILE(GVTOP(Args[0]))));
-  return GV;
-}
-
-// int getc(FILE *stream);
-GenericValue lle_X_getc(FunctionType *FT, const vector<GenericValue> &Args) {
-  assert(Args.size() == 1);
-  GenericValue GV;
-  GV.IntVal = APInt(32, getc(getFILE(GVTOP(Args[0]))));
-  return GV;
-}
-
-// int _IO_getc(FILE *stream);
-GenericValue lle_X__IO_getc(FunctionType *F, const vector<GenericValue> &Args) {
-  return lle_X_getc(F, Args);
-}
-
-// int fputc(int C, FILE *stream);
-GenericValue lle_X_fputc(FunctionType *FT, const vector<GenericValue> &Args) {
-  assert(Args.size() == 2);
-  GenericValue GV;
-  GV.IntVal = APInt(32, fputc(Args[0].IntVal.getZExtValue(), 
-                              getFILE(GVTOP(Args[1]))));
-  return GV;
-}
-
-// int ungetc(int C, FILE *stream);
-GenericValue lle_X_ungetc(FunctionType *FT, const vector<GenericValue> &Args) {
-  assert(Args.size() == 2);
-  GenericValue GV;
-  GV.IntVal = APInt(32, ungetc(Args[0].IntVal.getZExtValue(), 
-                               getFILE(GVTOP(Args[1]))));
-  return GV;
-}
-
-// int ferror (FILE *stream);
-GenericValue lle_X_ferror(FunctionType *FT, const vector<GenericValue> &Args) {
-  assert(Args.size() == 1);
-  GenericValue GV;
-  GV.IntVal = APInt(32, ferror (getFILE(GVTOP(Args[0]))));
   return GV;
 }
 
-// int fprintf(FILE *,sbyte *, ...) - a very rough implementation to make output
-// useful.
-GenericValue lle_X_fprintf(FunctionType *FT, const vector<GenericValue> &Args) {
+// int fprintf(FILE *, const char *, ...) - a very rough implementation to make
+// output useful.
+GenericValue lle_X_fprintf(const FunctionType *FT,
+                           const std::vector<GenericValue> &Args) {
   assert(Args.size() >= 2);
   char Buffer[10000];
-  vector<GenericValue> NewArgs;
+  std::vector<GenericValue> NewArgs;
   NewArgs.push_back(PTOGV(Buffer));
   NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end());
   GenericValue GV = lle_X_sprintf(FT, NewArgs);
 
-  fputs(Buffer, getFILE(GVTOP(Args[0])));
+  fputs(Buffer, (FILE *) GVTOP(Args[0]));
   return GV;
 }
 
-// int __cxa_guard_acquire (__guard *g);
-GenericValue lle_X___cxa_guard_acquire(FunctionType *FT, 
-                                       const vector<GenericValue> &Args) {
-  assert(Args.size() == 1);
-  GenericValue GV;
-#ifdef __linux__
-  GV.IntVal = APInt(32, __cxxabiv1::__cxa_guard_acquire (
-                          (__cxxabiv1::__guard*)GVTOP(Args[0])));
-#else
-  assert(0 && "Can't call __cxa_guard_acquire on this platform");
-#endif
-  return GV;
-}
+} // End extern "C"
 
-// void __cxa_guard_release (__guard *g);
-GenericValue lle_X___cxa_guard_release(FunctionType *FT, 
-                                       const vector<GenericValue> &Args) {
-  assert(Args.size() == 1);
-#ifdef __linux__
-  __cxxabiv1::__cxa_guard_release ((__cxxabiv1::__guard*)GVTOP(Args[0]));
-#else
-  assert(0 && "Can't call __cxa_guard_release on this platform");
+// Done with externals; turn the warning back on
+#ifdef _MSC_VER
+    #pragma warning(default: 4190)
 #endif
-  return GenericValue();
-}
-
-} // End extern "C"
 
 
 void Interpreter::initializeExternalFunctions() {
-  FuncNames["lle_X_putchar"]      = lle_X_putchar;
-  FuncNames["lle_X__IO_putc"]     = lle_X__IO_putc;
+  sys::ScopedLock Writer(*FunctionsLock);
+  FuncNames["lle_X_atexit"]       = lle_X_atexit;
   FuncNames["lle_X_exit"]         = lle_X_exit;
   FuncNames["lle_X_abort"]        = lle_X_abort;
-  FuncNames["lle_X_malloc"]       = lle_X_malloc;
-  FuncNames["lle_X_calloc"]       = lle_X_calloc;
-  FuncNames["lle_X_realloc"]      = lle_X_realloc;
-  FuncNames["lle_X_free"]         = lle_X_free;
-  FuncNames["lle_X_atoi"]         = lle_X_atoi;
-  FuncNames["lle_X_pow"]          = lle_X_pow;
-  FuncNames["lle_X_sin"]          = lle_X_sin;
-  FuncNames["lle_X_cos"]          = lle_X_cos;
-  FuncNames["lle_X_exp"]          = lle_X_exp;
-  FuncNames["lle_X_log"]          = lle_X_log;
-  FuncNames["lle_X_floor"]        = lle_X_floor;
-  FuncNames["lle_X_srand"]        = lle_X_srand;
-  FuncNames["lle_X_rand"]         = lle_X_rand;
-#ifdef HAVE_RAND48
-  FuncNames["lle_X_drand48"]      = lle_X_drand48;
-  FuncNames["lle_X_srand48"]      = lle_X_srand48;
-  FuncNames["lle_X_lrand48"]      = lle_X_lrand48;
-#endif
-  FuncNames["lle_X_sqrt"]         = lle_X_sqrt;
-  FuncNames["lle_X_puts"]         = lle_X_puts;
+
   FuncNames["lle_X_printf"]       = lle_X_printf;
   FuncNames["lle_X_sprintf"]      = lle_X_sprintf;
   FuncNames["lle_X_sscanf"]       = lle_X_sscanf;
   FuncNames["lle_X_scanf"]        = lle_X_scanf;
-  FuncNames["lle_i_clock"]        = lle_i_clock;
-
-  FuncNames["lle_X_strcmp"]       = lle_X_strcmp;
-  FuncNames["lle_X_strcat"]       = lle_X_strcat;
-  FuncNames["lle_X_strcpy"]       = lle_X_strcpy;
-  FuncNames["lle_X_strlen"]       = lle_X_strlen;
-  FuncNames["lle_X___strdup"]     = lle_X___strdup;
-  FuncNames["lle_X_memset"]       = lle_X_memset;
-  FuncNames["lle_X_memcpy"]       = lle_X_memcpy;
-  FuncNames["lle_X_memmove"]      = lle_X_memmove;
-
-  FuncNames["lle_X_fopen"]        = lle_X_fopen;
-  FuncNames["lle_X_fclose"]       = lle_X_fclose;
-  FuncNames["lle_X_feof"]         = lle_X_feof;
-  FuncNames["lle_X_fread"]        = lle_X_fread;
-  FuncNames["lle_X_fwrite"]       = lle_X_fwrite;
-  FuncNames["lle_X_fgets"]        = lle_X_fgets;
-  FuncNames["lle_X_fflush"]       = lle_X_fflush;
-  FuncNames["lle_X_fgetc"]        = lle_X_getc;
-  FuncNames["lle_X_getc"]         = lle_X_getc;
-  FuncNames["lle_X__IO_getc"]     = lle_X__IO_getc;
-  FuncNames["lle_X_fputc"]        = lle_X_fputc;
-  FuncNames["lle_X_ungetc"]       = lle_X_ungetc;
   FuncNames["lle_X_fprintf"]      = lle_X_fprintf;
-  FuncNames["lle_X_freopen"]      = lle_X_freopen;
-
-  FuncNames["lle_X___cxa_guard_acquire"] = lle_X___cxa_guard_acquire;
-  FuncNames["lle_X____cxa_guard_release"] = lle_X___cxa_guard_release;
 }
-