DwarfDebug: Emit dwo_id+dwo_name for DICompileUnits that provide a dwoId.
[oota-llvm.git] / lib / CodeGen / WinEHPrepare.cpp
index 94e046c424da91664c7b1d833a12c9dcb2bda99f..bbf61a14bf19b6a6304285d9bc2108ecb3d9f1fa 100644 (file)
@@ -8,9 +8,11 @@
 //===----------------------------------------------------------------------===//
 //
 // This pass lowers LLVM IR exception handling into something closer to what the
-// backend wants. It snifs the personality function to see which kind of
-// preparation is necessary. If the personality function uses the Itanium LSDA,
-// this pass delegates to the DWARF EH preparation pass.
+// backend wants for functions using a personality function from a runtime
+// provided by MSVC. Functions with other personality functions are left alone
+// and may be prepared by other passes. In particular, all supported MSVC
+// personality functions require cleanup code to be outlined, and the C++
+// personality requires catch handler code to be outlined.
 //
 //===----------------------------------------------------------------------===//
 
 #include "llvm/ADT/MapVector.h"
 #include "llvm/ADT/STLExtras.h"
 #include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/Triple.h"
 #include "llvm/ADT/TinyPtrVector.h"
+#include "llvm/Analysis/CFG.h"
 #include "llvm/Analysis/LibCallSemantics.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
 #include "llvm/CodeGen/WinEHFuncInfo.h"
+#include "llvm/IR/Dominators.h"
 #include "llvm/IR/Function.h"
 #include "llvm/IR/IRBuilder.h"
 #include "llvm/IR/Instructions.h"
 #include "llvm/IR/Module.h"
 #include "llvm/IR/PatternMatch.h"
 #include "llvm/Pass.h"
-#include "llvm/Support/CommandLine.h"
 #include "llvm/Support/Debug.h"
 #include "llvm/Support/raw_ostream.h"
 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 #include "llvm/Transforms/Utils/Cloning.h"
 #include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/PromoteMemToReg.h"
 #include <memory>
 
 using namespace llvm;
@@ -50,6 +57,12 @@ namespace {
 // frame allocation structure.
 typedef MapVector<Value *, TinyPtrVector<AllocaInst *>> FrameVarInfoMap;
 
+// TinyPtrVector cannot hold nullptr, so we need our own sentinel that isn't
+// quite null.
+AllocaInst *getCatchObjectSentinel() {
+  return static_cast<AllocaInst *>(nullptr) + 1;
+}
+
 typedef SmallSet<BasicBlock *, 4> VisitedBlockSet;
 
 class LandingPadActions;
@@ -62,7 +75,10 @@ class WinEHPrepare : public FunctionPass {
 public:
   static char ID; // Pass identification, replacement for typeid.
   WinEHPrepare(const TargetMachine *TM = nullptr)
-      : FunctionPass(ID) {}
+      : FunctionPass(ID) {
+    if (TM)
+      TheTriple = TM->getTargetTriple();
+  }
 
   bool runOnFunction(Function &Fn) override;
 
@@ -77,31 +93,101 @@ public:
 private:
   bool prepareExceptionHandlers(Function &F,
                                 SmallVectorImpl<LandingPadInst *> &LPads);
+  void identifyEHBlocks(Function &F, SmallVectorImpl<LandingPadInst *> &LPads);
+  void promoteLandingPadValues(LandingPadInst *LPad);
+  void demoteValuesLiveAcrossHandlers(Function &F,
+                                      SmallVectorImpl<LandingPadInst *> &LPads);
+  void findSEHEHReturnPoints(Function &F,
+                             SetVector<BasicBlock *> &EHReturnBlocks);
+  void findCXXEHReturnPoints(Function &F,
+                             SetVector<BasicBlock *> &EHReturnBlocks);
+  void getPossibleReturnTargets(Function *ParentF, Function *HandlerF,
+                                SetVector<BasicBlock*> &Targets);
+  void completeNestedLandingPad(Function *ParentFn,
+                                LandingPadInst *OutlinedLPad,
+                                const LandingPadInst *OriginalLPad,
+                                FrameVarInfoMap &VarInfo);
+  Function *createHandlerFunc(Function *ParentFn, Type *RetTy,
+                              const Twine &Name, Module *M, Value *&ParentFP);
   bool outlineHandler(ActionHandler *Action, Function *SrcFn,
                       LandingPadInst *LPad, BasicBlock *StartBB,
                       FrameVarInfoMap &VarInfo);
+  void addStubInvokeToHandlerIfNeeded(Function *Handler);
 
   void mapLandingPadBlocks(LandingPadInst *LPad, LandingPadActions &Actions);
   CatchHandler *findCatchHandler(BasicBlock *BB, BasicBlock *&NextBB,
                                  VisitedBlockSet &VisitedBlocks);
-  CleanupHandler *findCleanupHandler(BasicBlock *StartBB, BasicBlock *EndBB);
+  void findCleanupHandlers(LandingPadActions &Actions, BasicBlock *StartBB,
+                           BasicBlock *EndBB);
 
   void processSEHCatchHandler(CatchHandler *Handler, BasicBlock *StartBB);
+  void insertPHIStores(PHINode *OriginalPHI, AllocaInst *SpillSlot);
+  void
+  insertPHIStore(BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot,
+                 SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist);
+  AllocaInst *insertPHILoads(PHINode *PN, Function &F);
+  void replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot,
+                          DenseMap<BasicBlock *, Value *> &Loads, Function &F);
+  void demoteNonlocalUses(Value *V, std::set<BasicBlock *> &ColorsForBB,
+                          Function &F);
+  bool prepareExplicitEH(Function &F,
+                         SmallVectorImpl<BasicBlock *> &EntryBlocks);
+  void colorFunclets(Function &F, SmallVectorImpl<BasicBlock *> &EntryBlocks);
+
+  Triple TheTriple;
 
   // All fields are reset by runOnFunction.
-  EHPersonality Personality;
+  DominatorTree *DT = nullptr;
+  const TargetLibraryInfo *LibInfo = nullptr;
+  EHPersonality Personality = EHPersonality::Unknown;
   CatchHandlerMapTy CatchHandlerMap;
   CleanupHandlerMapTy CleanupHandlerMap;
-  DenseMap<const LandingPadInst *, LandingPadMap>  LPadMaps;
+  DenseMap<const LandingPadInst *, LandingPadMap> LPadMaps;
+  SmallPtrSet<BasicBlock *, 4> NormalBlocks;
+  SmallPtrSet<BasicBlock *, 4> EHBlocks;
+  SetVector<BasicBlock *> EHReturnBlocks;
+
+  // This maps landing pad instructions found in outlined handlers to
+  // the landing pad instruction in the parent function from which they
+  // were cloned.  The cloned/nested landing pad is used as the key
+  // because the landing pad may be cloned into multiple handlers.
+  // This map will be used to add the llvm.eh.actions call to the nested
+  // landing pads after all handlers have been outlined.
+  DenseMap<LandingPadInst *, const LandingPadInst *> NestedLPtoOriginalLP;
+
+  // This maps blocks in the parent function which are destinations of
+  // catch handlers to cloned blocks in (other) outlined handlers. This
+  // handles the case where a nested landing pads has a catch handler that
+  // returns to a handler function rather than the parent function.
+  // The original block is used as the key here because there should only
+  // ever be one handler function from which the cloned block is not pruned.
+  // The original block will be pruned from the parent function after all
+  // handlers have been outlined.  This map will be used to adjust the
+  // return instructions of handlers which return to the block that was
+  // outlined into a handler.  This is done after all handlers have been
+  // outlined but before the outlined code is pruned from the parent function.
+  DenseMap<const BasicBlock *, BasicBlock *> LPadTargetBlocks;
+
+  // Map from outlined handler to call to parent local address. Only used for
+  // 32-bit EH.
+  DenseMap<Function *, Value *> HandlerToParentFP;
+
+  AllocaInst *SEHExceptionCodeSlot = nullptr;
+
+  std::map<BasicBlock *, std::set<BasicBlock *>> BlockColors;
+  std::map<BasicBlock *, std::set<BasicBlock *>> FuncletBlocks;
+  std::map<BasicBlock *, std::set<BasicBlock *>> FuncletChildren;
 };
 
 class WinEHFrameVariableMaterializer : public ValueMaterializer {
 public:
-  WinEHFrameVariableMaterializer(Function *OutlinedFn,
+  WinEHFrameVariableMaterializer(Function *OutlinedFn, Value *ParentFP,
                                  FrameVarInfoMap &FrameVarInfo);
-  ~WinEHFrameVariableMaterializer() {}
+  ~WinEHFrameVariableMaterializer() override {}
+
+  Value *materializeValueFor(Value *V) override;
 
-  virtual Value *materializeValueFor(Value *V) override;
+  void escapeCatchObject(Value *V);
 
 private:
   FrameVarInfoMap &FrameVarInfo;
@@ -115,48 +201,28 @@ public:
 
   bool isInitialized() { return OriginLPad != nullptr; }
 
-  bool mapIfEHPtrLoad(const LoadInst *Load) {
-    return mapIfEHLoad(Load, EHPtrStores, EHPtrStoreAddrs);
-  }
-  bool mapIfSelectorLoad(const LoadInst *Load) {
-    return mapIfEHLoad(Load, SelectorStores, SelectorStoreAddrs);
-  }
-
   bool isOriginLandingPadBlock(const BasicBlock *BB) const;
   bool isLandingPadSpecificInst(const Instruction *Inst) const;
 
-  void remapSelector(ValueToValueMapTy &VMap, Value *MappedValue) const;
+  void remapEHValues(ValueToValueMapTy &VMap, Value *EHPtrValue,
+                     Value *SelectorValue) const;
 
 private:
-  bool mapIfEHLoad(const LoadInst *Load,
-                   SmallVectorImpl<const StoreInst *> &Stores,
-                   SmallVectorImpl<const Value *> &StoreAddrs);
-
   const LandingPadInst *OriginLPad;
   // We will normally only see one of each of these instructions, but
   // if more than one occurs for some reason we can handle that.
   TinyPtrVector<const ExtractValueInst *> ExtractedEHPtrs;
   TinyPtrVector<const ExtractValueInst *> ExtractedSelectors;
-
-  // In optimized code, there will typically be at most one instance of
-  // each of the following, but in unoptimized IR it is not uncommon
-  // for the values to be stored, loaded and then stored again.  In that
-  // case we will create a second entry for each store and store address.
-  SmallVector<const StoreInst *, 2> EHPtrStores;
-  SmallVector<const StoreInst *, 2> SelectorStores;
-  SmallVector<const Value *, 2> EHPtrStoreAddrs;
-  SmallVector<const Value *, 2> SelectorStoreAddrs;
 };
 
 class WinEHCloningDirectorBase : public CloningDirector {
 public:
-  WinEHCloningDirectorBase(Function *HandlerFn,
-                           FrameVarInfoMap &VarInfo,
-                           LandingPadMap &LPadMap)
-      : Materializer(HandlerFn, VarInfo),
+  WinEHCloningDirectorBase(Function *HandlerFn, Value *ParentFP,
+                           FrameVarInfoMap &VarInfo, LandingPadMap &LPadMap)
+      : Materializer(HandlerFn, ParentFP, VarInfo),
         SelectorIDType(Type::getInt32Ty(HandlerFn->getContext())),
         Int8PtrType(Type::getInt8PtrTy(HandlerFn->getContext())),
-        LPadMap(LPadMap) {}
+        LPadMap(LPadMap), ParentFP(ParentFP) {}
 
   CloningAction handleInstruction(ValueToValueMapTy &VMap,
                                   const Instruction *Inst,
@@ -171,12 +237,21 @@ public:
   virtual CloningAction handleTypeIdFor(ValueToValueMapTy &VMap,
                                         const Instruction *Inst,
                                         BasicBlock *NewBB) = 0;
+  virtual CloningAction handleIndirectBr(ValueToValueMapTy &VMap,
+                                         const IndirectBrInst *IBr,
+                                         BasicBlock *NewBB) = 0;
   virtual CloningAction handleInvoke(ValueToValueMapTy &VMap,
                                      const InvokeInst *Invoke,
                                      BasicBlock *NewBB) = 0;
   virtual CloningAction handleResume(ValueToValueMapTy &VMap,
                                      const ResumeInst *Resume,
                                      BasicBlock *NewBB) = 0;
+  virtual CloningAction handleCompare(ValueToValueMapTy &VMap,
+                                      const CmpInst *Compare,
+                                      BasicBlock *NewBB) = 0;
+  virtual CloningAction handleLandingPad(ValueToValueMapTy &VMap,
+                                         const LandingPadInst *LPad,
+                                         BasicBlock *NewBB) = 0;
 
   ValueMaterializer *getValueMaterializer() override { return &Materializer; }
 
@@ -185,15 +260,22 @@ protected:
   Type *SelectorIDType;
   Type *Int8PtrType;
   LandingPadMap &LPadMap;
+
+  /// The value representing the parent frame pointer.
+  Value *ParentFP;
 };
 
 class WinEHCatchDirector : public WinEHCloningDirectorBase {
 public:
-  WinEHCatchDirector(Function *CatchFn, Value *Selector,
-                     FrameVarInfoMap &VarInfo, LandingPadMap &LPadMap)
-      : WinEHCloningDirectorBase(CatchFn, VarInfo, LPadMap),
+  WinEHCatchDirector(
+      Function *CatchFn, Value *ParentFP, Value *Selector,
+      FrameVarInfoMap &VarInfo, LandingPadMap &LPadMap,
+      DenseMap<LandingPadInst *, const LandingPadInst *> &NestedLPads,
+      DominatorTree *DT, SmallPtrSetImpl<BasicBlock *> &EHBlocks)
+      : WinEHCloningDirectorBase(CatchFn, ParentFP, VarInfo, LPadMap),
         CurrentSelector(Selector->stripPointerCasts()),
-        ExceptionObjectVar(nullptr) {}
+        ExceptionObjectVar(nullptr), NestedLPtoOriginalLP(NestedLPads),
+        DT(DT), EHBlocks(EHBlocks) {}
 
   CloningAction handleBeginCatch(ValueToValueMapTy &VMap,
                                  const Instruction *Inst,
@@ -203,26 +285,41 @@ public:
   CloningAction handleTypeIdFor(ValueToValueMapTy &VMap,
                                 const Instruction *Inst,
                                 BasicBlock *NewBB) override;
+  CloningAction handleIndirectBr(ValueToValueMapTy &VMap,
+                                 const IndirectBrInst *IBr,
+                                 BasicBlock *NewBB) override;
   CloningAction handleInvoke(ValueToValueMapTy &VMap, const InvokeInst *Invoke,
                              BasicBlock *NewBB) override;
   CloningAction handleResume(ValueToValueMapTy &VMap, const ResumeInst *Resume,
                              BasicBlock *NewBB) override;
+  CloningAction handleCompare(ValueToValueMapTy &VMap, const CmpInst *Compare,
+                              BasicBlock *NewBB) override;
+  CloningAction handleLandingPad(ValueToValueMapTy &VMap,
+                                 const LandingPadInst *LPad,
+                                 BasicBlock *NewBB) override;
 
-  const Value *getExceptionVar() { return ExceptionObjectVar; }
+  Value *getExceptionVar() { return ExceptionObjectVar; }
   TinyPtrVector<BasicBlock *> &getReturnTargets() { return ReturnTargets; }
 
 private:
   Value *CurrentSelector;
 
-  const Value *ExceptionObjectVar;
+  Value *ExceptionObjectVar;
   TinyPtrVector<BasicBlock *> ReturnTargets;
+
+  // This will be a reference to the field of the same name in the WinEHPrepare
+  // object which instantiates this WinEHCatchDirector object.
+  DenseMap<LandingPadInst *, const LandingPadInst *> &NestedLPtoOriginalLP;
+  DominatorTree *DT;
+  SmallPtrSetImpl<BasicBlock *> &EHBlocks;
 };
 
 class WinEHCleanupDirector : public WinEHCloningDirectorBase {
 public:
-  WinEHCleanupDirector(Function *CleanupFn,
+  WinEHCleanupDirector(Function *CleanupFn, Value *ParentFP,
                        FrameVarInfoMap &VarInfo, LandingPadMap &LPadMap)
-      : WinEHCloningDirectorBase(CleanupFn, VarInfo, LPadMap) {}
+      : WinEHCloningDirectorBase(CleanupFn, ParentFP, VarInfo,
+                                 LPadMap) {}
 
   CloningAction handleBeginCatch(ValueToValueMapTy &VMap,
                                  const Instruction *Inst,
@@ -232,10 +329,18 @@ public:
   CloningAction handleTypeIdFor(ValueToValueMapTy &VMap,
                                 const Instruction *Inst,
                                 BasicBlock *NewBB) override;
+  CloningAction handleIndirectBr(ValueToValueMapTy &VMap,
+                                 const IndirectBrInst *IBr,
+                                 BasicBlock *NewBB) override;
   CloningAction handleInvoke(ValueToValueMapTy &VMap, const InvokeInst *Invoke,
                              BasicBlock *NewBB) override;
   CloningAction handleResume(ValueToValueMapTy &VMap, const ResumeInst *Resume,
                              BasicBlock *NewBB) override;
+  CloningAction handleCompare(ValueToValueMapTy &VMap, const CmpInst *Compare,
+                              BasicBlock *NewBB) override;
+  CloningAction handleLandingPad(ValueToValueMapTy &VMap,
+                                 const LandingPadInst *LPad,
+                                 BasicBlock *NewBB) override;
 };
 
 class LandingPadActions {
@@ -272,55 +377,395 @@ FunctionPass *llvm::createWinEHPass(const TargetMachine *TM) {
   return new WinEHPrepare(TM);
 }
 
-// FIXME: Remove this once the backend can handle the prepared IR.
-static cl::opt<bool>
-SEHPrepare("sehprepare", cl::Hidden,
-           cl::desc("Prepare functions with SEH personalities"));
-
 bool WinEHPrepare::runOnFunction(Function &Fn) {
+  if (!Fn.hasPersonalityFn())
+    return false;
+
+  // No need to prepare outlined handlers.
+  if (Fn.hasFnAttribute("wineh-parent"))
+    return false;
+
+  // Classify the personality to see what kind of preparation we need.
+  Personality = classifyEHPersonality(Fn.getPersonalityFn());
+
+  // Do nothing if this is not an MSVC personality.
+  if (!isMSVCEHPersonality(Personality))
+    return false;
+
   SmallVector<LandingPadInst *, 4> LPads;
   SmallVector<ResumeInst *, 4> Resumes;
+  SmallVector<BasicBlock *, 4> EntryBlocks;
+  bool ForExplicitEH = false;
   for (BasicBlock &BB : Fn) {
-    if (auto *LP = BB.getLandingPadInst())
+    Instruction *First = BB.getFirstNonPHI();
+    if (auto *LP = dyn_cast<LandingPadInst>(First)) {
       LPads.push_back(LP);
+    } else if (First->isEHPad()) {
+      if (!ForExplicitEH)
+        EntryBlocks.push_back(&Fn.getEntryBlock());
+      if (!isa<CatchEndPadInst>(First) && !isa<CleanupEndPadInst>(First))
+        EntryBlocks.push_back(&BB);
+      ForExplicitEH = true;
+    }
     if (auto *Resume = dyn_cast<ResumeInst>(BB.getTerminator()))
       Resumes.push_back(Resume);
   }
 
+  if (ForExplicitEH)
+    return prepareExplicitEH(Fn, EntryBlocks);
+
   // No need to prepare functions that lack landing pads.
   if (LPads.empty())
     return false;
 
-  // Classify the personality to see what kind of preparation we need.
-  Personality = classifyEHPersonality(LPads.back()->getPersonalityFn());
+  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+  LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
 
-  // Do nothing if this is not an MSVC personality.
-  if (!isMSVCEHPersonality(Personality))
-    return false;
+  // If there were any landing pads, prepareExceptionHandlers will make changes.
+  prepareExceptionHandlers(Fn, LPads);
+  return true;
+}
+
+bool WinEHPrepare::doFinalization(Module &M) { return false; }
+
+void WinEHPrepare::getAnalysisUsage(AnalysisUsage &AU) const {
+  AU.addRequired<DominatorTreeWrapperPass>();
+  AU.addRequired<TargetLibraryInfoWrapperPass>();
+}
+
+static bool isSelectorDispatch(BasicBlock *BB, BasicBlock *&CatchHandler,
+                               Constant *&Selector, BasicBlock *&NextBB);
+
+// Finds blocks reachable from the starting set Worklist. Does not follow unwind
+// edges or blocks listed in StopPoints.
+static void findReachableBlocks(SmallPtrSetImpl<BasicBlock *> &ReachableBBs,
+                                SetVector<BasicBlock *> &Worklist,
+                                const SetVector<BasicBlock *> *StopPoints) {
+  while (!Worklist.empty()) {
+    BasicBlock *BB = Worklist.pop_back_val();
+
+    // Don't cross blocks that we should stop at.
+    if (StopPoints && StopPoints->count(BB))
+      continue;
 
-  if (isAsynchronousEHPersonality(Personality) && !SEHPrepare) {
-    // Replace all resume instructions with unreachable.
-    // FIXME: Remove this once the backend can handle the prepared IR.
-    for (ResumeInst *Resume : Resumes) {
-      IRBuilder<>(Resume).CreateUnreachable();
-      Resume->eraseFromParent();
+    if (!ReachableBBs.insert(BB).second)
+      continue; // Already visited.
+
+    // Don't follow unwind edges of invokes.
+    if (auto *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
+      Worklist.insert(II->getNormalDest());
+      continue;
     }
-    return true;
+
+    // Otherwise, follow all successors.
+    Worklist.insert(succ_begin(BB), succ_end(BB));
   }
+}
 
-  // If there were any landing pads, prepareExceptionHandlers will make changes.
-  prepareExceptionHandlers(Fn, LPads);
-  return true;
+// Attempt to find an instruction where a block can be split before
+// a call to llvm.eh.begincatch and its operands.  If the block
+// begins with the begincatch call or one of its adjacent operands
+// the block will not be split.
+static Instruction *findBeginCatchSplitPoint(BasicBlock *BB,
+                                             IntrinsicInst *II) {
+  // If the begincatch call is already the first instruction in the block,
+  // don't split.
+  Instruction *FirstNonPHI = BB->getFirstNonPHI();
+  if (II == FirstNonPHI)
+    return nullptr;
+
+  // If either operand is in the same basic block as the instruction and
+  // isn't used by another instruction before the begincatch call, include it
+  // in the split block.
+  auto *Op0 = dyn_cast<Instruction>(II->getOperand(0));
+  auto *Op1 = dyn_cast<Instruction>(II->getOperand(1));
+
+  Instruction *I = II->getPrevNode();
+  Instruction *LastI = II;
+
+  while (I == Op0 || I == Op1) {
+    // If the block begins with one of the operands and there are no other
+    // instructions between the operand and the begincatch call, don't split.
+    if (I == FirstNonPHI)
+      return nullptr;
+
+    LastI = I;
+    I = I->getPrevNode();
+  }
+
+  // If there is at least one instruction in the block before the begincatch
+  // call and its operands, split the block at either the begincatch or
+  // its operand.
+  return LastI;
 }
 
-bool WinEHPrepare::doFinalization(Module &M) {
-  return false;
+/// Find all points where exceptional control rejoins normal control flow via
+/// llvm.eh.endcatch. Add them to the normal bb reachability worklist.
+void WinEHPrepare::findCXXEHReturnPoints(
+    Function &F, SetVector<BasicBlock *> &EHReturnBlocks) {
+  for (auto BBI = F.begin(), BBE = F.end(); BBI != BBE; ++BBI) {
+    BasicBlock *BB = BBI;
+    for (Instruction &I : *BB) {
+      if (match(&I, m_Intrinsic<Intrinsic::eh_begincatch>())) {
+        Instruction *SplitPt =
+            findBeginCatchSplitPoint(BB, cast<IntrinsicInst>(&I));
+        if (SplitPt) {
+          // Split the block before the llvm.eh.begincatch call to allow
+          // cleanup and catch code to be distinguished later.
+          // Do not update BBI because we still need to process the
+          // portion of the block that we are splitting off.
+          SplitBlock(BB, SplitPt, DT);
+          break;
+        }
+      }
+      if (match(&I, m_Intrinsic<Intrinsic::eh_endcatch>())) {
+        // Split the block after the call to llvm.eh.endcatch if there is
+        // anything other than an unconditional branch, or if the successor
+        // starts with a phi.
+        auto *Br = dyn_cast<BranchInst>(I.getNextNode());
+        if (!Br || !Br->isUnconditional() ||
+            isa<PHINode>(Br->getSuccessor(0)->begin())) {
+          DEBUG(dbgs() << "splitting block " << BB->getName()
+                       << " with llvm.eh.endcatch\n");
+          BBI = SplitBlock(BB, I.getNextNode(), DT);
+        }
+        // The next BB is normal control flow.
+        EHReturnBlocks.insert(BB->getTerminator()->getSuccessor(0));
+        break;
+      }
+    }
+  }
+}
+
+static bool isCatchAllLandingPad(const BasicBlock *BB) {
+  const LandingPadInst *LP = BB->getLandingPadInst();
+  if (!LP)
+    return false;
+  unsigned N = LP->getNumClauses();
+  return (N > 0 && LP->isCatch(N - 1) &&
+          isa<ConstantPointerNull>(LP->getClause(N - 1)));
+}
+
+/// Find all points where exceptions control rejoins normal control flow via
+/// selector dispatch.
+void WinEHPrepare::findSEHEHReturnPoints(
+    Function &F, SetVector<BasicBlock *> &EHReturnBlocks) {
+  for (auto BBI = F.begin(), BBE = F.end(); BBI != BBE; ++BBI) {
+    BasicBlock *BB = BBI;
+    // If the landingpad is a catch-all, treat the whole lpad as if it is
+    // reachable from normal control flow.
+    // FIXME: This is imprecise. We need a better way of identifying where a
+    // catch-all starts and cleanups stop. As far as LLVM is concerned, there
+    // is no difference.
+    if (isCatchAllLandingPad(BB)) {
+      EHReturnBlocks.insert(BB);
+      continue;
+    }
+
+    BasicBlock *CatchHandler;
+    BasicBlock *NextBB;
+    Constant *Selector;
+    if (isSelectorDispatch(BB, CatchHandler, Selector, NextBB)) {
+      // Split the edge if there are multiple predecessors. This creates a place
+      // where we can insert EH recovery code.
+      if (!CatchHandler->getSinglePredecessor()) {
+        DEBUG(dbgs() << "splitting EH return edge from " << BB->getName()
+                     << " to " << CatchHandler->getName() << '\n');
+        BBI = CatchHandler = SplitCriticalEdge(
+            BB, std::find(succ_begin(BB), succ_end(BB), CatchHandler));
+      }
+      EHReturnBlocks.insert(CatchHandler);
+    }
+  }
+}
+
+void WinEHPrepare::identifyEHBlocks(Function &F, 
+                                    SmallVectorImpl<LandingPadInst *> &LPads) {
+  DEBUG(dbgs() << "Demoting values live across exception handlers in function "
+               << F.getName() << '\n');
+
+  // Build a set of all non-exceptional blocks and exceptional blocks.
+  // - Non-exceptional blocks are blocks reachable from the entry block while
+  //   not following invoke unwind edges.
+  // - Exceptional blocks are blocks reachable from landingpads. Analysis does
+  //   not follow llvm.eh.endcatch blocks, which mark a transition from
+  //   exceptional to normal control.
+
+  if (Personality == EHPersonality::MSVC_CXX)
+    findCXXEHReturnPoints(F, EHReturnBlocks);
+  else
+    findSEHEHReturnPoints(F, EHReturnBlocks);
+
+  DEBUG({
+    dbgs() << "identified the following blocks as EH return points:\n";
+    for (BasicBlock *BB : EHReturnBlocks)
+      dbgs() << "  " << BB->getName() << '\n';
+  });
+
+// Join points should not have phis at this point, unless they are a
+// landingpad, in which case we will demote their phis later.
+#ifndef NDEBUG
+  for (BasicBlock *BB : EHReturnBlocks)
+    assert((BB->isLandingPad() || !isa<PHINode>(BB->begin())) &&
+           "non-lpad EH return block has phi");
+#endif
+
+  // Normal blocks are the blocks reachable from the entry block and all EH
+  // return points.
+  SetVector<BasicBlock *> Worklist;
+  Worklist = EHReturnBlocks;
+  Worklist.insert(&F.getEntryBlock());
+  findReachableBlocks(NormalBlocks, Worklist, nullptr);
+  DEBUG({
+    dbgs() << "marked the following blocks as normal:\n";
+    for (BasicBlock *BB : NormalBlocks)
+      dbgs() << "  " << BB->getName() << '\n';
+  });
+
+  // Exceptional blocks are the blocks reachable from landingpads that don't
+  // cross EH return points.
+  Worklist.clear();
+  for (auto *LPI : LPads)
+    Worklist.insert(LPI->getParent());
+  findReachableBlocks(EHBlocks, Worklist, &EHReturnBlocks);
+  DEBUG({
+    dbgs() << "marked the following blocks as exceptional:\n";
+    for (BasicBlock *BB : EHBlocks)
+      dbgs() << "  " << BB->getName() << '\n';
+  });
+
 }
 
-void WinEHPrepare::getAnalysisUsage(AnalysisUsage &AU) const {}
+/// Ensure that all values live into and out of exception handlers are stored
+/// in memory.
+/// FIXME: This falls down when values are defined in one handler and live into
+/// another handler. For example, a cleanup defines a value used only by a
+/// catch handler.
+void WinEHPrepare::demoteValuesLiveAcrossHandlers(
+    Function &F, SmallVectorImpl<LandingPadInst *> &LPads) {
+  DEBUG(dbgs() << "Demoting values live across exception handlers in function "
+               << F.getName() << '\n');
+
+  // identifyEHBlocks() should have been called before this function.
+  assert(!NormalBlocks.empty());
+
+  // Try to avoid demoting EH pointer and selector values. They get in the way
+  // of our pattern matching.
+  SmallPtrSet<Instruction *, 10> EHVals;
+  for (BasicBlock &BB : F) {
+    LandingPadInst *LP = BB.getLandingPadInst();
+    if (!LP)
+      continue;
+    EHVals.insert(LP);
+    for (User *U : LP->users()) {
+      auto *EI = dyn_cast<ExtractValueInst>(U);
+      if (!EI)
+        continue;
+      EHVals.insert(EI);
+      for (User *U2 : EI->users()) {
+        if (auto *PN = dyn_cast<PHINode>(U2))
+          EHVals.insert(PN);
+      }
+    }
+  }
+
+  SetVector<Argument *> ArgsToDemote;
+  SetVector<Instruction *> InstrsToDemote;
+  for (BasicBlock &BB : F) {
+    bool IsNormalBB = NormalBlocks.count(&BB);
+    bool IsEHBB = EHBlocks.count(&BB);
+    if (!IsNormalBB && !IsEHBB)
+      continue; // Blocks that are neither normal nor EH are unreachable.
+    for (Instruction &I : BB) {
+      for (Value *Op : I.operands()) {
+        // Don't demote static allocas, constants, and labels.
+        if (isa<Constant>(Op) || isa<BasicBlock>(Op) || isa<InlineAsm>(Op))
+          continue;
+        auto *AI = dyn_cast<AllocaInst>(Op);
+        if (AI && AI->isStaticAlloca())
+          continue;
+
+        if (auto *Arg = dyn_cast<Argument>(Op)) {
+          if (IsEHBB) {
+            DEBUG(dbgs() << "Demoting argument " << *Arg
+                         << " used by EH instr: " << I << "\n");
+            ArgsToDemote.insert(Arg);
+          }
+          continue;
+        }
+
+        // Don't demote EH values.
+        auto *OpI = cast<Instruction>(Op);
+        if (EHVals.count(OpI))
+          continue;
+
+        BasicBlock *OpBB = OpI->getParent();
+        // If a value is produced and consumed in the same BB, we don't need to
+        // demote it.
+        if (OpBB == &BB)
+          continue;
+        bool IsOpNormalBB = NormalBlocks.count(OpBB);
+        bool IsOpEHBB = EHBlocks.count(OpBB);
+        if (IsNormalBB != IsOpNormalBB || IsEHBB != IsOpEHBB) {
+          DEBUG({
+            dbgs() << "Demoting instruction live in-out from EH:\n";
+            dbgs() << "Instr: " << *OpI << '\n';
+            dbgs() << "User: " << I << '\n';
+          });
+          InstrsToDemote.insert(OpI);
+        }
+      }
+    }
+  }
+
+  // Demote values live into and out of handlers.
+  // FIXME: This demotion is inefficient. We should insert spills at the point
+  // of definition, insert one reload in each handler that uses the value, and
+  // insert reloads in the BB used to rejoin normal control flow.
+  Instruction *AllocaInsertPt = F.getEntryBlock().getFirstInsertionPt();
+  for (Instruction *I : InstrsToDemote)
+    DemoteRegToStack(*I, false, AllocaInsertPt);
+
+  // Demote arguments separately, and only for uses in EH blocks.
+  for (Argument *Arg : ArgsToDemote) {
+    auto *Slot = new AllocaInst(Arg->getType(), nullptr,
+                                Arg->getName() + ".reg2mem", AllocaInsertPt);
+    SmallVector<User *, 4> Users(Arg->user_begin(), Arg->user_end());
+    for (User *U : Users) {
+      auto *I = dyn_cast<Instruction>(U);
+      if (I && EHBlocks.count(I->getParent())) {
+        auto *Reload = new LoadInst(Slot, Arg->getName() + ".reload", false, I);
+        U->replaceUsesOfWith(Arg, Reload);
+      }
+    }
+    new StoreInst(Arg, Slot, AllocaInsertPt);
+  }
+
+  // Demote landingpad phis, as the landingpad will be removed from the machine
+  // CFG.
+  for (LandingPadInst *LPI : LPads) {
+    BasicBlock *BB = LPI->getParent();
+    while (auto *Phi = dyn_cast<PHINode>(BB->begin()))
+      DemotePHIToStack(Phi, AllocaInsertPt);
+  }
+
+  DEBUG(dbgs() << "Demoted " << InstrsToDemote.size() << " instructions and "
+               << ArgsToDemote.size() << " arguments for WinEHPrepare\n\n");
+}
 
 bool WinEHPrepare::prepareExceptionHandlers(
     Function &F, SmallVectorImpl<LandingPadInst *> &LPads) {
+  // Don't run on functions that are already prepared.
+  for (LandingPadInst *LPad : LPads) {
+    BasicBlock *LPadBB = LPad->getParent();
+    for (Instruction &Inst : *LPadBB)
+      if (match(&Inst, m_Intrinsic<Intrinsic::eh_actions>()))
+        return false;
+  }
+
+  identifyEHBlocks(F, LPads);
+  demoteValuesLiveAcrossHandlers(F, LPads);
+
   // These containers are used to re-map frame variables that are used in
   // outlined catch and cleanup handlers.  They will be populated as the
   // handlers are outlined.
@@ -336,20 +781,37 @@ bool WinEHPrepare::prepareExceptionHandlers(
   Type *Int32Type = Type::getInt32Ty(Context);
   Function *ActionIntrin = Intrinsic::getDeclaration(M, Intrinsic::eh_actions);
 
+  if (isAsynchronousEHPersonality(Personality)) {
+    // FIXME: Switch the ehptr type to i32 and then switch this.
+    SEHExceptionCodeSlot =
+        new AllocaInst(Int8PtrType, nullptr, "seh_exception_code",
+                       F.getEntryBlock().getFirstInsertionPt());
+  }
+
+  // In order to handle the case where one outlined catch handler returns
+  // to a block within another outlined catch handler that would otherwise
+  // be unreachable, we need to outline the nested landing pad before we
+  // outline the landing pad which encloses it.
+  if (!isAsynchronousEHPersonality(Personality))
+    std::sort(LPads.begin(), LPads.end(),
+              [this](LandingPadInst *const &L, LandingPadInst *const &R) {
+                return DT->properlyDominates(R->getParent(), L->getParent());
+              });
+
+  // This container stores the llvm.eh.recover and IndirectBr instructions
+  // that make up the body of each landing pad after it has been outlined.
+  // We need to defer the population of the target list for the indirectbr
+  // until all landing pads have been outlined so that we can handle the
+  // case of blocks in the target that are reached only from nested
+  // landing pads.
+  SmallVector<std::pair<CallInst*, IndirectBrInst *>, 4> LPadImpls;
+
   for (LandingPadInst *LPad : LPads) {
     // Look for evidence that this landingpad has already been processed.
     bool LPadHasActionList = false;
     BasicBlock *LPadBB = LPad->getParent();
     for (Instruction &Inst : *LPadBB) {
-      if (auto *IntrinCall = dyn_cast<IntrinsicInst>(&Inst)) {
-        if (IntrinCall->getIntrinsicID() == Intrinsic::eh_actions) {
-          LPadHasActionList = true;
-          break;
-        }
-      }
-      // FIXME: This is here to help with the development of nested landing pad
-      //        outlining.  It should be removed when that is finished.
-      if (isa<UnreachableInst>(Inst)) {
+      if (match(&Inst, m_Intrinsic<Intrinsic::eh_actions>())) {
         LPadHasActionList = true;
         break;
       }
@@ -360,9 +822,14 @@ bool WinEHPrepare::prepareExceptionHandlers(
     if (LPadHasActionList)
       continue;
 
+    // If either of the values in the aggregate returned by the landing pad is
+    // extracted and stored to memory, promote the stored value to a register.
+    promoteLandingPadValues(LPad);
+
     LandingPadActions Actions;
     mapLandingPadBlocks(LPad, Actions);
 
+    HandlersOutlined |= !Actions.actions().empty();
     for (ActionHandler *Action : Actions) {
       if (Action->hasBeenProcessed())
         continue;
@@ -374,36 +841,61 @@ bool WinEHPrepare::prepareExceptionHandlers(
       if (isAsynchronousEHPersonality(Personality)) {
         if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) {
           processSEHCatchHandler(CatchAction, StartBB);
-          HandlersOutlined = true;
           continue;
         }
       }
 
-      if (outlineHandler(Action, &F, LPad, StartBB, FrameVarInfo)) {
-        HandlersOutlined = true;
-      }
-    } // End for each Action
-
-    // FIXME: We need a guard against partially outlined functions.
-    if (!HandlersOutlined)
-      continue;
-
-    // Replace the landing pad with a new llvm.eh.action based landing pad.
-    BasicBlock *NewLPadBB = BasicBlock::Create(Context, "lpad", &F, LPadBB);
-    assert(!isa<PHINode>(LPadBB->begin()));
-    auto *NewLPad = cast<LandingPadInst>(LPad->clone());
-    NewLPadBB->getInstList().push_back(NewLPad);
-    while (!pred_empty(LPadBB)) {
-      auto *pred = *pred_begin(LPadBB);
-      InvokeInst *Invoke = cast<InvokeInst>(pred->getTerminator());
-      Invoke->setUnwindDest(NewLPadBB);
+      outlineHandler(Action, &F, LPad, StartBB, FrameVarInfo);
     }
 
-    // Replace uses of the old lpad in phis with this block and delete the old
-    // block.
-    LPadBB->replaceSuccessorsPhiUsesWith(NewLPadBB);
+    // Split the block after the landingpad instruction so that it is just a
+    // call to llvm.eh.actions followed by indirectbr.
+    assert(!isa<PHINode>(LPadBB->begin()) && "lpad phi not removed");
+    SplitBlock(LPadBB, LPad->getNextNode(), DT);
+    // Erase the branch inserted by the split so we can insert indirectbr.
     LPadBB->getTerminator()->eraseFromParent();
-    new UnreachableInst(LPadBB->getContext(), LPadBB);
+
+    // Replace all extracted values with undef and ultimately replace the
+    // landingpad with undef.
+    SmallVector<Instruction *, 4> SEHCodeUses;
+    SmallVector<Instruction *, 4> EHUndefs;
+    for (User *U : LPad->users()) {
+      auto *E = dyn_cast<ExtractValueInst>(U);
+      if (!E)
+        continue;
+      assert(E->getNumIndices() == 1 &&
+             "Unexpected operation: extracting both landing pad values");
+      unsigned Idx = *E->idx_begin();
+      assert((Idx == 0 || Idx == 1) && "unexpected index");
+      if (Idx == 0 && isAsynchronousEHPersonality(Personality))
+        SEHCodeUses.push_back(E);
+      else
+        EHUndefs.push_back(E);
+    }
+    for (Instruction *E : EHUndefs) {
+      E->replaceAllUsesWith(UndefValue::get(E->getType()));
+      E->eraseFromParent();
+    }
+    LPad->replaceAllUsesWith(UndefValue::get(LPad->getType()));
+
+    // Rewrite uses of the exception pointer to loads of an alloca.
+    while (!SEHCodeUses.empty()) {
+      Instruction *E = SEHCodeUses.pop_back_val();
+      SmallVector<Use *, 4> Uses;
+      for (Use &U : E->uses())
+        Uses.push_back(&U);
+      for (Use *U : Uses) {
+        auto *I = cast<Instruction>(U->getUser());
+        if (isa<ResumeInst>(I))
+          continue;
+        if (auto *Phi = dyn_cast<PHINode>(I))
+          SEHCodeUses.push_back(Phi);
+        else
+          U->set(new LoadInst(SEHExceptionCodeSlot, "sehcode", false, I));
+      }
+      E->replaceAllUsesWith(UndefValue::get(E->getType()));
+      E->eraseFromParent();
+    }
 
     // Add a call to describe the actions for this landing pad.
     std::vector<Value *> ActionArgs;
@@ -412,34 +904,100 @@ bool WinEHPrepare::prepareExceptionHandlers(
       if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) {
         ActionArgs.push_back(ConstantInt::get(Int32Type, 1));
         ActionArgs.push_back(CatchAction->getSelector());
+        // Find the frame escape index of the exception object alloca in the
+        // parent.
+        int FrameEscapeIdx = -1;
         Value *EHObj = const_cast<Value *>(CatchAction->getExceptionVar());
-        if (EHObj)
-          ActionArgs.push_back(EHObj);
-        else
-          ActionArgs.push_back(ConstantPointerNull::get(Int8PtrType));
+        if (EHObj && !isa<ConstantPointerNull>(EHObj)) {
+          auto I = FrameVarInfo.find(EHObj);
+          assert(I != FrameVarInfo.end() &&
+                 "failed to map llvm.eh.begincatch var");
+          FrameEscapeIdx = std::distance(FrameVarInfo.begin(), I);
+        }
+        ActionArgs.push_back(ConstantInt::get(Int32Type, FrameEscapeIdx));
       } else {
         ActionArgs.push_back(ConstantInt::get(Int32Type, 0));
       }
       ActionArgs.push_back(Action->getHandlerBlockOrFunc());
     }
     CallInst *Recover =
-        CallInst::Create(ActionIntrin, ActionArgs, "recover", NewLPadBB);
+        CallInst::Create(ActionIntrin, ActionArgs, "recover", LPadBB);
 
-    // Add an indirect branch listing possible successors of the catch handlers.
-    IndirectBrInst *Branch = IndirectBrInst::Create(Recover, 0, NewLPadBB);
+    SetVector<BasicBlock *> ReturnTargets;
     for (ActionHandler *Action : Actions) {
       if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) {
-        for (auto *Target : CatchAction->getReturnTargets()) {
-          Branch->addDestination(Target);
-        }
+        const auto &CatchTargets = CatchAction->getReturnTargets();
+        ReturnTargets.insert(CatchTargets.begin(), CatchTargets.end());
       }
     }
+    IndirectBrInst *Branch =
+        IndirectBrInst::Create(Recover, ReturnTargets.size(), LPadBB);
+    for (BasicBlock *Target : ReturnTargets)
+      Branch->addDestination(Target);
+
+    if (!isAsynchronousEHPersonality(Personality)) {
+      // C++ EH must repopulate the targets later to handle the case of
+      // targets that are reached indirectly through nested landing pads.
+      LPadImpls.push_back(std::make_pair(Recover, Branch));
+    }
+
   } // End for each landingpad
 
   // If nothing got outlined, there is no more processing to be done.
   if (!HandlersOutlined)
     return false;
 
+  // Replace any nested landing pad stubs with the correct action handler.
+  // This must be done before we remove unreachable blocks because it
+  // cleans up references to outlined blocks that will be deleted.
+  for (auto &LPadPair : NestedLPtoOriginalLP)
+    completeNestedLandingPad(&F, LPadPair.first, LPadPair.second, FrameVarInfo);
+  NestedLPtoOriginalLP.clear();
+
+  // Update the indirectbr instructions' target lists if necessary.
+  SetVector<BasicBlock*> CheckedTargets;
+  SmallVector<std::unique_ptr<ActionHandler>, 4> ActionList;
+  for (auto &LPadImplPair : LPadImpls) {
+    IntrinsicInst *Recover = cast<IntrinsicInst>(LPadImplPair.first);
+    IndirectBrInst *Branch = LPadImplPair.second;
+
+    // Get a list of handlers called by 
+    parseEHActions(Recover, ActionList);
+
+    // Add an indirect branch listing possible successors of the catch handlers.
+    SetVector<BasicBlock *> ReturnTargets;
+    for (const auto &Action : ActionList) {
+      if (auto *CA = dyn_cast<CatchHandler>(Action.get())) {
+        Function *Handler = cast<Function>(CA->getHandlerBlockOrFunc());
+        getPossibleReturnTargets(&F, Handler, ReturnTargets);
+      }
+    }
+    ActionList.clear();
+    // Clear any targets we already knew about.
+    for (unsigned int I = 0, E = Branch->getNumDestinations(); I < E; ++I) {
+      BasicBlock *KnownTarget = Branch->getDestination(I);
+      if (ReturnTargets.count(KnownTarget))
+        ReturnTargets.remove(KnownTarget);
+    }
+    for (BasicBlock *Target : ReturnTargets) {
+      Branch->addDestination(Target);
+      // The target may be a block that we excepted to get pruned.
+      // If it is, it may contain a call to llvm.eh.endcatch.
+      if (CheckedTargets.insert(Target)) {
+        // Earlier preparations guarantee that all calls to llvm.eh.endcatch
+        // will be followed by an unconditional branch.
+        auto *Br = dyn_cast<BranchInst>(Target->getTerminator());
+        if (Br && Br->isUnconditional() &&
+            Br != Target->getFirstNonPHIOrDbgOrLifetime()) {
+          Instruction *Prev = Br->getPrevNode();
+          if (match(cast<Value>(Prev), m_Intrinsic<Intrinsic::eh_endcatch>()))
+            Prev->eraseFromParent();
+        }
+      }
+    }
+  }
+  LPadImpls.clear();
+
   F.addFnAttr("wineh-parent", F.getName());
 
   // Delete any blocks that were only used by handlers that were outlined above.
@@ -450,84 +1008,59 @@ bool WinEHPrepare::prepareExceptionHandlers(
   Builder.SetInsertPoint(Entry->getFirstInsertionPt());
 
   Function *FrameEscapeFn =
-      Intrinsic::getDeclaration(M, Intrinsic::frameescape);
+      Intrinsic::getDeclaration(M, Intrinsic::localescape);
   Function *RecoverFrameFn =
-      Intrinsic::getDeclaration(M, Intrinsic::framerecover);
+      Intrinsic::getDeclaration(M, Intrinsic::localrecover);
+  SmallVector<Value *, 8> AllocasToEscape;
+
+  // Scan the entry block for an existing call to llvm.localescape. We need to
+  // keep escaping those objects.
+  for (Instruction &I : F.front()) {
+    auto *II = dyn_cast<IntrinsicInst>(&I);
+    if (II && II->getIntrinsicID() == Intrinsic::localescape) {
+      auto Args = II->arg_operands();
+      AllocasToEscape.append(Args.begin(), Args.end());
+      II->eraseFromParent();
+      break;
+    }
+  }
 
   // Finally, replace all of the temporary allocas for frame variables used in
-  // the outlined handlers with calls to llvm.framerecover.
-  BasicBlock::iterator II = Entry->getFirstInsertionPt();
-  Instruction *AllocaInsertPt = II;
-  SmallVector<Value *, 8> AllocasToEscape;
+  // the outlined handlers with calls to llvm.localrecover.
   for (auto &VarInfoEntry : FrameVarInfo) {
     Value *ParentVal = VarInfoEntry.first;
     TinyPtrVector<AllocaInst *> &Allocas = VarInfoEntry.second;
+    AllocaInst *ParentAlloca = cast<AllocaInst>(ParentVal);
 
-    // If the mapped value isn't already an alloca, we need to spill it if it
-    // is a computed value or copy it if it is an argument.
-    AllocaInst *ParentAlloca = dyn_cast<AllocaInst>(ParentVal);
-    if (!ParentAlloca) {
-      if (auto *Arg = dyn_cast<Argument>(ParentVal)) {
-        // Lower this argument to a copy and then demote that to the stack.
-        // We can't just use the argument location because the handler needs
-        // it to be in the frame allocation block.
-        // Use 'select i8 true, %arg, undef' to simulate a 'no-op' instruction.
-        Value *TrueValue = ConstantInt::getTrue(Context);
-        Value *UndefValue = UndefValue::get(Arg->getType());
-        Instruction *SI =
-            SelectInst::Create(TrueValue, Arg, UndefValue,
-                               Arg->getName() + ".tmp", AllocaInsertPt);
-        Arg->replaceAllUsesWith(SI);
-        // Reset the select operand, because it was clobbered by the RAUW above.
-        SI->setOperand(1, Arg);
-        ParentAlloca = DemoteRegToStack(*SI, true, SI);
-      } else if (auto *PN = dyn_cast<PHINode>(ParentVal)) {
-        ParentAlloca = DemotePHIToStack(PN, AllocaInsertPt);
-      } else {
-        Instruction *ParentInst = cast<Instruction>(ParentVal);
-        // FIXME: This is a work-around to temporarily handle the case where an
-        //        instruction that is only used in handlers is not sunk.
-        //        Without uses, DemoteRegToStack would just eliminate the value.
-        //        This will fail if ParentInst is an invoke.
-        if (ParentInst->getNumUses() == 0) {
-          BasicBlock::iterator InsertPt = ParentInst;
-          ++InsertPt;
-          ParentAlloca =
-              new AllocaInst(ParentInst->getType(), nullptr,
-                             ParentInst->getName() + ".reg2mem", InsertPt);
-          new StoreInst(ParentInst, ParentAlloca, InsertPt);
-        } else {
-          ParentAlloca = DemoteRegToStack(*ParentInst, true, ParentInst);
-        }
-      }
-    }
-
-    // If the parent alloca is no longer used and only one of the handlers used
-    // it, erase the parent and leave the copy in the outlined handler.
-    if (ParentAlloca->getNumUses() == 0 && Allocas.size() == 1) {
-      ParentAlloca->eraseFromParent();
-      continue;
-    }
+    // FIXME: We should try to sink unescaped allocas from the parent frame into
+    // the child frame. If the alloca is escaped, we have to use the lifetime
+    // markers to ensure that the alloca is only live within the child frame.
 
     // Add this alloca to the list of things to escape.
     AllocasToEscape.push_back(ParentAlloca);
 
     // Next replace all outlined allocas that are mapped to it.
     for (AllocaInst *TempAlloca : Allocas) {
+      if (TempAlloca == getCatchObjectSentinel())
+        continue; // Skip catch parameter sentinels.
       Function *HandlerFn = TempAlloca->getParent()->getParent();
-      // FIXME: Sink this GEP into the blocks where it is used.
+      llvm::Value *FP = HandlerToParentFP[HandlerFn];
+      assert(FP);
+
+      // FIXME: Sink this localrecover into the blocks where it is used.
       Builder.SetInsertPoint(TempAlloca);
       Builder.SetCurrentDebugLocation(TempAlloca->getDebugLoc());
       Value *RecoverArgs[] = {
-          Builder.CreateBitCast(&F, Int8PtrType, ""),
-          &(HandlerFn->getArgumentList().back()),
+          Builder.CreateBitCast(&F, Int8PtrType, ""), FP,
           llvm::ConstantInt::get(Int32Type, AllocasToEscape.size() - 1)};
-      Value *RecoveredAlloca = Builder.CreateCall(RecoverFrameFn, RecoverArgs);
+      Instruction *RecoveredAlloca =
+          Builder.CreateCall(RecoverFrameFn, RecoverArgs);
+
       // Add a pointer bitcast if the alloca wasn't an i8.
       if (RecoveredAlloca->getType() != TempAlloca->getType()) {
         RecoveredAlloca->setName(Twine(TempAlloca->getName()) + ".i8");
-        RecoveredAlloca =
-            Builder.CreateBitCast(RecoveredAlloca, TempAlloca->getType());
+        RecoveredAlloca = cast<Instruction>(
+            Builder.CreateBitCast(RecoveredAlloca, TempAlloca->getType()));
       }
       TempAlloca->replaceAllUsesWith(RecoveredAlloca);
       TempAlloca->removeFromParent();
@@ -536,34 +1069,214 @@ bool WinEHPrepare::prepareExceptionHandlers(
     }
   } // End for each FrameVarInfo entry.
 
-  // Insert 'call void (...)* @llvm.frameescape(...)' at the end of the entry
+  // Insert 'call void (...)* @llvm.localescape(...)' at the end of the entry
   // block.
   Builder.SetInsertPoint(&F.getEntryBlock().back());
   Builder.CreateCall(FrameEscapeFn, AllocasToEscape);
 
-  // Insert an alloca for the EH state in the entry block. On x86, we will also
-  // insert stores to update the EH state, but on other ISAs, the runtime does
-  // it for us.
-  // FIXME: This record is different on x86.
-  Type *UnwindHelpTy = Type::getInt64Ty(Context);
-  AllocaInst *UnwindHelp =
-      new AllocaInst(UnwindHelpTy, "unwindhelp", &F.getEntryBlock().front());
-  Builder.CreateStore(llvm::ConstantInt::get(UnwindHelpTy, -2), UnwindHelp,
-                      /*isVolatile=*/true);
-  Function *UnwindHelpFn =
-      Intrinsic::getDeclaration(M, Intrinsic::eh_unwindhelp);
-  Builder.CreateCall(UnwindHelpFn,
-                     Builder.CreateBitCast(UnwindHelp, Int8PtrType));
+  if (SEHExceptionCodeSlot) {
+    if (isAllocaPromotable(SEHExceptionCodeSlot)) {
+      SmallPtrSet<BasicBlock *, 4> UserBlocks;
+      for (User *U : SEHExceptionCodeSlot->users()) {
+        if (auto *Inst = dyn_cast<Instruction>(U))
+          UserBlocks.insert(Inst->getParent());
+      }
+      PromoteMemToReg(SEHExceptionCodeSlot, *DT);
+      // After the promotion, kill off dead instructions.
+      for (BasicBlock *BB : UserBlocks)
+        SimplifyInstructionsInBlock(BB, LibInfo);
+    }
+  }
 
   // Clean up the handler action maps we created for this function
   DeleteContainerSeconds(CatchHandlerMap);
   CatchHandlerMap.clear();
   DeleteContainerSeconds(CleanupHandlerMap);
   CleanupHandlerMap.clear();
+  HandlerToParentFP.clear();
+  DT = nullptr;
+  LibInfo = nullptr;
+  SEHExceptionCodeSlot = nullptr;
+  EHBlocks.clear();
+  NormalBlocks.clear();
+  EHReturnBlocks.clear();
 
   return HandlersOutlined;
 }
 
+void WinEHPrepare::promoteLandingPadValues(LandingPadInst *LPad) {
+  // If the return values of the landing pad instruction are extracted and
+  // stored to memory, we want to promote the store locations to reg values.
+  SmallVector<AllocaInst *, 2> EHAllocas;
+
+  // The landingpad instruction returns an aggregate value.  Typically, its
+  // value will be passed to a pair of extract value instructions and the
+  // results of those extracts are often passed to store instructions.
+  // In unoptimized code the stored value will often be loaded and then stored
+  // again.
+  for (auto *U : LPad->users()) {
+    ExtractValueInst *Extract = dyn_cast<ExtractValueInst>(U);
+    if (!Extract)
+      continue;
+
+    for (auto *EU : Extract->users()) {
+      if (auto *Store = dyn_cast<StoreInst>(EU)) {
+        auto *AV = cast<AllocaInst>(Store->getPointerOperand());
+        EHAllocas.push_back(AV);
+      }
+    }
+  }
+
+  // We can't do this without a dominator tree.
+  assert(DT);
+
+  if (!EHAllocas.empty()) {
+    PromoteMemToReg(EHAllocas, *DT);
+    EHAllocas.clear();
+  }
+
+  // After promotion, some extracts may be trivially dead. Remove them.
+  SmallVector<Value *, 4> Users(LPad->user_begin(), LPad->user_end());
+  for (auto *U : Users)
+    RecursivelyDeleteTriviallyDeadInstructions(U);
+}
+
+void WinEHPrepare::getPossibleReturnTargets(Function *ParentF,
+                                            Function *HandlerF,
+                                            SetVector<BasicBlock*> &Targets) {
+  for (BasicBlock &BB : *HandlerF) {
+    // If the handler contains landing pads, check for any
+    // handlers that may return directly to a block in the
+    // parent function.
+    if (auto *LPI = BB.getLandingPadInst()) {
+      IntrinsicInst *Recover = cast<IntrinsicInst>(LPI->getNextNode());
+      SmallVector<std::unique_ptr<ActionHandler>, 4> ActionList;
+      parseEHActions(Recover, ActionList);
+      for (const auto &Action : ActionList) {
+        if (auto *CH = dyn_cast<CatchHandler>(Action.get())) {
+          Function *NestedF = cast<Function>(CH->getHandlerBlockOrFunc());
+          getPossibleReturnTargets(ParentF, NestedF, Targets);
+        }
+      }
+    }
+
+    auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator());
+    if (!Ret)
+      continue;
+
+    // Handler functions must always return a block address.
+    BlockAddress *BA = cast<BlockAddress>(Ret->getReturnValue());
+
+    // If this is the handler for a nested landing pad, the
+    // return address may have been remapped to a block in the
+    // parent handler.  We're not interested in those.
+    if (BA->getFunction() != ParentF)
+      continue;
+
+    Targets.insert(BA->getBasicBlock());
+  }
+}
+
+void WinEHPrepare::completeNestedLandingPad(Function *ParentFn,
+                                            LandingPadInst *OutlinedLPad,
+                                            const LandingPadInst *OriginalLPad,
+                                            FrameVarInfoMap &FrameVarInfo) {
+  // Get the nested block and erase the unreachable instruction that was
+  // temporarily inserted as its terminator.
+  LLVMContext &Context = ParentFn->getContext();
+  BasicBlock *OutlinedBB = OutlinedLPad->getParent();
+  // If the nested landing pad was outlined before the landing pad that enclosed
+  // it, it will already be in outlined form.  In that case, we just need to see
+  // if the returns and the enclosing branch instruction need to be updated.
+  IndirectBrInst *Branch =
+      dyn_cast<IndirectBrInst>(OutlinedBB->getTerminator());
+  if (!Branch) {
+    // If the landing pad wasn't in outlined form, it should be a stub with
+    // an unreachable terminator.
+    assert(isa<UnreachableInst>(OutlinedBB->getTerminator()));
+    OutlinedBB->getTerminator()->eraseFromParent();
+    // That should leave OutlinedLPad as the last instruction in its block.
+    assert(&OutlinedBB->back() == OutlinedLPad);
+  }
+
+  // The original landing pad will have already had its action intrinsic
+  // built by the outlining loop.  We need to clone that into the outlined
+  // location.  It may also be necessary to add references to the exception
+  // variables to the outlined handler in which this landing pad is nested
+  // and remap return instructions in the nested handlers that should return
+  // to an address in the outlined handler.
+  Function *OutlinedHandlerFn = OutlinedBB->getParent();
+  BasicBlock::const_iterator II = OriginalLPad;
+  ++II;
+  // The instruction after the landing pad should now be a call to eh.actions.
+  const Instruction *Recover = II;
+  const IntrinsicInst *EHActions = cast<IntrinsicInst>(Recover);
+
+  // Remap the return target in the nested handler.
+  SmallVector<BlockAddress *, 4> ActionTargets;
+  SmallVector<std::unique_ptr<ActionHandler>, 4> ActionList;
+  parseEHActions(EHActions, ActionList);
+  for (const auto &Action : ActionList) {
+    auto *Catch = dyn_cast<CatchHandler>(Action.get());
+    if (!Catch)
+      continue;
+    // The dyn_cast to function here selects C++ catch handlers and skips
+    // SEH catch handlers.
+    auto *Handler = dyn_cast<Function>(Catch->getHandlerBlockOrFunc());
+    if (!Handler)
+      continue;
+    // Visit all the return instructions, looking for places that return
+    // to a location within OutlinedHandlerFn.
+    for (BasicBlock &NestedHandlerBB : *Handler) {
+      auto *Ret = dyn_cast<ReturnInst>(NestedHandlerBB.getTerminator());
+      if (!Ret)
+        continue;
+
+      // Handler functions must always return a block address.
+      BlockAddress *BA = cast<BlockAddress>(Ret->getReturnValue());
+      // The original target will have been in the main parent function,
+      // but if it is the address of a block that has been outlined, it
+      // should be a block that was outlined into OutlinedHandlerFn.
+      assert(BA->getFunction() == ParentFn);
+
+      // Ignore targets that aren't part of an outlined handler function.
+      if (!LPadTargetBlocks.count(BA->getBasicBlock()))
+        continue;
+
+      // If the return value is the address ofF a block that we
+      // previously outlined into the parent handler function, replace
+      // the return instruction and add the mapped target to the list
+      // of possible return addresses.
+      BasicBlock *MappedBB = LPadTargetBlocks[BA->getBasicBlock()];
+      assert(MappedBB->getParent() == OutlinedHandlerFn);
+      BlockAddress *NewBA = BlockAddress::get(OutlinedHandlerFn, MappedBB);
+      Ret->eraseFromParent();
+      ReturnInst::Create(Context, NewBA, &NestedHandlerBB);
+      ActionTargets.push_back(NewBA);
+    }
+  }
+  ActionList.clear();
+
+  if (Branch) {
+    // If the landing pad was already in outlined form, just update its targets.
+    for (unsigned int I = Branch->getNumDestinations(); I > 0; --I)
+      Branch->removeDestination(I);
+    // Add the previously collected action targets.
+    for (auto *Target : ActionTargets)
+      Branch->addDestination(Target->getBasicBlock());
+  } else {
+    // If the landing pad was previously stubbed out, fill in its outlined form.
+    IntrinsicInst *NewEHActions = cast<IntrinsicInst>(EHActions->clone());
+    OutlinedBB->getInstList().push_back(NewEHActions);
+
+    // Insert an indirect branch into the outlined landing pad BB.
+    IndirectBrInst *IBr = IndirectBrInst::Create(NewEHActions, 0, OutlinedBB);
+    // Add the previously collected action targets.
+    for (auto *Target : ActionTargets)
+      IBr->addDestination(Target->getBasicBlock());
+  }
+}
+
 // This function examines a block to determine whether the block ends with a
 // conditional branch to a catch handler based on a selector comparison.
 // This function is used both by the WinEHPrepare::findSelectorComparison() and
@@ -598,35 +1311,139 @@ static bool isSelectorDispatch(BasicBlock *BB, BasicBlock *&CatchHandler,
   return false;
 }
 
+static bool isCatchBlock(BasicBlock *BB) {
+  for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end();
+       II != IE; ++II) {
+    if (match(cast<Value>(II), m_Intrinsic<Intrinsic::eh_begincatch>()))
+      return true;
+  }
+  return false;
+}
+
+static BasicBlock *createStubLandingPad(Function *Handler) {
+  // FIXME: Finish this!
+  LLVMContext &Context = Handler->getContext();
+  BasicBlock *StubBB = BasicBlock::Create(Context, "stub");
+  Handler->getBasicBlockList().push_back(StubBB);
+  IRBuilder<> Builder(StubBB);
+  LandingPadInst *LPad = Builder.CreateLandingPad(
+      llvm::StructType::get(Type::getInt8PtrTy(Context),
+                            Type::getInt32Ty(Context), nullptr),
+      0);
+  // Insert a call to llvm.eh.actions so that we don't try to outline this lpad.
+  Function *ActionIntrin =
+      Intrinsic::getDeclaration(Handler->getParent(), Intrinsic::eh_actions);
+  Builder.CreateCall(ActionIntrin, {}, "recover");
+  LPad->setCleanup(true);
+  Builder.CreateUnreachable();
+  return StubBB;
+}
+
+// Cycles through the blocks in an outlined handler function looking for an
+// invoke instruction and inserts an invoke of llvm.donothing with an empty
+// landing pad if none is found.  The code that generates the .xdata tables for
+// the handler needs at least one landing pad to identify the parent function's
+// personality.
+void WinEHPrepare::addStubInvokeToHandlerIfNeeded(Function *Handler) {
+  ReturnInst *Ret = nullptr;
+  UnreachableInst *Unreached = nullptr;
+  for (BasicBlock &BB : *Handler) {
+    TerminatorInst *Terminator = BB.getTerminator();
+    // If we find an invoke, there is nothing to be done.
+    auto *II = dyn_cast<InvokeInst>(Terminator);
+    if (II)
+      return;
+    // If we've already recorded a return instruction, keep looking for invokes.
+    if (!Ret)
+      Ret = dyn_cast<ReturnInst>(Terminator);
+    // If we haven't recorded an unreachable instruction, try this terminator.
+    if (!Unreached)
+      Unreached = dyn_cast<UnreachableInst>(Terminator);
+  }
+
+  // If we got this far, the handler contains no invokes.  We should have seen
+  // at least one return or unreachable instruction.  We'll insert an invoke of
+  // llvm.donothing ahead of that instruction.
+  assert(Ret || Unreached);
+  TerminatorInst *Term;
+  if (Ret)
+    Term = Ret;
+  else
+    Term = Unreached;
+  BasicBlock *OldRetBB = Term->getParent();
+  BasicBlock *NewRetBB = SplitBlock(OldRetBB, Term, DT);
+  // SplitBlock adds an unconditional branch instruction at the end of the
+  // parent block.  We want to replace that with an invoke call, so we can
+  // erase it now.
+  OldRetBB->getTerminator()->eraseFromParent();
+  BasicBlock *StubLandingPad = createStubLandingPad(Handler);
+  Function *F =
+      Intrinsic::getDeclaration(Handler->getParent(), Intrinsic::donothing);
+  InvokeInst::Create(F, NewRetBB, StubLandingPad, None, "", OldRetBB);
+}
+
+// FIXME: Consider sinking this into lib/Target/X86 somehow. TargetLowering
+// usually doesn't build LLVM IR, so that's probably the wrong place.
+Function *WinEHPrepare::createHandlerFunc(Function *ParentFn, Type *RetTy,
+                                          const Twine &Name, Module *M,
+                                          Value *&ParentFP) {
+  // x64 uses a two-argument prototype where the parent FP is the second
+  // argument. x86 uses no arguments, just the incoming EBP value.
+  LLVMContext &Context = M->getContext();
+  Type *Int8PtrType = Type::getInt8PtrTy(Context);
+  FunctionType *FnType;
+  if (TheTriple.getArch() == Triple::x86_64) {
+    Type *ArgTys[2] = {Int8PtrType, Int8PtrType};
+    FnType = FunctionType::get(RetTy, ArgTys, false);
+  } else {
+    FnType = FunctionType::get(RetTy, None, false);
+  }
+
+  Function *Handler =
+      Function::Create(FnType, GlobalVariable::InternalLinkage, Name, M);
+  BasicBlock *Entry = BasicBlock::Create(Context, "entry");
+  Handler->getBasicBlockList().push_front(Entry);
+  if (TheTriple.getArch() == Triple::x86_64) {
+    ParentFP = &(Handler->getArgumentList().back());
+  } else {
+    assert(M);
+    Function *FrameAddressFn =
+        Intrinsic::getDeclaration(M, Intrinsic::frameaddress);
+    Function *RecoverFPFn =
+        Intrinsic::getDeclaration(M, Intrinsic::x86_seh_recoverfp);
+    IRBuilder<> Builder(&Handler->getEntryBlock());
+    Value *EBP =
+        Builder.CreateCall(FrameAddressFn, {Builder.getInt32(1)}, "ebp");
+    Value *ParentI8Fn = Builder.CreateBitCast(ParentFn, Int8PtrType);
+    ParentFP = Builder.CreateCall(RecoverFPFn, {ParentI8Fn, EBP});
+  }
+  return Handler;
+}
+
 bool WinEHPrepare::outlineHandler(ActionHandler *Action, Function *SrcFn,
                                   LandingPadInst *LPad, BasicBlock *StartBB,
                                   FrameVarInfoMap &VarInfo) {
   Module *M = SrcFn->getParent();
   LLVMContext &Context = M->getContext();
+  Type *Int8PtrType = Type::getInt8PtrTy(Context);
 
   // Create a new function to receive the handler contents.
-  Type *Int8PtrType = Type::getInt8PtrTy(Context);
-  std::vector<Type *> ArgTys;
-  ArgTys.push_back(Int8PtrType);
-  ArgTys.push_back(Int8PtrType);
+  Value *ParentFP;
   Function *Handler;
   if (Action->getType() == Catch) {
-    FunctionType *FnType = FunctionType::get(Int8PtrType, ArgTys, false);
-    Handler = Function::Create(FnType, GlobalVariable::InternalLinkage,
-                               SrcFn->getName() + ".catch", M);
+    Handler = createHandlerFunc(SrcFn, Int8PtrType, SrcFn->getName() + ".catch", M,
+                                ParentFP);
   } else {
-    FunctionType *FnType =
-        FunctionType::get(Type::getVoidTy(Context), ArgTys, false);
-    Handler = Function::Create(FnType, GlobalVariable::InternalLinkage,
-                               SrcFn->getName() + ".cleanup", M);
+    Handler = createHandlerFunc(SrcFn, Type::getVoidTy(Context),
+                                SrcFn->getName() + ".cleanup", M, ParentFP);
   }
-
+  Handler->setPersonalityFn(SrcFn->getPersonalityFn());
+  HandlerToParentFP[Handler] = ParentFP;
   Handler->addFnAttr("wineh-parent", SrcFn->getName());
+  BasicBlock *Entry = &Handler->getEntryBlock();
 
   // Generate a standard prolog to setup the frame recovery structure.
   IRBuilder<> Builder(Context);
-  BasicBlock *Entry = BasicBlock::Create(Context, "entry");
-  Handler->getBasicBlockList().push_front(Entry);
   Builder.SetInsertPoint(Entry);
   Builder.SetCurrentDebugLocation(LPad->getDebugLoc());
 
@@ -638,21 +1455,17 @@ bool WinEHPrepare::outlineHandler(ActionHandler *Action, Function *SrcFn,
   if (!LPadMap.isInitialized())
     LPadMap.mapLandingPad(LPad);
   if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) {
-    // Insert an alloca for the object which holds the address of the parent's
-    // frame pointer.  The stack offset of this object needs to be encoded in
-    // xdata.
-    AllocaInst *ParentFrame = new AllocaInst(Int8PtrType, "parentframe", Entry);
-    Builder.CreateStore(&Handler->getArgumentList().back(), ParentFrame,
-                        /*isStore=*/true);
-    Function *ParentFrameFn =
-        Intrinsic::getDeclaration(M, Intrinsic::eh_parentframe);
-    Builder.CreateCall(ParentFrameFn, ParentFrame);
-
     Constant *Sel = CatchAction->getSelector();
-    Director.reset(new WinEHCatchDirector(Handler, Sel, VarInfo, LPadMap));
-    LPadMap.remapSelector(VMap, ConstantInt::get(Type::getInt32Ty(Context), 1));
+    Director.reset(new WinEHCatchDirector(Handler, ParentFP, Sel, VarInfo,
+                                          LPadMap, NestedLPtoOriginalLP, DT,
+                                          EHBlocks));
+    LPadMap.remapEHValues(VMap, UndefValue::get(Int8PtrType),
+                          ConstantInt::get(Type::getInt32Ty(Context), 1));
   } else {
-    Director.reset(new WinEHCleanupDirector(Handler, VarInfo, LPadMap));
+    Director.reset(
+        new WinEHCleanupDirector(Handler, ParentFP, VarInfo, LPadMap));
+    LPadMap.remapEHValues(VMap, UndefValue::get(Int8PtrType),
+                          UndefValue::get(Type::getInt32Ty(Context)));
   }
 
   SmallVector<ReturnInst *, 8> Returns;
@@ -676,6 +1489,10 @@ bool WinEHPrepare::outlineHandler(ActionHandler *Action, Function *SrcFn,
     ++II;
   }
 
+  // The landing pad value may be used by PHI nodes.  It will ultimately be
+  // eliminated, but we need it in the map for intermediate handling.
+  VMap[LPad] = UndefValue::get(LPad->getType());
+
   // Skip over PHIs and, if applicable, landingpad instructions.
   II = StartBB->getFirstInsertionPt();
 
@@ -683,22 +1500,64 @@ bool WinEHPrepare::outlineHandler(ActionHandler *Action, Function *SrcFn,
                             /*ModuleLevelChanges=*/false, Returns, "",
                             &OutlinedFunctionInfo, Director.get());
 
-  // Move all the instructions in the first cloned block into our entry block.
-  BasicBlock *FirstClonedBB = std::next(Function::iterator(Entry));
-  Entry->getInstList().splice(Entry->end(), FirstClonedBB->getInstList());
-  FirstClonedBB->eraseFromParent();
+  // Move all the instructions in the cloned "entry" block into our entry block.
+  // Depending on how the parent function was laid out, the block that will
+  // correspond to the outlined entry block may not be the first block in the
+  // list.  We can recognize it, however, as the cloned block which has no
+  // predecessors.  Any other block wouldn't have been cloned if it didn't
+  // have a predecessor which was also cloned.
+  Function::iterator ClonedIt = std::next(Function::iterator(Entry));
+  while (!pred_empty(ClonedIt))
+    ++ClonedIt;
+  BasicBlock *ClonedEntryBB = ClonedIt;
+  assert(ClonedEntryBB);
+  Entry->getInstList().splice(Entry->end(), ClonedEntryBB->getInstList());
+  ClonedEntryBB->eraseFromParent();
+
+  // Make sure we can identify the handler's personality later.
+  addStubInvokeToHandlerIfNeeded(Handler);
 
   if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) {
     WinEHCatchDirector *CatchDirector =
         reinterpret_cast<WinEHCatchDirector *>(Director.get());
     CatchAction->setExceptionVar(CatchDirector->getExceptionVar());
     CatchAction->setReturnTargets(CatchDirector->getReturnTargets());
-  }
 
-  Action->setHandlerBlockOrFunc(Handler);
-
-  return true;
-}
+    // Look for blocks that are not part of the landing pad that we just
+    // outlined but terminate with a call to llvm.eh.endcatch and a
+    // branch to a block that is in the handler we just outlined.
+    // These blocks will be part of a nested landing pad that intends to
+    // return to an address in this handler.  This case is best handled
+    // after both landing pads have been outlined, so for now we'll just
+    // save the association of the blocks in LPadTargetBlocks.  The
+    // return instructions which are created from these branches will be
+    // replaced after all landing pads have been outlined.
+    for (const auto MapEntry : VMap) {
+      // VMap maps all values and blocks that were just cloned, but dead
+      // blocks which were pruned will map to nullptr.
+      if (!isa<BasicBlock>(MapEntry.first) || MapEntry.second == nullptr)
+        continue;
+      const BasicBlock *MappedBB = cast<BasicBlock>(MapEntry.first);
+      for (auto *Pred : predecessors(const_cast<BasicBlock *>(MappedBB))) {
+        auto *Branch = dyn_cast<BranchInst>(Pred->getTerminator());
+        if (!Branch || !Branch->isUnconditional() || Pred->size() <= 1)
+          continue;
+        BasicBlock::iterator II = const_cast<BranchInst *>(Branch);
+        --II;
+        if (match(cast<Value>(II), m_Intrinsic<Intrinsic::eh_endcatch>())) {
+          // This would indicate that a nested landing pad wants to return
+          // to a block that is outlined into two different handlers.
+          assert(!LPadTargetBlocks.count(MappedBB));
+          LPadTargetBlocks[MappedBB] = cast<BasicBlock>(MapEntry.second);
+        }
+      }
+    }
+  } // End if (CatchAction)
+
+  Action->setHandlerBlockOrFunc(Handler);
+
+  return true;
+}
 
 /// This BB must end in a selector dispatch. All we need to do is pass the
 /// handler block to llvm.eh.actions and list it as a possible indirectbr
@@ -719,9 +1578,14 @@ void WinEHPrepare::processSEHCatchHandler(CatchHandler *CatchAction,
   } else {
     // This must be a catch-all. Split the block after the landingpad.
     assert(CatchAction->getSelector()->isNullValue() && "expected catch-all");
-    HandlerBB =
-        StartBB->splitBasicBlock(StartBB->getFirstInsertionPt(), "catch.all");
+    HandlerBB = SplitBlock(StartBB, StartBB->getFirstInsertionPt(), DT);
   }
+  IRBuilder<> Builder(HandlerBB->getFirstInsertionPt());
+  Function *EHCodeFn = Intrinsic::getDeclaration(
+      StartBB->getParent()->getParent(), Intrinsic::eh_exceptioncode);
+  Value *Code = Builder.CreateCall(EHCodeFn, {}, "sehcode");
+  Code = Builder.CreateIntToPtr(Code, SEHExceptionCodeSlot->getAllocatedType());
+  Builder.CreateStore(Code, SEHExceptionCodeSlot);
   CatchAction->setHandlerBlockOrFunc(BlockAddress::get(HandlerBB));
   TinyPtrVector<BasicBlock *> Targets(HandlerBB);
   CatchAction->setReturnTargets(Targets);
@@ -740,9 +1604,8 @@ void LandingPadMap::mapLandingPad(const LandingPadInst *LPad) {
 
   // The landingpad instruction returns an aggregate value.  Typically, its
   // value will be passed to a pair of extract value instructions and the
-  // results of those extracts are often passed to store instructions.
-  // In unoptimized code the stored value will often be loaded and then stored
-  // again.
+  // results of those extracts will have been promoted to reg values before
+  // this routine is called.
   for (auto *U : LPad->users()) {
     const ExtractValueInst *Extract = dyn_cast<ExtractValueInst>(U);
     if (!Extract)
@@ -753,33 +1616,10 @@ void LandingPadMap::mapLandingPad(const LandingPadInst *LPad) {
     assert((Idx == 0 || Idx == 1) &&
            "Unexpected operation: extracting an unknown landing pad element");
     if (Idx == 0) {
-      // Element 0 doesn't directly corresponds to anything in the WinEH
-      // scheme.
-      // It will be stored to a memory location, then later loaded and finally
-      // the loaded value will be used as the argument to an
-      // llvm.eh.begincatch
-      // call.  We're tracking it here so that we can skip the store and load.
       ExtractedEHPtrs.push_back(Extract);
     } else if (Idx == 1) {
-      // Element 1 corresponds to the filter selector.  We'll map it to 1 for
-      // matching purposes, but it will also probably be stored to memory and
-      // reloaded, so we need to track the instuction so that we can map the
-      // loaded value too.
       ExtractedSelectors.push_back(Extract);
     }
-
-    // Look for stores of the extracted values.
-    for (auto *EU : Extract->users()) {
-      if (auto *Store = dyn_cast<StoreInst>(EU)) {
-        if (Idx == 1) {
-          SelectorStores.push_back(Store);
-          SelectorStoreAddrs.push_back(Store->getPointerOperand());
-        } else {
-          EHPtrStores.push_back(Store);
-          EHPtrStoreAddrs.push_back(Store->getPointerOperand());
-        }
-      }
-    }
   }
 }
 
@@ -798,47 +1638,20 @@ bool LandingPadMap::isLandingPadSpecificInst(const Instruction *Inst) const {
     if (Inst == Extract)
       return true;
   }
-  for (auto *Store : EHPtrStores) {
-    if (Inst == Store)
-      return true;
-  }
-  for (auto *Store : SelectorStores) {
-    if (Inst == Store)
-      return true;
-  }
-
   return false;
 }
 
-void LandingPadMap::remapSelector(ValueToValueMapTy &VMap,
-                                     Value *MappedValue) const {
-  // Remap all selector extract instructions to the specified value.
+void LandingPadMap::remapEHValues(ValueToValueMapTy &VMap, Value *EHPtrValue,
+                                  Value *SelectorValue) const {
+  // Remap all landing pad extract instructions to the specified values.
+  for (auto *Extract : ExtractedEHPtrs)
+    VMap[Extract] = EHPtrValue;
   for (auto *Extract : ExtractedSelectors)
-    VMap[Extract] = MappedValue;
-}
-
-bool LandingPadMap::mapIfEHLoad(const LoadInst *Load,
-                                   SmallVectorImpl<const StoreInst *> &Stores,
-                                   SmallVectorImpl<const Value *> &StoreAddrs) {
-  // This makes the assumption that a store we've previously seen dominates
-  // this load instruction.  That might seem like a rather huge assumption,
-  // but given the way that landingpads are constructed its fairly safe.
-  // FIXME: Add debug/assert code that verifies this.
-  const Value *LoadAddr = Load->getPointerOperand();
-  for (auto *StoreAddr : StoreAddrs) {
-    if (LoadAddr == StoreAddr) {
-      // Handle the common debug scenario where this loaded value is stored
-      // to a different location.
-      for (auto *U : Load->users()) {
-        if (auto *Store = dyn_cast<StoreInst>(U)) {
-          Stores.push_back(Store);
-          StoreAddrs.push_back(Store->getPointerOperand());
-        }
-      }
-      return true;
-    }
-  }
-  return false;
+    VMap[Extract] = SelectorValue;
+}
+
+static bool isLocalAddressCall(const Value *V) {
+  return match(const_cast<Value *>(V), m_Intrinsic<Intrinsic::localaddress>());
 }
 
 CloningDirector::CloningAction WinEHCloningDirectorBase::handleInstruction(
@@ -848,40 +1661,20 @@ CloningDirector::CloningAction WinEHCloningDirectorBase::handleInstruction(
   if (LPadMap.isLandingPadSpecificInst(Inst))
     return CloningDirector::SkipInstruction;
 
-  if (auto *Load = dyn_cast<LoadInst>(Inst)) {
-    // Look for loads of (previously suppressed) landingpad values.
-    // The EHPtr load can be mapped to an undef value as it should only be used
-    // as an argument to llvm.eh.begincatch, but the selector value needs to be
-    // mapped to a constant value of 1.  This value will be used to simplify the
-    // branching to always flow to the current handler.
-    if (LPadMap.mapIfSelectorLoad(Load)) {
-      VMap[Inst] = ConstantInt::get(SelectorIDType, 1);
-      return CloningDirector::SkipInstruction;
-    }
-    if (LPadMap.mapIfEHPtrLoad(Load)) {
-      VMap[Inst] = UndefValue::get(Int8PtrType);
-      return CloningDirector::SkipInstruction;
-    }
-
-    // Any other loads just get cloned.
-    return CloningDirector::CloneInstruction;
+  // Nested landing pads that have not already been outlined will be cloned as
+  // stubs, with just the landingpad instruction and an unreachable instruction.
+  // When all landingpads have been outlined, we'll replace this with the
+  // llvm.eh.actions call and indirect branch created when the landing pad was
+  // outlined.
+  if (auto *LPad = dyn_cast<LandingPadInst>(Inst)) {
+    return handleLandingPad(VMap, LPad, NewBB);
   }
 
-  // Nested landing pads will be cloned as stubs, with just the
-  // landingpad instruction and an unreachable instruction. When
-  // all landingpads have been outlined, we'll replace this with the
-  // llvm.eh.actions call and indirect branch created when the
-  // landing pad was outlined.
-  if (auto *NestedLPad = dyn_cast<LandingPadInst>(Inst)) {
-    Instruction *NewInst = NestedLPad->clone();
-    if (NestedLPad->hasName())
-      NewInst->setName(NestedLPad->getName());
-    // FIXME: Store this mapping somewhere else also.
-    VMap[NestedLPad] = NewInst;
-    BasicBlock::InstListType &InstList = NewBB->getInstList();
-    InstList.push_back(NewInst);
-    InstList.push_back(new UnreachableInst(NewBB->getContext()));
-    return CloningDirector::StopCloningBB;
+  // Nested landing pads that have already been outlined will be cloned in their
+  // outlined form, but we need to intercept the ibr instruction to filter out
+  // targets that do not return to the handler we are outlining.
+  if (auto *IBr = dyn_cast<IndirectBrInst>(Inst)) {
+    return handleIndirectBr(VMap, IBr, NewBB);
   }
 
   if (auto *Invoke = dyn_cast<InvokeInst>(Inst))
@@ -890,6 +1683,9 @@ CloningDirector::CloningAction WinEHCloningDirectorBase::handleInstruction(
   if (auto *Resume = dyn_cast<ResumeInst>(Inst))
     return handleResume(VMap, Resume, NewBB);
 
+  if (auto *Cmp = dyn_cast<CmpInst>(Inst))
+    return handleCompare(VMap, Cmp, NewBB);
+
   if (match(Inst, m_Intrinsic<Intrinsic::eh_begincatch>()))
     return handleBeginCatch(VMap, Inst, NewBB);
   if (match(Inst, m_Intrinsic<Intrinsic::eh_endcatch>()))
@@ -897,10 +1693,45 @@ CloningDirector::CloningAction WinEHCloningDirectorBase::handleInstruction(
   if (match(Inst, m_Intrinsic<Intrinsic::eh_typeid_for>()))
     return handleTypeIdFor(VMap, Inst, NewBB);
 
+  // When outlining llvm.localaddress(), remap that to the second argument,
+  // which is the FP of the parent.
+  if (isLocalAddressCall(Inst)) {
+    VMap[Inst] = ParentFP;
+    return CloningDirector::SkipInstruction;
+  }
+
   // Continue with the default cloning behavior.
   return CloningDirector::CloneInstruction;
 }
 
+CloningDirector::CloningAction WinEHCatchDirector::handleLandingPad(
+    ValueToValueMapTy &VMap, const LandingPadInst *LPad, BasicBlock *NewBB) {
+  // If the instruction after the landing pad is a call to llvm.eh.actions
+  // the landing pad has already been outlined.  In this case, we should
+  // clone it because it may return to a block in the handler we are
+  // outlining now that would otherwise be unreachable.  The landing pads
+  // are sorted before outlining begins to enable this case to work
+  // properly.
+  const Instruction *NextI = LPad->getNextNode();
+  if (match(NextI, m_Intrinsic<Intrinsic::eh_actions>()))
+    return CloningDirector::CloneInstruction;
+
+  // If the landing pad hasn't been outlined yet, the landing pad we are
+  // outlining now does not dominate it and so it cannot return to a block
+  // in this handler.  In that case, we can just insert a stub landing
+  // pad now and patch it up later.
+  Instruction *NewInst = LPad->clone();
+  if (LPad->hasName())
+    NewInst->setName(LPad->getName());
+  // Save this correlation for later processing.
+  NestedLPtoOriginalLP[cast<LandingPadInst>(NewInst)] = LPad;
+  VMap[LPad] = NewInst;
+  BasicBlock::InstListType &InstList = NewBB->getInstList();
+  InstList.push_back(NewInst);
+  InstList.push_back(new UnreachableInst(NewBB->getContext()));
+  return CloningDirector::StopCloningBB;
+}
+
 CloningDirector::CloningAction WinEHCatchDirector::handleBeginCatch(
     ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
   // The argument to the call is some form of the first element of the
@@ -915,6 +1746,11 @@ CloningDirector::CloningAction WinEHCatchDirector::handleBeginCatch(
                                           "llvm.eh.begincatch found while "
                                           "outlining catch handler.");
   ExceptionObjectVar = Inst->getOperand(1)->stripPointerCasts();
+  if (isa<ConstantPointerNull>(ExceptionObjectVar))
+    return CloningDirector::SkipInstruction;
+  assert(cast<AllocaInst>(ExceptionObjectVar)->isStaticAlloca() &&
+         "catch parameter is not static alloca");
+  Materializer.escapeCatchObject(ExceptionObjectVar);
   return CloningDirector::SkipInstruction;
 }
 
@@ -936,20 +1772,24 @@ WinEHCatchDirector::handleEndCatch(ValueToValueMapTy &VMap,
   if (ParentBB->isLandingPad() && !LPadMap.isOriginLandingPadBlock(ParentBB))
     return CloningDirector::SkipInstruction;
 
-  // If an end catch occurs anywhere else the next instruction should be an
-  // unconditional branch instruction that we want to replace with a return
-  // to the the address of the branch target.
-  const BasicBlock *EndCatchBB = IntrinCall->getParent();
-  const TerminatorInst *Terminator = EndCatchBB->getTerminator();
-  const BranchInst *Branch = dyn_cast<BranchInst>(Terminator);
-  assert(Branch && Branch->isUnconditional());
-  assert(std::next(BasicBlock::const_iterator(IntrinCall)) ==
-         BasicBlock::const_iterator(Branch));
-
-  BasicBlock *ContinueLabel = Branch->getSuccessor(0);
-  ReturnInst::Create(NewBB->getContext(), BlockAddress::get(ContinueLabel),
-                     NewBB);
-  ReturnTargets.push_back(ContinueLabel);
+  // If an end catch occurs anywhere else we want to terminate the handler
+  // with a return to the code that follows the endcatch call.  If the
+  // next instruction is not an unconditional branch, we need to split the
+  // block to provide a clear target for the return instruction.
+  BasicBlock *ContinueBB;
+  auto Next = std::next(BasicBlock::const_iterator(IntrinCall));
+  const BranchInst *Branch = dyn_cast<BranchInst>(Next);
+  if (!Branch || !Branch->isUnconditional()) {
+    // We're interrupting the cloning process at this location, so the
+    // const_cast we're doing here will not cause a problem.
+    ContinueBB = SplitBlock(const_cast<BasicBlock *>(ParentBB),
+                            const_cast<Instruction *>(cast<Instruction>(Next)));
+  } else {
+    ContinueBB = Branch->getSuccessor(0);
+  }
+
+  ReturnInst::Create(NewBB->getContext(), BlockAddress::get(ContinueBB), NewBB);
+  ReturnTargets.push_back(ContinueBB);
 
   // We just added a terminator to the cloned block.
   // Tell the caller to stop processing the current basic block so that
@@ -971,6 +1811,48 @@ CloningDirector::CloningAction WinEHCatchDirector::handleTypeIdFor(
   return CloningDirector::SkipInstruction;
 }
 
+CloningDirector::CloningAction WinEHCatchDirector::handleIndirectBr(
+    ValueToValueMapTy &VMap,
+    const IndirectBrInst *IBr,
+    BasicBlock *NewBB) {
+  // If this indirect branch is not part of a landing pad block, just clone it.
+  const BasicBlock *ParentBB = IBr->getParent();
+  if (!ParentBB->isLandingPad())
+    return CloningDirector::CloneInstruction;
+
+  // If it is part of a landing pad, we want to filter out target blocks
+  // that are not part of the handler we are outlining.
+  const LandingPadInst *LPad = ParentBB->getLandingPadInst();
+
+  // Save this correlation for later processing.
+  NestedLPtoOriginalLP[cast<LandingPadInst>(VMap[LPad])] = LPad;
+
+  // We should only get here for landing pads that have already been outlined.
+  assert(match(LPad->getNextNode(), m_Intrinsic<Intrinsic::eh_actions>()));
+
+  // Copy the indirectbr, but only include targets that were previously
+  // identified as EH blocks and are dominated by the nested landing pad.
+  SetVector<const BasicBlock *> ReturnTargets;
+  for (int I = 0, E = IBr->getNumDestinations(); I < E; ++I) {
+    auto *TargetBB = IBr->getDestination(I);
+    if (EHBlocks.count(const_cast<BasicBlock*>(TargetBB)) &&
+        DT->dominates(ParentBB, TargetBB)) {
+      DEBUG(dbgs() << "  Adding destination " << TargetBB->getName() << "\n");
+      ReturnTargets.insert(TargetBB);
+    }
+  }
+  IndirectBrInst *NewBranch = 
+        IndirectBrInst::Create(const_cast<Value *>(IBr->getAddress()),
+                               ReturnTargets.size(), NewBB);
+  for (auto *Target : ReturnTargets)
+    NewBranch->addDestination(const_cast<BasicBlock*>(Target));
+
+  // The operands and targets of the branch instruction are remapped later
+  // because it is a terminator.  Tell the cloning code to clone the
+  // blocks we just added to the target list.
+  return CloningDirector::CloneSuccessors;
+}
+
 CloningDirector::CloningAction
 WinEHCatchDirector::handleInvoke(ValueToValueMapTy &VMap,
                                  const InvokeInst *Invoke, BasicBlock *NewBB) {
@@ -987,24 +1869,59 @@ WinEHCatchDirector::handleResume(ValueToValueMapTy &VMap,
   return CloningDirector::StopCloningBB;
 }
 
+CloningDirector::CloningAction
+WinEHCatchDirector::handleCompare(ValueToValueMapTy &VMap,
+                                  const CmpInst *Compare, BasicBlock *NewBB) {
+  const IntrinsicInst *IntrinCall = nullptr;
+  if (match(Compare->getOperand(0), m_Intrinsic<Intrinsic::eh_typeid_for>())) {
+    IntrinCall = dyn_cast<IntrinsicInst>(Compare->getOperand(0));
+  } else if (match(Compare->getOperand(1),
+                   m_Intrinsic<Intrinsic::eh_typeid_for>())) {
+    IntrinCall = dyn_cast<IntrinsicInst>(Compare->getOperand(1));
+  }
+  if (IntrinCall) {
+    Value *Selector = IntrinCall->getArgOperand(0)->stripPointerCasts();
+    // This causes a replacement that will collapse the landing pad CFG based
+    // on the filter function we intend to match.
+    if (Selector == CurrentSelector->stripPointerCasts()) {
+      VMap[Compare] = ConstantInt::get(SelectorIDType, 1);
+    } else {
+      VMap[Compare] = ConstantInt::get(SelectorIDType, 0);
+    }
+    return CloningDirector::SkipInstruction;
+  }
+  return CloningDirector::CloneInstruction;
+}
+
+CloningDirector::CloningAction WinEHCleanupDirector::handleLandingPad(
+    ValueToValueMapTy &VMap, const LandingPadInst *LPad, BasicBlock *NewBB) {
+  // The MS runtime will terminate the process if an exception occurs in a
+  // cleanup handler, so we shouldn't encounter landing pads in the actual
+  // cleanup code, but they may appear in catch blocks.  Depending on where
+  // we started cloning we may see one, but it will get dropped during dead
+  // block pruning.
+  Instruction *NewInst = new UnreachableInst(NewBB->getContext());
+  VMap[LPad] = NewInst;
+  BasicBlock::InstListType &InstList = NewBB->getInstList();
+  InstList.push_back(NewInst);
+  return CloningDirector::StopCloningBB;
+}
+
 CloningDirector::CloningAction WinEHCleanupDirector::handleBeginCatch(
     ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
-  // Catch blocks within cleanup handlers will always be unreachable.
-  // We'll insert an unreachable instruction now, but it will be pruned
-  // before the cloning process is complete.
-  BasicBlock::InstListType &InstList = NewBB->getInstList();
-  InstList.push_back(new UnreachableInst(NewBB->getContext()));
+  // Cleanup code may flow into catch blocks or the catch block may be part
+  // of a branch that will be optimized away.  We'll insert a return
+  // instruction now, but it may be pruned before the cloning process is
+  // complete.
+  ReturnInst::Create(NewBB->getContext(), nullptr, NewBB);
   return CloningDirector::StopCloningBB;
 }
 
 CloningDirector::CloningAction WinEHCleanupDirector::handleEndCatch(
     ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
-  // Catch blocks within cleanup handlers will always be unreachable.
-  // We'll insert an unreachable instruction now, but it will be pruned
-  // before the cloning process is complete.
-  BasicBlock::InstListType &InstList = NewBB->getInstList();
-  InstList.push_back(new UnreachableInst(NewBB->getContext()));
-  return CloningDirector::StopCloningBB;
+  // Cleanup handlers nested within catch handlers may begin with a call to
+  // eh.endcatch.  We can just ignore that instruction.
+  return CloningDirector::SkipInstruction;
 }
 
 CloningDirector::CloningAction WinEHCleanupDirector::handleTypeIdFor(
@@ -1025,6 +1942,14 @@ CloningDirector::CloningAction WinEHCleanupDirector::handleTypeIdFor(
   return CloningDirector::SkipInstruction;
 }
 
+CloningDirector::CloningAction WinEHCleanupDirector::handleIndirectBr(
+    ValueToValueMapTy &VMap,
+    const IndirectBrInst *IBr,
+    BasicBlock *NewBB) {
+  // No special handling is required for cleanup cloning.
+  return CloningDirector::CloneInstruction;
+}
+
 CloningDirector::CloningAction WinEHCleanupDirector::handleInvoke(
     ValueToValueMapTy &VMap, const InvokeInst *Invoke, BasicBlock *NewBB) {
   // All invokes in cleanup handlers can be replaced with calls.
@@ -1038,6 +1963,9 @@ CloningDirector::CloningAction WinEHCleanupDirector::handleInvoke(
   NewCall->setDebugLoc(Invoke->getDebugLoc());
   VMap[Invoke] = NewCall;
 
+  // Remap the operands.
+  llvm::RemapInstruction(NewCall, VMap, RF_None, nullptr, &Materializer);
+
   // Insert an unconditional branch to the normal destination.
   BranchInst::Create(Invoke->getNormalDest(), NewBB);
 
@@ -1046,7 +1974,7 @@ CloningDirector::CloningAction WinEHCleanupDirector::handleInvoke(
 
   // We just added a terminator to the cloned block.
   // Tell the caller to stop processing the current basic block.
-  return CloningDirector::StopCloningBB;
+  return CloningDirector::CloneSuccessors;
 }
 
 CloningDirector::CloningAction WinEHCleanupDirector::handleResume(
@@ -1059,44 +1987,68 @@ CloningDirector::CloningAction WinEHCleanupDirector::handleResume(
   return CloningDirector::StopCloningBB;
 }
 
+CloningDirector::CloningAction
+WinEHCleanupDirector::handleCompare(ValueToValueMapTy &VMap,
+                                    const CmpInst *Compare, BasicBlock *NewBB) {
+  if (match(Compare->getOperand(0), m_Intrinsic<Intrinsic::eh_typeid_for>()) ||
+      match(Compare->getOperand(1), m_Intrinsic<Intrinsic::eh_typeid_for>())) {
+    VMap[Compare] = ConstantInt::get(SelectorIDType, 1);
+    return CloningDirector::SkipInstruction;
+  }
+  return CloningDirector::CloneInstruction;
+}
+
 WinEHFrameVariableMaterializer::WinEHFrameVariableMaterializer(
-    Function *OutlinedFn, FrameVarInfoMap &FrameVarInfo)
+    Function *OutlinedFn, Value *ParentFP, FrameVarInfoMap &FrameVarInfo)
     : FrameVarInfo(FrameVarInfo), Builder(OutlinedFn->getContext()) {
-  Builder.SetInsertPoint(&OutlinedFn->getEntryBlock());
+  BasicBlock *EntryBB = &OutlinedFn->getEntryBlock();
+
+  // New allocas should be inserted in the entry block, but after the parent FP
+  // is established if it is an instruction.
+  Instruction *InsertPoint = EntryBB->getFirstInsertionPt();
+  if (auto *FPInst = dyn_cast<Instruction>(ParentFP))
+    InsertPoint = FPInst->getNextNode();
+  Builder.SetInsertPoint(EntryBB, InsertPoint);
 }
 
 Value *WinEHFrameVariableMaterializer::materializeValueFor(Value *V) {
-  // If we're asked to materialize a value that is an instruction, we
-  // temporarily create an alloca in the outlined function and add this
-  // to the FrameVarInfo map.  When all the outlining is complete, we'll
-  // collect these into a structure, spilling non-alloca values in the
-  // parent frame as necessary, and replace these temporary allocas with
-  // GEPs referencing the frame allocation block.
-
-  // If the value is an alloca, the mapping is direct.
+  // If we're asked to materialize a static alloca, we temporarily create an
+  // alloca in the outlined function and add this to the FrameVarInfo map.  When
+  // all the outlining is complete, we'll replace these temporary allocas with
+  // calls to llvm.localrecover.
   if (auto *AV = dyn_cast<AllocaInst>(V)) {
+    assert(AV->isStaticAlloca() &&
+           "cannot materialize un-demoted dynamic alloca");
     AllocaInst *NewAlloca = dyn_cast<AllocaInst>(AV->clone());
     Builder.Insert(NewAlloca, AV->getName());
     FrameVarInfo[AV].push_back(NewAlloca);
     return NewAlloca;
   }
 
-  // For other types of instructions or arguments, we need an alloca based on
-  // the value's type and a load of the alloca.  The alloca will be replaced
-  // by a GEP, but the load will stay.  In the parent function, the value will
-  // be spilled to a location in the frame allocation block.
   if (isa<Instruction>(V) || isa<Argument>(V)) {
-    AllocaInst *NewAlloca =
-        Builder.CreateAlloca(V->getType(), nullptr, "eh.temp.alloca");
-    FrameVarInfo[V].push_back(NewAlloca);
-    LoadInst *NewLoad = Builder.CreateLoad(NewAlloca, V->getName() + ".reload");
-    return NewLoad;
+    Function *Parent = isa<Instruction>(V)
+                           ? cast<Instruction>(V)->getParent()->getParent()
+                           : cast<Argument>(V)->getParent();
+    errs()
+        << "Failed to demote instruction used in exception handler of function "
+        << GlobalValue::getRealLinkageName(Parent->getName()) << ":\n";
+    errs() << "  " << *V << '\n';
+    report_fatal_error("WinEHPrepare failed to demote instruction");
   }
 
   // Don't materialize other values.
   return nullptr;
 }
 
+void WinEHFrameVariableMaterializer::escapeCatchObject(Value *V) {
+  // Catch parameter objects have to live in the parent frame. When we see a use
+  // of a catch parameter, add a sentinel to the multimap to indicate that it's
+  // used from another handler. This will prevent us from trying to sink the
+  // alloca into the handler and ensure that the catch parameter is present in
+  // the call to llvm.localescape.
+  FrameVarInfo[V].push_back(getCatchObjectSentinel());
+}
+
 // This function maps the catch and cleanup handlers that are reachable from the
 // specified landing pad. The landing pad sequence will have this basic shape:
 //
@@ -1134,13 +2086,7 @@ void WinEHPrepare::mapLandingPadBlocks(LandingPadInst *LPad,
   DEBUG(dbgs() << "Mapping landing pad: " << BB->getName() << "\n");
 
   if (NumClauses == 0) {
-    // This landing pad contains only cleanup code.
-    CleanupHandler *Action = new CleanupHandler(BB);
-    CleanupHandlerMap[BB] = Action;
-    Actions.insertCleanupHandler(Action);
-    DEBUG(dbgs() << "  Assuming cleanup code in block " << BB->getName()
-                 << "\n");
-    assert(LPad->isCleanup());
+    findCleanupHandlers(Actions, BB, nullptr);
     return;
   }
 
@@ -1149,30 +2095,61 @@ void WinEHPrepare::mapLandingPadBlocks(LandingPadInst *LPad,
   while (HandlersFound != NumClauses) {
     BasicBlock *NextBB = nullptr;
 
+    // Skip over filter clauses.
+    if (LPad->isFilter(HandlersFound)) {
+      ++HandlersFound;
+      continue;
+    }
+
     // See if the clause we're looking for is a catch-all.
     // If so, the catch begins immediately.
-    if (isa<ConstantPointerNull>(LPad->getClause(HandlersFound))) {
+    Constant *ExpectedSelector =
+        LPad->getClause(HandlersFound)->stripPointerCasts();
+    if (isa<ConstantPointerNull>(ExpectedSelector)) {
       // The catch all must occur last.
       assert(HandlersFound == NumClauses - 1);
 
-      // For C++ EH, check if there is any interesting cleanup code before we
-      // begin the catch. This is important because cleanups cannot rethrow
-      // exceptions but code called from catches can. For SEH, it isn't
-      // important if some finally code before a catch-all is executed out of
-      // line or after recovering from the exception.
-      if (Personality == EHPersonality::MSVC_CXX) {
-        if (auto *CleanupAction = findCleanupHandler(BB, BB)) {
-          //   Add a cleanup entry to the list
-          Actions.insertCleanupHandler(CleanupAction);
-          DEBUG(dbgs() << "  Found cleanup code in block "
-                       << CleanupAction->getStartBlock()->getName() << "\n");
-        }
+      // There can be additional selector dispatches in the call chain that we
+      // need to ignore.
+      BasicBlock *CatchBlock = nullptr;
+      Constant *Selector;
+      while (BB && isSelectorDispatch(BB, CatchBlock, Selector, NextBB)) {
+        DEBUG(dbgs() << "  Found extra catch dispatch in block "
+                     << CatchBlock->getName() << "\n");
+        BB = NextBB;
       }
 
       // Add the catch handler to the action list.
-      CatchHandler *Action =
-          new CatchHandler(BB, LPad->getClause(HandlersFound), nullptr);
-      CatchHandlerMap[BB] = Action;
+      CatchHandler *Action = nullptr;
+      if (CatchHandlerMap.count(BB) && CatchHandlerMap[BB] != nullptr) {
+        // If the CatchHandlerMap already has an entry for this BB, re-use it.
+        Action = CatchHandlerMap[BB];
+        assert(Action->getSelector() == ExpectedSelector);
+      } else {
+        // We don't expect a selector dispatch, but there may be a call to
+        // llvm.eh.begincatch, which separates catch handling code from
+        // cleanup code in the same control flow.  This call looks for the
+        // begincatch intrinsic.
+        Action = findCatchHandler(BB, NextBB, VisitedBlocks);
+        if (Action) {
+          // For C++ EH, check if there is any interesting cleanup code before
+          // we begin the catch. This is important because cleanups cannot
+          // rethrow exceptions but code called from catches can. For SEH, it
+          // isn't important if some finally code before a catch-all is executed
+          // out of line or after recovering from the exception.
+          if (Personality == EHPersonality::MSVC_CXX)
+            findCleanupHandlers(Actions, BB, BB);
+        } else {
+          // If an action was not found, it means that the control flows
+          // directly into the catch-all handler and there is no cleanup code.
+          // That's an expected situation and we must create a catch action.
+          // Since this is a catch-all handler, the selector won't actually
+          // appear in the code anywhere.  ExpectedSelector here is the constant
+          // null ptr that we got from the landing pad instruction.
+          Action = new CatchHandler(BB, ExpectedSelector, nullptr);
+          CatchHandlerMap[BB] = Action;
+        }
+      }
       Actions.insertCatchHandler(Action);
       DEBUG(dbgs() << "  Catch all handler at block " << BB->getName() << "\n");
       ++HandlersFound;
@@ -1183,22 +2160,40 @@ void WinEHPrepare::mapLandingPadBlocks(LandingPadInst *LPad,
     }
 
     CatchHandler *CatchAction = findCatchHandler(BB, NextBB, VisitedBlocks);
+    assert(CatchAction);
+
     // See if there is any interesting code executed before the dispatch.
-    if (auto *CleanupAction =
-            findCleanupHandler(BB, CatchAction->getStartBlock())) {
-      //   Add a cleanup entry to the list
-      Actions.insertCleanupHandler(CleanupAction);
-      DEBUG(dbgs() << "  Found cleanup code in block "
-                   << CleanupAction->getStartBlock()->getName() << "\n");
-    }
+    findCleanupHandlers(Actions, BB, CatchAction->getStartBlock());
 
-    assert(CatchAction);
-    ++HandlersFound;
+    // When the source program contains multiple nested try blocks the catch
+    // handlers can get strung together in such a way that we can encounter
+    // a dispatch for a selector that we've already had a handler for.
+    if (CatchAction->getSelector()->stripPointerCasts() == ExpectedSelector) {
+      ++HandlersFound;
 
-    // Add the catch handler to the action list.
-    Actions.insertCatchHandler(CatchAction);
-    DEBUG(dbgs() << "  Found catch dispatch in block "
-                 << CatchAction->getStartBlock()->getName() << "\n");
+      // Add the catch handler to the action list.
+      DEBUG(dbgs() << "  Found catch dispatch in block "
+                   << CatchAction->getStartBlock()->getName() << "\n");
+      Actions.insertCatchHandler(CatchAction);
+    } else {
+      // Under some circumstances optimized IR will flow unconditionally into a
+      // handler block without checking the selector.  This can only happen if
+      // the landing pad has a catch-all handler and the handler for the
+      // preceding catch clause is identical to the catch-call handler
+      // (typically an empty catch).  In this case, the handler must be shared
+      // by all remaining clauses.
+      if (isa<ConstantPointerNull>(
+              CatchAction->getSelector()->stripPointerCasts())) {
+        DEBUG(dbgs() << "  Applying early catch-all handler in block "
+                     << CatchAction->getStartBlock()->getName()
+                     << "  to all remaining clauses.\n");
+        Actions.insertCatchHandler(CatchAction);
+        return;
+      }
+
+      DEBUG(dbgs() << "  Found extra catch dispatch in block "
+                   << CatchAction->getStartBlock()->getName() << "\n");
+    }
 
     // Move on to the block after the catch handler.
     BB = NextBB;
@@ -1206,12 +2201,7 @@ void WinEHPrepare::mapLandingPadBlocks(LandingPadInst *LPad,
 
   // If we didn't wind up in a catch-all, see if there is any interesting code
   // executed before the resume.
-  if (auto *CleanupAction = findCleanupHandler(BB, BB)) {
-    //   Add a cleanup entry to the list
-    Actions.insertCleanupHandler(CleanupAction);
-    DEBUG(dbgs() << "  Found cleanup code in block "
-                 << CleanupAction->getStartBlock()->getName() << "\n");
-  }
+  findCleanupHandlers(Actions, BB, BB);
 
   // It's possible that some optimization moved code into a landingpad that
   // wasn't
@@ -1255,6 +2245,18 @@ CatchHandler *WinEHPrepare::findCatchHandler(BasicBlock *BB,
       CatchHandlerMap[BB] = Action;
       return Action;
     }
+    // If we encounter a block containing an llvm.eh.begincatch before we
+    // find a selector dispatch block, the handler is assumed to be
+    // reached unconditionally.  This happens for catch-all blocks, but
+    // it can also happen for other catch handlers that have been combined
+    // with the catch-all handler during optimization.
+    if (isCatchBlock(BB)) {
+      PointerType *Int8PtrTy = Type::getInt8PtrTy(BB->getContext());
+      Constant *NullSelector = ConstantPointerNull::get(Int8PtrTy);
+      CatchHandler *Action = new CatchHandler(BB, NullSelector, nullptr);
+      CatchHandlerMap[BB] = Action;
+      return Action;
+    }
   }
 
   // Visit each successor, looking for the dispatch.
@@ -1271,20 +2273,52 @@ CatchHandler *WinEHPrepare::findCatchHandler(BasicBlock *BB,
   return nullptr;
 }
 
-// These are helper functions to combine repeated code from findCleanupHandler.
-static CleanupHandler *createCleanupHandler(CleanupHandlerMapTy &CleanupHandlerMap,
-                                            BasicBlock *BB) {
+// These are helper functions to combine repeated code from findCleanupHandlers.
+static void createCleanupHandler(LandingPadActions &Actions,
+                                 CleanupHandlerMapTy &CleanupHandlerMap,
+                                 BasicBlock *BB) {
   CleanupHandler *Action = new CleanupHandler(BB);
   CleanupHandlerMap[BB] = Action;
-  return Action;
+  Actions.insertCleanupHandler(Action);
+  DEBUG(dbgs() << "  Found cleanup code in block "
+               << Action->getStartBlock()->getName() << "\n");
+}
+
+static CallSite matchOutlinedFinallyCall(BasicBlock *BB,
+                                         Instruction *MaybeCall) {
+  // Look for finally blocks that Clang has already outlined for us.
+  //   %fp = call i8* @llvm.localaddress()
+  //   call void @"fin$parent"(iN 1, i8* %fp)
+  if (isLocalAddressCall(MaybeCall) && MaybeCall != BB->getTerminator())
+    MaybeCall = MaybeCall->getNextNode();
+  CallSite FinallyCall(MaybeCall);
+  if (!FinallyCall || FinallyCall.arg_size() != 2)
+    return CallSite();
+  if (!match(FinallyCall.getArgument(0), m_SpecificInt(1)))
+    return CallSite();
+  if (!isLocalAddressCall(FinallyCall.getArgument(1)))
+    return CallSite();
+  return FinallyCall;
+}
+
+static BasicBlock *followSingleUnconditionalBranches(BasicBlock *BB) {
+  // Skip single ubr blocks.
+  while (BB->getFirstNonPHIOrDbg() == BB->getTerminator()) {
+    auto *Br = dyn_cast<BranchInst>(BB->getTerminator());
+    if (Br && Br->isUnconditional())
+      BB = Br->getSuccessor(0);
+    else
+      return BB;
+  }
+  return BB;
 }
 
 // This function searches starting with the input block for the next block that
 // contains code that is not part of a catch handler and would not be eliminated
 // during handler outlining.
 //
-CleanupHandler *WinEHPrepare::findCleanupHandler(BasicBlock *StartBB,
-                                                 BasicBlock *EndBB) {
+void WinEHPrepare::findCleanupHandlers(LandingPadActions &Actions,
+                                       BasicBlock *StartBB, BasicBlock *EndBB) {
   // Here we will skip over the following:
   //
   // landing pad prolog:
@@ -1301,6 +2335,7 @@ CleanupHandler *WinEHPrepare::findCleanupHandler(BasicBlock *StartBB,
   // Anything other than an unconditional branch will kick us out of this loop
   // one way or another.
   while (BB) {
+    BB = followSingleUnconditionalBranches(BB);
     // If we've already scanned this block, don't scan it again.  If it is
     // a cleanup block, there will be an action in the CleanupHandlerMap.
     // If we've scanned it and it is not a cleanup block, there will be a
@@ -1309,23 +2344,26 @@ CleanupHandler *WinEHPrepare::findCleanupHandler(BasicBlock *StartBB,
     // avoid creating a null entry for blocks we haven't scanned.
     if (CleanupHandlerMap.count(BB)) {
       if (auto *Action = CleanupHandlerMap[BB]) {
-        return cast<CleanupHandler>(Action);
+        Actions.insertCleanupHandler(Action);
+        DEBUG(dbgs() << "  Found cleanup code in block "
+                     << Action->getStartBlock()->getName() << "\n");
+        // FIXME: This cleanup might chain into another, and we need to discover
+        // that.
+        return;
       } else {
         // Here we handle the case where the cleanup handler map contains a
         // value for this block but the value is a nullptr.  This means that
         // we have previously analyzed the block and determined that it did
         // not contain any cleanup code.  Based on the earlier analysis, we
-        // know the the block must end in either an unconditional branch, a
+        // know the block must end in either an unconditional branch, a
         // resume or a conditional branch that is predicated on a comparison
         // with a selector.  Either the resume or the selector dispatch
         // would terminate the search for cleanup code, so the unconditional
         // branch is the only case for which we might need to continue
         // searching.
-        if (BB == EndBB)
-          return nullptr;
-        BasicBlock *SuccBB;
-        if (!match(BB->getTerminator(), m_UnconditionalBr(SuccBB)))
-          return nullptr;
+        BasicBlock *SuccBB = followSingleUnconditionalBranches(BB);
+        if (SuccBB == BB || SuccBB == EndBB)
+          return;
         BB = SuccBB;
         continue;
       }
@@ -1348,26 +2386,23 @@ CleanupHandler *WinEHPrepare::findCleanupHandler(BasicBlock *StartBB,
     }
 
     // Look for the bare resume pattern:
-    //   %exn2 = load i8** %exn.slot
-    //   %sel2 = load i32* %ehselector.slot
-    //   %lpad.val1 = insertvalue { i8*, i32 } undef, i8* %exn2, 0
-    //   %lpad.val2 = insertvalue { i8*, i32 } %lpad.val1, i32 %sel2, 1
+    //   %lpad.val1 = insertvalue { i8*, i32 } undef, i8* %exn, 0
+    //   %lpad.val2 = insertvalue { i8*, i32 } %lpad.val1, i32 %sel, 1
     //   resume { i8*, i32 } %lpad.val2
     if (auto *Resume = dyn_cast<ResumeInst>(Terminator)) {
       InsertValueInst *Insert1 = nullptr;
       InsertValueInst *Insert2 = nullptr;
       Value *ResumeVal = Resume->getOperand(0);
-      // If there is only one landingpad, we may use the lpad directly with no
-      // insertions.
-      if (isa<LandingPadInst>(ResumeVal))
-        return nullptr;
-      if (!isa<PHINode>(ResumeVal)) {
+      // If the resume value isn't a phi or landingpad value, it should be a
+      // series of insertions. Identify them so we can avoid them when scanning
+      // for cleanups.
+      if (!isa<PHINode>(ResumeVal) && !isa<LandingPadInst>(ResumeVal)) {
         Insert2 = dyn_cast<InsertValueInst>(ResumeVal);
         if (!Insert2)
-          return createCleanupHandler(CleanupHandlerMap, BB);
+          return createCleanupHandler(Actions, CleanupHandlerMap, BB);
         Insert1 = dyn_cast<InsertValueInst>(Insert2->getAggregateOperand());
         if (!Insert1)
-          return createCleanupHandler(CleanupHandlerMap, BB);
+          return createCleanupHandler(Actions, CleanupHandlerMap, BB);
       }
       for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end();
            II != IE; ++II) {
@@ -1378,69 +2413,1274 @@ CleanupHandler *WinEHPrepare::findCleanupHandler(BasicBlock *StartBB,
           continue;
         if (!Inst->hasOneUse() ||
             (Inst->user_back() != Insert1 && Inst->user_back() != Insert2)) {
-          return createCleanupHandler(CleanupHandlerMap, BB);
+          return createCleanupHandler(Actions, CleanupHandlerMap, BB);
         }
       }
-      return nullptr;
+      return;
     }
 
     BranchInst *Branch = dyn_cast<BranchInst>(Terminator);
-    if (Branch) {
-      if (Branch->isConditional()) {
-        // Look for the selector dispatch.
-        //   %sel = load i32* %ehselector.slot
-        //   %2 = call i32 @llvm.eh.typeid.for(i8* bitcast (i8** @_ZTIf to i8*))
-        //   %matches = icmp eq i32 %sel12, %2
-        //   br i1 %matches, label %catch14, label %eh.resume
-        CmpInst *Compare = dyn_cast<CmpInst>(Branch->getCondition());
-        if (!Compare || !Compare->isEquality())
-          return createCleanupHandler(CleanupHandlerMap, BB);
-        for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(),
-                                  IE = BB->end();
-             II != IE; ++II) {
-          Instruction *Inst = II;
-          if (LPadMap && LPadMap->isLandingPadSpecificInst(Inst))
-            continue;
-          if (Inst == Compare || Inst == Branch)
-            continue;
-          if (!Inst->hasOneUse() || (Inst->user_back() != Compare))
-            return createCleanupHandler(CleanupHandlerMap, BB);
-          if (match(Inst, m_Intrinsic<Intrinsic::eh_typeid_for>()))
-            continue;
-          if (!isa<LoadInst>(Inst))
-            return createCleanupHandler(CleanupHandlerMap, BB);
-        }
-        // The selector dispatch block should always terminate our search.
-        assert(BB == EndBB);
-        return nullptr;
-      } else {
-        // Look for empty blocks with unconditional branches.
-        for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(),
-                                  IE = BB->end();
-             II != IE; ++II) {
-          Instruction *Inst = II;
-          if (LPadMap && LPadMap->isLandingPadSpecificInst(Inst))
-            continue;
-          if (Inst == Branch)
-            continue;
-          // This can happen with a catch-all handler.
-          if (match(Inst, m_Intrinsic<Intrinsic::eh_begincatch>()))
-            return nullptr;
-          if (match(Inst, m_Intrinsic<Intrinsic::eh_endcatch>()))
-            continue;
-          // Anything else makes this interesting cleanup code.
-          return createCleanupHandler(CleanupHandlerMap, BB);
+    if (Branch && Branch->isConditional()) {
+      // Look for the selector dispatch.
+      //   %2 = call i32 @llvm.eh.typeid.for(i8* bitcast (i8** @_ZTIf to i8*))
+      //   %matches = icmp eq i32 %sel, %2
+      //   br i1 %matches, label %catch14, label %eh.resume
+      CmpInst *Compare = dyn_cast<CmpInst>(Branch->getCondition());
+      if (!Compare || !Compare->isEquality())
+        return createCleanupHandler(Actions, CleanupHandlerMap, BB);
+      for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end();
+           II != IE; ++II) {
+        Instruction *Inst = II;
+        if (LPadMap && LPadMap->isLandingPadSpecificInst(Inst))
+          continue;
+        if (Inst == Compare || Inst == Branch)
+          continue;
+        if (match(Inst, m_Intrinsic<Intrinsic::eh_typeid_for>()))
+          continue;
+        return createCleanupHandler(Actions, CleanupHandlerMap, BB);
+      }
+      // The selector dispatch block should always terminate our search.
+      assert(BB == EndBB);
+      return;
+    }
+
+    if (isAsynchronousEHPersonality(Personality)) {
+      // If this is a landingpad block, split the block at the first non-landing
+      // pad instruction.
+      Instruction *MaybeCall = BB->getFirstNonPHIOrDbg();
+      if (LPadMap) {
+        while (MaybeCall != BB->getTerminator() &&
+               LPadMap->isLandingPadSpecificInst(MaybeCall))
+          MaybeCall = MaybeCall->getNextNode();
+      }
+
+      // Look for outlined finally calls on x64, since those happen to match the
+      // prototype provided by the runtime.
+      if (TheTriple.getArch() == Triple::x86_64) {
+        if (CallSite FinallyCall = matchOutlinedFinallyCall(BB, MaybeCall)) {
+          Function *Fin = FinallyCall.getCalledFunction();
+          assert(Fin && "outlined finally call should be direct");
+          auto *Action = new CleanupHandler(BB);
+          Action->setHandlerBlockOrFunc(Fin);
+          Actions.insertCleanupHandler(Action);
+          CleanupHandlerMap[BB] = Action;
+          DEBUG(dbgs() << "  Found frontend-outlined finally call to "
+                       << Fin->getName() << " in block "
+                       << Action->getStartBlock()->getName() << "\n");
+
+          // Split the block if there were more interesting instructions and
+          // look for finally calls in the normal successor block.
+          BasicBlock *SuccBB = BB;
+          if (FinallyCall.getInstruction() != BB->getTerminator() &&
+              FinallyCall.getInstruction()->getNextNode() !=
+                  BB->getTerminator()) {
+            SuccBB =
+                SplitBlock(BB, FinallyCall.getInstruction()->getNextNode(), DT);
+          } else {
+            if (FinallyCall.isInvoke()) {
+              SuccBB = cast<InvokeInst>(FinallyCall.getInstruction())
+                           ->getNormalDest();
+            } else {
+              SuccBB = BB->getUniqueSuccessor();
+              assert(SuccBB &&
+                     "splitOutlinedFinallyCalls didn't insert a branch");
+            }
+          }
+          BB = SuccBB;
+          if (BB == EndBB)
+            return;
+          continue;
         }
-        if (BB == EndBB)
-          return nullptr;
-        // The branch was unconditional.
-        BB = Branch->getSuccessor(0);
+      }
+    }
+
+    // Anything else is either a catch block or interesting cleanup code.
+    for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end();
+         II != IE; ++II) {
+      Instruction *Inst = II;
+      if (LPadMap && LPadMap->isLandingPadSpecificInst(Inst))
+        continue;
+      // Unconditional branches fall through to this loop.
+      if (Inst == Branch)
+        continue;
+      // If this is a catch block, there is no cleanup code to be found.
+      if (match(Inst, m_Intrinsic<Intrinsic::eh_begincatch>()))
+        return;
+      // If this a nested landing pad, it may contain an endcatch call.
+      if (match(Inst, m_Intrinsic<Intrinsic::eh_endcatch>()))
+        return;
+      // Anything else makes this interesting cleanup code.
+      return createCleanupHandler(Actions, CleanupHandlerMap, BB);
+    }
+
+    // Only unconditional branches in empty blocks should get this far.
+    assert(Branch && Branch->isUnconditional());
+    if (BB == EndBB)
+      return;
+    BB = Branch->getSuccessor(0);
+  }
+}
+
+// This is a public function, declared in WinEHFuncInfo.h and is also
+// referenced by WinEHNumbering in FunctionLoweringInfo.cpp.
+void llvm::parseEHActions(
+    const IntrinsicInst *II,
+    SmallVectorImpl<std::unique_ptr<ActionHandler>> &Actions) {
+  assert(II->getIntrinsicID() == Intrinsic::eh_actions &&
+         "attempted to parse non eh.actions intrinsic");
+  for (unsigned I = 0, E = II->getNumArgOperands(); I != E;) {
+    uint64_t ActionKind =
+        cast<ConstantInt>(II->getArgOperand(I))->getZExtValue();
+    if (ActionKind == /*catch=*/1) {
+      auto *Selector = cast<Constant>(II->getArgOperand(I + 1));
+      ConstantInt *EHObjIndex = cast<ConstantInt>(II->getArgOperand(I + 2));
+      int64_t EHObjIndexVal = EHObjIndex->getSExtValue();
+      Constant *Handler = cast<Constant>(II->getArgOperand(I + 3));
+      I += 4;
+      auto CH = make_unique<CatchHandler>(/*BB=*/nullptr, Selector,
+                                          /*NextBB=*/nullptr);
+      CH->setHandlerBlockOrFunc(Handler);
+      CH->setExceptionVarIndex(EHObjIndexVal);
+      Actions.push_back(std::move(CH));
+    } else if (ActionKind == 0) {
+      Constant *Handler = cast<Constant>(II->getArgOperand(I + 1));
+      I += 2;
+      auto CH = make_unique<CleanupHandler>(/*BB=*/nullptr);
+      CH->setHandlerBlockOrFunc(Handler);
+      Actions.push_back(std::move(CH));
+    } else {
+      llvm_unreachable("Expected either a catch or cleanup handler!");
+    }
+  }
+  std::reverse(Actions.begin(), Actions.end());
+}
+
+namespace {
+struct WinEHNumbering {
+  WinEHNumbering(WinEHFuncInfo &FuncInfo) : FuncInfo(FuncInfo),
+      CurrentBaseState(-1), NextState(0) {}
+
+  WinEHFuncInfo &FuncInfo;
+  int CurrentBaseState;
+  int NextState;
+
+  SmallVector<std::unique_ptr<ActionHandler>, 4> HandlerStack;
+  SmallPtrSet<const Function *, 4> VisitedHandlers;
+
+  int currentEHNumber() const {
+    return HandlerStack.empty() ? CurrentBaseState : HandlerStack.back()->getEHState();
+  }
+
+  void createUnwindMapEntry(int ToState, ActionHandler *AH);
+  void createTryBlockMapEntry(int TryLow, int TryHigh,
+                              ArrayRef<CatchHandler *> Handlers);
+  void processCallSite(MutableArrayRef<std::unique_ptr<ActionHandler>> Actions,
+                       ImmutableCallSite CS);
+  void popUnmatchedActions(int FirstMismatch);
+  void calculateStateNumbers(const Function &F);
+  void findActionRootLPads(const Function &F);
+};
+}
+
+static int addUnwindMapEntry(WinEHFuncInfo &FuncInfo, int ToState,
+                             const Value *V) {
+  WinEHUnwindMapEntry UME;
+  UME.ToState = ToState;
+  UME.Cleanup = V;
+  FuncInfo.UnwindMap.push_back(UME);
+  return FuncInfo.getLastStateNumber();
+}
+
+static void addTryBlockMapEntry(WinEHFuncInfo &FuncInfo, int TryLow,
+                                int TryHigh, int CatchHigh,
+                                ArrayRef<const CatchPadInst *> Handlers) {
+  WinEHTryBlockMapEntry TBME;
+  TBME.TryLow = TryLow;
+  TBME.TryHigh = TryHigh;
+  TBME.CatchHigh = CatchHigh;
+  assert(TBME.TryLow <= TBME.TryHigh);
+  for (const CatchPadInst *CPI : Handlers) {
+    WinEHHandlerType HT;
+    Constant *TypeInfo = cast<Constant>(CPI->getArgOperand(0));
+    if (TypeInfo->isNullValue()) {
+      HT.Adjectives = 0x40;
+      HT.TypeDescriptor = nullptr;
+    } else {
+      auto *GV = cast<GlobalVariable>(TypeInfo->stripPointerCasts());
+      // Selectors are always pointers to GlobalVariables with 'struct' type.
+      // The struct has two fields, adjectives and a type descriptor.
+      auto *CS = cast<ConstantStruct>(GV->getInitializer());
+      HT.Adjectives =
+          cast<ConstantInt>(CS->getAggregateElement(0U))->getZExtValue();
+      HT.TypeDescriptor =
+          cast<GlobalVariable>(CS->getAggregateElement(1)->stripPointerCasts());
+    }
+    HT.Handler = CPI->getNormalDest();
+    // FIXME: Pass CPI->getArgOperand(1).
+    HT.CatchObjRecoverIdx = -1;
+    TBME.HandlerArray.push_back(HT);
+  }
+  FuncInfo.TryBlockMap.push_back(TBME);
+}
+
+void WinEHNumbering::createUnwindMapEntry(int ToState, ActionHandler *AH) {
+  Value *V = nullptr;
+  if (auto *CH = dyn_cast_or_null<CleanupHandler>(AH))
+    V = cast<Function>(CH->getHandlerBlockOrFunc());
+  addUnwindMapEntry(FuncInfo, ToState, V);
+}
+
+void WinEHNumbering::createTryBlockMapEntry(int TryLow, int TryHigh,
+                                            ArrayRef<CatchHandler *> Handlers) {
+  // See if we already have an entry for this set of handlers.
+  // This is using iterators rather than a range-based for loop because
+  // if we find the entry we're looking for we'll need the iterator to erase it.
+  int NumHandlers = Handlers.size();
+  auto I = FuncInfo.TryBlockMap.begin();
+  auto E = FuncInfo.TryBlockMap.end();
+  for ( ; I != E; ++I) {
+    auto &Entry = *I;
+    if (Entry.HandlerArray.size() != (size_t)NumHandlers)
+      continue;
+    int N;
+    for (N = 0; N < NumHandlers; ++N) {
+      if (Entry.HandlerArray[N].Handler.get<const Value *>() !=
+          Handlers[N]->getHandlerBlockOrFunc())
+        break; // breaks out of inner loop
+    }
+    // If all the handlers match, this is what we were looking for.
+    if (N == NumHandlers) {
+      break;
+    }
+  }
+
+  // If we found an existing entry for this set of handlers, extend the range
+  // but move the entry to the end of the map vector.  The order of entries
+  // in the map is critical to the way that the runtime finds handlers.
+  // FIXME: Depending on what has happened with block ordering, this may
+  //        incorrectly combine entries that should remain separate.
+  if (I != E) {
+    // Copy the existing entry.
+    WinEHTryBlockMapEntry Entry = *I;
+    Entry.TryLow = std::min(TryLow, Entry.TryLow);
+    Entry.TryHigh = std::max(TryHigh, Entry.TryHigh);
+    assert(Entry.TryLow <= Entry.TryHigh);
+    // Erase the old entry and add this one to the back.
+    FuncInfo.TryBlockMap.erase(I);
+    FuncInfo.TryBlockMap.push_back(Entry);
+    return;
+  }
+
+  // If we didn't find an entry, create a new one.
+  WinEHTryBlockMapEntry TBME;
+  TBME.TryLow = TryLow;
+  TBME.TryHigh = TryHigh;
+  assert(TBME.TryLow <= TBME.TryHigh);
+  for (CatchHandler *CH : Handlers) {
+    WinEHHandlerType HT;
+    if (CH->getSelector()->isNullValue()) {
+      HT.Adjectives = 0x40;
+      HT.TypeDescriptor = nullptr;
+    } else {
+      auto *GV = cast<GlobalVariable>(CH->getSelector()->stripPointerCasts());
+      // Selectors are always pointers to GlobalVariables with 'struct' type.
+      // The struct has two fields, adjectives and a type descriptor.
+      auto *CS = cast<ConstantStruct>(GV->getInitializer());
+      HT.Adjectives =
+          cast<ConstantInt>(CS->getAggregateElement(0U))->getZExtValue();
+      HT.TypeDescriptor =
+          cast<GlobalVariable>(CS->getAggregateElement(1)->stripPointerCasts());
+    }
+    HT.Handler = cast<Function>(CH->getHandlerBlockOrFunc());
+    HT.CatchObjRecoverIdx = CH->getExceptionVarIndex();
+    TBME.HandlerArray.push_back(HT);
+  }
+  FuncInfo.TryBlockMap.push_back(TBME);
+}
+
+static void print_name(const Value *V) {
+#ifndef NDEBUG
+  if (!V) {
+    DEBUG(dbgs() << "null");
+    return;
+  }
+
+  if (const auto *F = dyn_cast<Function>(V))
+    DEBUG(dbgs() << F->getName());
+  else
+    DEBUG(V->dump());
+#endif
+}
+
+void WinEHNumbering::processCallSite(
+    MutableArrayRef<std::unique_ptr<ActionHandler>> Actions,
+    ImmutableCallSite CS) {
+  DEBUG(dbgs() << "processCallSite (EH state = " << currentEHNumber()
+               << ") for: ");
+  print_name(CS ? CS.getCalledValue() : nullptr);
+  DEBUG(dbgs() << '\n');
+
+  DEBUG(dbgs() << "HandlerStack: \n");
+  for (int I = 0, E = HandlerStack.size(); I < E; ++I) {
+    DEBUG(dbgs() << "  ");
+    print_name(HandlerStack[I]->getHandlerBlockOrFunc());
+    DEBUG(dbgs() << '\n');
+  }
+  DEBUG(dbgs() << "Actions: \n");
+  for (int I = 0, E = Actions.size(); I < E; ++I) {
+    DEBUG(dbgs() << "  ");
+    print_name(Actions[I]->getHandlerBlockOrFunc());
+    DEBUG(dbgs() << '\n');
+  }
+  int FirstMismatch = 0;
+  for (int E = std::min(HandlerStack.size(), Actions.size()); FirstMismatch < E;
+       ++FirstMismatch) {
+    if (HandlerStack[FirstMismatch]->getHandlerBlockOrFunc() !=
+        Actions[FirstMismatch]->getHandlerBlockOrFunc())
+      break;
+  }
+
+  // Remove unmatched actions from the stack and process their EH states.
+  popUnmatchedActions(FirstMismatch);
+
+  DEBUG(dbgs() << "Pushing actions for CallSite: ");
+  print_name(CS ? CS.getCalledValue() : nullptr);
+  DEBUG(dbgs() << '\n');
+
+  bool LastActionWasCatch = false;
+  const LandingPadInst *LastRootLPad = nullptr;
+  for (size_t I = FirstMismatch; I != Actions.size(); ++I) {
+    // We can reuse eh states when pushing two catches for the same invoke.
+    bool CurrActionIsCatch = isa<CatchHandler>(Actions[I].get());
+    auto *Handler = cast<Function>(Actions[I]->getHandlerBlockOrFunc());
+    // Various conditions can lead to a handler being popped from the
+    // stack and re-pushed later.  That shouldn't create a new state.
+    // FIXME: Can code optimization lead to re-used handlers?
+    if (FuncInfo.HandlerEnclosedState.count(Handler)) {
+      // If we already assigned the state enclosed by this handler re-use it.
+      Actions[I]->setEHState(FuncInfo.HandlerEnclosedState[Handler]);
+      continue;
+    }
+    const LandingPadInst* RootLPad = FuncInfo.RootLPad[Handler];
+    if (CurrActionIsCatch && LastActionWasCatch && RootLPad == LastRootLPad) {
+      DEBUG(dbgs() << "setEHState for handler to " << currentEHNumber() << "\n");
+      Actions[I]->setEHState(currentEHNumber());
+    } else {
+      DEBUG(dbgs() << "createUnwindMapEntry(" << currentEHNumber() << ", ");
+      print_name(Actions[I]->getHandlerBlockOrFunc());
+      DEBUG(dbgs() << ") with EH state " << NextState << "\n");
+      createUnwindMapEntry(currentEHNumber(), Actions[I].get());
+      DEBUG(dbgs() << "setEHState for handler to " << NextState << "\n");
+      Actions[I]->setEHState(NextState);
+      NextState++;
+    }
+    HandlerStack.push_back(std::move(Actions[I]));
+    LastActionWasCatch = CurrActionIsCatch;
+    LastRootLPad = RootLPad;
+  }
+
+  // This is used to defer numbering states for a handler until after the
+  // last time it appears in an invoke action list.
+  if (CS.isInvoke()) {
+    for (int I = 0, E = HandlerStack.size(); I < E; ++I) {
+      auto *Handler = cast<Function>(HandlerStack[I]->getHandlerBlockOrFunc());
+      if (FuncInfo.LastInvoke[Handler] != cast<InvokeInst>(CS.getInstruction()))
         continue;
-      } // End else of if branch was conditional
-    }   // End if Branch
+      FuncInfo.LastInvokeVisited[Handler] = true;
+      DEBUG(dbgs() << "Last invoke of ");
+      print_name(Handler);
+      DEBUG(dbgs() << " has been visited.\n");
+    }
+  }
+
+  DEBUG(dbgs() << "In EHState " << currentEHNumber() << " for CallSite: ");
+  print_name(CS ? CS.getCalledValue() : nullptr);
+  DEBUG(dbgs() << '\n');
+}
 
-    // Anything else makes this interesting cleanup code.
-    return createCleanupHandler(CleanupHandlerMap, BB);
+void WinEHNumbering::popUnmatchedActions(int FirstMismatch) {
+  // Don't recurse while we are looping over the handler stack.  Instead, defer
+  // the numbering of the catch handlers until we are done popping.
+  SmallVector<CatchHandler *, 4> PoppedCatches;
+  for (int I = HandlerStack.size() - 1; I >= FirstMismatch; --I) {
+    std::unique_ptr<ActionHandler> Handler = HandlerStack.pop_back_val();
+    if (isa<CatchHandler>(Handler.get()))
+      PoppedCatches.push_back(cast<CatchHandler>(Handler.release()));
   }
+
+  int TryHigh = NextState - 1;
+  int LastTryLowIdx = 0;
+  for (int I = 0, E = PoppedCatches.size(); I != E; ++I) {
+    CatchHandler *CH = PoppedCatches[I];
+    DEBUG(dbgs() << "Popped handler with state " << CH->getEHState() << "\n");
+    if (I + 1 == E || CH->getEHState() != PoppedCatches[I + 1]->getEHState()) {
+      int TryLow = CH->getEHState();
+      auto Handlers =
+          makeArrayRef(&PoppedCatches[LastTryLowIdx], I - LastTryLowIdx + 1);
+      DEBUG(dbgs() << "createTryBlockMapEntry(" << TryLow << ", " << TryHigh);
+      for (size_t J = 0; J < Handlers.size(); ++J) {
+        DEBUG(dbgs() << ", ");
+        print_name(Handlers[J]->getHandlerBlockOrFunc());
+      }
+      DEBUG(dbgs() << ")\n");
+      createTryBlockMapEntry(TryLow, TryHigh, Handlers);
+      LastTryLowIdx = I + 1;
+    }
+  }
+
+  for (CatchHandler *CH : PoppedCatches) {
+    if (auto *F = dyn_cast<Function>(CH->getHandlerBlockOrFunc())) {
+      if (FuncInfo.LastInvokeVisited[F]) {
+        DEBUG(dbgs() << "Assigning base state " << NextState << " to ");
+        print_name(F);
+        DEBUG(dbgs() << '\n');
+        FuncInfo.HandlerBaseState[F] = NextState;
+        DEBUG(dbgs() << "createUnwindMapEntry(" << currentEHNumber()
+                     << ", null)\n");
+        createUnwindMapEntry(currentEHNumber(), nullptr);
+        ++NextState;
+        calculateStateNumbers(*F);
+      }
+      else {
+        DEBUG(dbgs() << "Deferring handling of ");
+        print_name(F);
+        DEBUG(dbgs() << " until last invoke visited.\n");
+      }
+    }
+    delete CH;
+  }
+}
+
+void WinEHNumbering::calculateStateNumbers(const Function &F) {
+  auto I = VisitedHandlers.insert(&F);
+  if (!I.second)
+    return; // We've already visited this handler, don't renumber it.
+
+  int OldBaseState = CurrentBaseState;
+  if (FuncInfo.HandlerBaseState.count(&F)) {
+    CurrentBaseState = FuncInfo.HandlerBaseState[&F];
+  }
+
+  size_t SavedHandlerStackSize = HandlerStack.size();
+
+  DEBUG(dbgs() << "Calculating state numbers for: " << F.getName() << '\n');
+  SmallVector<std::unique_ptr<ActionHandler>, 4> ActionList;
+  for (const BasicBlock &BB : F) {
+    for (const Instruction &I : BB) {
+      const auto *CI = dyn_cast<CallInst>(&I);
+      if (!CI || CI->doesNotThrow())
+        continue;
+      processCallSite(None, CI);
+    }
+    const auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
+    if (!II)
+      continue;
+    const LandingPadInst *LPI = II->getLandingPadInst();
+    auto *ActionsCall = dyn_cast<IntrinsicInst>(LPI->getNextNode());
+    if (!ActionsCall)
+      continue;
+    parseEHActions(ActionsCall, ActionList);
+    if (ActionList.empty())
+      continue;
+    processCallSite(ActionList, II);
+    ActionList.clear();
+    FuncInfo.EHPadStateMap[LPI] = currentEHNumber();
+    DEBUG(dbgs() << "Assigning state " << currentEHNumber()
+                  << " to landing pad at " << LPI->getParent()->getName()
+                  << '\n');
+  }
+
+  // Pop any actions that were pushed on the stack for this function.
+  popUnmatchedActions(SavedHandlerStackSize);
+
+  DEBUG(dbgs() << "Assigning max state " << NextState - 1
+               << " to " << F.getName() << '\n');
+  FuncInfo.CatchHandlerMaxState[&F] = NextState - 1;
+
+  CurrentBaseState = OldBaseState;
+}
+
+// This function follows the same basic traversal as calculateStateNumbers
+// but it is necessary to identify the root landing pad associated
+// with each action before we start assigning state numbers.
+void WinEHNumbering::findActionRootLPads(const Function &F) {
+  auto I = VisitedHandlers.insert(&F);
+  if (!I.second)
+    return; // We've already visited this handler, don't revisit it.
+
+  SmallVector<std::unique_ptr<ActionHandler>, 4> ActionList;
+  for (const BasicBlock &BB : F) {
+    const auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
+    if (!II)
+      continue;
+    const LandingPadInst *LPI = II->getLandingPadInst();
+    auto *ActionsCall = dyn_cast<IntrinsicInst>(LPI->getNextNode());
+    if (!ActionsCall)
+      continue;
+
+    assert(ActionsCall->getIntrinsicID() == Intrinsic::eh_actions);
+    parseEHActions(ActionsCall, ActionList);
+    if (ActionList.empty())
+      continue;
+    for (int I = 0, E = ActionList.size(); I < E; ++I) {
+      if (auto *Handler
+              = dyn_cast<Function>(ActionList[I]->getHandlerBlockOrFunc())) {
+        FuncInfo.LastInvoke[Handler] = II;
+        // Don't replace the root landing pad if we previously saw this
+        // handler in a different function.
+        if (FuncInfo.RootLPad.count(Handler) &&
+            FuncInfo.RootLPad[Handler]->getParent()->getParent() != &F)
+          continue;
+        DEBUG(dbgs() << "Setting root lpad for ");
+        print_name(Handler);
+        DEBUG(dbgs() << " to " << LPI->getParent()->getName() << '\n');
+        FuncInfo.RootLPad[Handler] = LPI;
+      }
+    }
+    // Walk the actions again and look for nested handlers.  This has to
+    // happen after all of the actions have been processed in the current
+    // function.
+    for (int I = 0, E = ActionList.size(); I < E; ++I)
+      if (auto *Handler
+              = dyn_cast<Function>(ActionList[I]->getHandlerBlockOrFunc()))
+        findActionRootLPads(*Handler);
+    ActionList.clear();
+  }
+}
+
+static const CatchPadInst *getSingleCatchPadPredecessor(const BasicBlock *BB) {
+  for (const BasicBlock *PredBlock : predecessors(BB))
+    if (auto *CPI = dyn_cast<CatchPadInst>(PredBlock->getFirstNonPHI()))
+      return CPI;
   return nullptr;
 }
+
+/// Find all the catchpads that feed directly into the catchendpad. Frontends
+/// using this personality should ensure that each catchendpad and catchpad has
+/// one or zero catchpad predecessors.
+///
+/// The following C++ generates the IR after it:
+///   try {
+///   } catch (A) {
+///   } catch (B) {
+///   }
+///
+/// IR:
+///   %catchpad.A
+///     catchpad [i8* A typeinfo]
+///         to label %catch.A unwind label %catchpad.B
+///   %catchpad.B
+///     catchpad [i8* B typeinfo]
+///         to label %catch.B unwind label %endcatches
+///   %endcatches
+///     catchendblock unwind to caller
+void findCatchPadsForCatchEndPad(
+    const BasicBlock *CatchEndBB,
+    SmallVectorImpl<const CatchPadInst *> &Handlers) {
+  const CatchPadInst *CPI = getSingleCatchPadPredecessor(CatchEndBB);
+  while (CPI) {
+    Handlers.push_back(CPI);
+    CPI = getSingleCatchPadPredecessor(CPI->getParent());
+  }
+  // We've pushed these back into reverse source order.  Reverse them to get
+  // the list back into source order.
+  std::reverse(Handlers.begin(), Handlers.end());
+}
+
+// Given BB which ends in an unwind edge, return the EHPad that this BB belongs
+// to. If the unwind edge came from an invoke, return null.
+static const BasicBlock *getEHPadFromPredecessor(const BasicBlock *BB) {
+  const TerminatorInst *TI = BB->getTerminator();
+  if (isa<InvokeInst>(TI))
+    return nullptr;
+  if (TI->isEHPad())
+    return BB;
+  return cast<CleanupReturnInst>(TI)->getCleanupPad()->getParent();
+}
+
+static void calculateExplicitCXXStateNumbers(WinEHFuncInfo &FuncInfo,
+                                             const BasicBlock &BB,
+                                             int ParentState) {
+  assert(BB.isEHPad());
+  const Instruction *FirstNonPHI = BB.getFirstNonPHI();
+  // All catchpad instructions will be handled when we process their
+  // respective catchendpad instruction.
+  if (isa<CatchPadInst>(FirstNonPHI))
+    return;
+
+  if (isa<CatchEndPadInst>(FirstNonPHI)) {
+    SmallVector<const CatchPadInst *, 2> Handlers;
+    findCatchPadsForCatchEndPad(&BB, Handlers);
+    const BasicBlock *FirstTryPad = Handlers.front()->getParent();
+    int TryLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr);
+    FuncInfo.EHPadStateMap[Handlers.front()] = TryLow;
+    for (const BasicBlock *PredBlock : predecessors(FirstTryPad))
+      if ((PredBlock = getEHPadFromPredecessor(PredBlock)))
+        calculateExplicitCXXStateNumbers(FuncInfo, *PredBlock, TryLow);
+    int CatchLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr);
+
+    // catchpads are separate funclets in C++ EH due to the way rethrow works.
+    // In SEH, they aren't, so no invokes will unwind to the catchendpad.
+    FuncInfo.EHPadStateMap[FirstNonPHI] = CatchLow;
+    int TryHigh = CatchLow - 1;
+    for (const BasicBlock *PredBlock : predecessors(&BB))
+      if ((PredBlock = getEHPadFromPredecessor(PredBlock)))
+        calculateExplicitCXXStateNumbers(FuncInfo, *PredBlock, CatchLow);
+    int CatchHigh = FuncInfo.getLastStateNumber();
+    addTryBlockMapEntry(FuncInfo, TryLow, TryHigh, CatchHigh, Handlers);
+    DEBUG(dbgs() << "TryLow[" << FirstTryPad->getName() << "]: " << TryLow
+                 << '\n');
+    DEBUG(dbgs() << "TryHigh[" << FirstTryPad->getName() << "]: " << TryHigh
+                 << '\n');
+    DEBUG(dbgs() << "CatchHigh[" << FirstTryPad->getName() << "]: " << CatchHigh
+                 << '\n');
+  } else if (isa<CleanupPadInst>(FirstNonPHI)) {
+    int CleanupState = addUnwindMapEntry(FuncInfo, ParentState, &BB);
+    FuncInfo.EHPadStateMap[FirstNonPHI] = CleanupState;
+    DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB "
+                 << BB.getName() << '\n');
+    for (const BasicBlock *PredBlock : predecessors(&BB))
+      if ((PredBlock = getEHPadFromPredecessor(PredBlock)))
+        calculateExplicitCXXStateNumbers(FuncInfo, *PredBlock, CleanupState);
+  } else if (isa<TerminatePadInst>(FirstNonPHI)) {
+    report_fatal_error("Not yet implemented!");
+  } else {
+    llvm_unreachable("unexpected EH Pad!");
+  }
+}
+
+static int addSEHHandler(WinEHFuncInfo &FuncInfo, int ParentState,
+                         const Function *Filter, const BasicBlock *Handler) {
+  SEHUnwindMapEntry Entry;
+  Entry.ToState = ParentState;
+  Entry.Filter = Filter;
+  Entry.Handler = Handler;
+  FuncInfo.SEHUnwindMap.push_back(Entry);
+  return FuncInfo.SEHUnwindMap.size() - 1;
+}
+
+static void calculateExplicitSEHStateNumbers(WinEHFuncInfo &FuncInfo,
+                                             const BasicBlock &BB,
+                                             int ParentState) {
+  assert(BB.isEHPad());
+  const Instruction *FirstNonPHI = BB.getFirstNonPHI();
+  // All catchpad instructions will be handled when we process their
+  // respective catchendpad instruction.
+  if (isa<CatchPadInst>(FirstNonPHI))
+    return;
+
+  if (isa<CatchEndPadInst>(FirstNonPHI)) {
+    // Extract the filter function and the __except basic block and create a
+    // state for them.
+    SmallVector<const CatchPadInst *, 1> Handlers;
+    findCatchPadsForCatchEndPad(&BB, Handlers);
+    assert(Handlers.size() == 1 &&
+           "SEH doesn't have multiple handlers per __try");
+    const CatchPadInst *CPI = Handlers.front();
+    const BasicBlock *CatchPadBB = CPI->getParent();
+    const Function *Filter =
+        cast<Function>(CPI->getArgOperand(0)->stripPointerCasts());
+    int TryState =
+        addSEHHandler(FuncInfo, ParentState, Filter, CPI->getNormalDest());
+
+    // Everything in the __try block uses TryState as its parent state.
+    FuncInfo.EHPadStateMap[CPI] = TryState;
+    DEBUG(dbgs() << "Assigning state #" << TryState << " to BB "
+                 << CatchPadBB->getName() << '\n');
+    for (const BasicBlock *PredBlock : predecessors(CatchPadBB))
+      if ((PredBlock = getEHPadFromPredecessor(PredBlock)))
+        calculateExplicitSEHStateNumbers(FuncInfo, *PredBlock, TryState);
+
+    // Everything in the __except block unwinds to ParentState, just like code
+    // outside the __try.
+    FuncInfo.EHPadStateMap[FirstNonPHI] = ParentState;
+    DEBUG(dbgs() << "Assigning state #" << ParentState << " to BB "
+                 << BB.getName() << '\n');
+    for (const BasicBlock *PredBlock : predecessors(&BB))
+      if ((PredBlock = getEHPadFromPredecessor(PredBlock)))
+        calculateExplicitSEHStateNumbers(FuncInfo, *PredBlock, ParentState);
+  } else if (isa<CleanupPadInst>(FirstNonPHI)) {
+    int CleanupState =
+        addSEHHandler(FuncInfo, ParentState, /*Filter=*/nullptr, &BB);
+    FuncInfo.EHPadStateMap[FirstNonPHI] = CleanupState;
+    DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB "
+                 << BB.getName() << '\n');
+    for (const BasicBlock *PredBlock : predecessors(&BB))
+      if ((PredBlock = getEHPadFromPredecessor(PredBlock)))
+        calculateExplicitSEHStateNumbers(FuncInfo, *PredBlock, CleanupState);
+  } else if (isa<CleanupEndPadInst>(FirstNonPHI)) {
+    // Anything unwinding through CleanupEndPadInst is in ParentState.
+    FuncInfo.EHPadStateMap[FirstNonPHI] = ParentState;
+    DEBUG(dbgs() << "Assigning state #" << ParentState << " to BB "
+                 << BB.getName() << '\n');
+    for (const BasicBlock *PredBlock : predecessors(&BB))
+      if ((PredBlock = getEHPadFromPredecessor(PredBlock)))
+        calculateExplicitSEHStateNumbers(FuncInfo, *PredBlock, ParentState);
+  } else if (isa<TerminatePadInst>(FirstNonPHI)) {
+    report_fatal_error("Not yet implemented!");
+  } else {
+    llvm_unreachable("unexpected EH Pad!");
+  }
+}
+
+/// Check if the EH Pad unwinds to caller.  Cleanups are a little bit of a
+/// special case because we have to look at the cleanupret instruction that uses
+/// the cleanuppad.
+static bool doesEHPadUnwindToCaller(const Instruction *EHPad) {
+  auto *CPI = dyn_cast<CleanupPadInst>(EHPad);
+  if (!CPI)
+    return EHPad->mayThrow();
+
+  // This cleanup does not return or unwind, so we say it unwinds to caller.
+  if (CPI->use_empty())
+    return true;
+
+  const Instruction *User = CPI->user_back();
+  if (auto *CRI = dyn_cast<CleanupReturnInst>(User))
+    return CRI->unwindsToCaller();
+  return cast<CleanupEndPadInst>(User)->unwindsToCaller();
+}
+
+void llvm::calculateSEHStateNumbers(const Function *ParentFn,
+                                    WinEHFuncInfo &FuncInfo) {
+  // Don't compute state numbers twice.
+  if (!FuncInfo.SEHUnwindMap.empty())
+    return;
+
+  for (const BasicBlock &BB : *ParentFn) {
+    if (!BB.isEHPad() || !doesEHPadUnwindToCaller(BB.getFirstNonPHI()))
+      continue;
+    calculateExplicitSEHStateNumbers(FuncInfo, BB, -1);
+  }
+}
+
+void llvm::calculateWinCXXEHStateNumbers(const Function *ParentFn,
+                                         WinEHFuncInfo &FuncInfo) {
+  // Return if it's already been done.
+  if (!FuncInfo.EHPadStateMap.empty())
+    return;
+
+  bool IsExplicit = false;
+  for (const BasicBlock &BB : *ParentFn) {
+    if (!BB.isEHPad())
+      continue;
+    const Instruction *FirstNonPHI = BB.getFirstNonPHI();
+    // Skip cleanupendpads; they are exits, not entries.
+    if (isa<CleanupEndPadInst>(FirstNonPHI))
+      continue;
+    if (!doesEHPadUnwindToCaller(FirstNonPHI))
+      continue;
+    calculateExplicitCXXStateNumbers(FuncInfo, BB, -1);
+    IsExplicit = true;
+  }
+
+  if (IsExplicit)
+    return;
+
+  WinEHNumbering Num(FuncInfo);
+  Num.findActionRootLPads(*ParentFn);
+  // The VisitedHandlers list is used by both findActionRootLPads and
+  // calculateStateNumbers, but both functions need to visit all handlers.
+  Num.VisitedHandlers.clear();
+  Num.calculateStateNumbers(*ParentFn);
+  // Pop everything on the handler stack.
+  // It may be necessary to call this more than once because a handler can
+  // be pushed on the stack as a result of clearing the stack.
+  while (!Num.HandlerStack.empty())
+    Num.processCallSite(None, ImmutableCallSite());
+}
+
+void WinEHPrepare::colorFunclets(Function &F,
+                                 SmallVectorImpl<BasicBlock *> &EntryBlocks) {
+  SmallVector<std::pair<BasicBlock *, BasicBlock *>, 16> Worklist;
+  BasicBlock *EntryBlock = &F.getEntryBlock();
+
+  // Build up the color map, which maps each block to its set of 'colors'.
+  // For any block B, the "colors" of B are the set of funclets F (possibly
+  // including a root "funclet" representing the main function), such that
+  // F will need to directly contain B or a copy of B (where the term "directly
+  // contain" is used to distinguish from being "transitively contained" in
+  // a nested funclet).
+  // Use a CFG walk driven by a worklist of (block, color) pairs.  The "color"
+  // sets attached during this processing to a block which is the entry of some
+  // funclet F is actually the set of F's parents -- i.e. the union of colors
+  // of all predecessors of F's entry.  For all other blocks, the color sets
+  // are as defined above.  A post-pass fixes up the block color map to reflect
+  // the same sense of "color" for funclet entries as for other blocks.
+
+  Worklist.push_back({EntryBlock, EntryBlock});
+
+  while (!Worklist.empty()) {
+    BasicBlock *Visiting;
+    BasicBlock *Color;
+    std::tie(Visiting, Color) = Worklist.pop_back_val();
+    Instruction *VisitingHead = Visiting->getFirstNonPHI();
+    if (VisitingHead->isEHPad() && !isa<CatchEndPadInst>(VisitingHead) &&
+        !isa<CleanupEndPadInst>(VisitingHead)) {
+      // Mark this as a funclet head as a member of itself.
+      FuncletBlocks[Visiting].insert(Visiting);
+      // Queue exits with the parent color.
+      for (User *Exit : VisitingHead->users()) {
+        for (BasicBlock *Succ :
+             successors(cast<Instruction>(Exit)->getParent())) {
+          if (BlockColors[Succ].insert(Color).second) {
+            Worklist.push_back({Succ, Color});
+          }
+        }
+      }
+      // Handle CatchPad specially since its successors need different colors.
+      if (CatchPadInst *CatchPad = dyn_cast<CatchPadInst>(VisitingHead)) {
+        // Visit the normal successor with the color of the new EH pad, and
+        // visit the unwind successor with the color of the parent.
+        BasicBlock *NormalSucc = CatchPad->getNormalDest();
+        if (BlockColors[NormalSucc].insert(Visiting).second) {
+          Worklist.push_back({NormalSucc, Visiting});
+        }
+        BasicBlock *UnwindSucc = CatchPad->getUnwindDest();
+        if (BlockColors[UnwindSucc].insert(Color).second) {
+          Worklist.push_back({UnwindSucc, Color});
+        }
+        continue;
+      }
+      // Switch color to the current node, except for terminate pads which
+      // have no bodies and only unwind successors and so need their successors
+      // visited with the color of the parent.
+      if (!isa<TerminatePadInst>(VisitingHead))
+        Color = Visiting;
+    } else {
+      // Note that this is a member of the given color.
+      FuncletBlocks[Color].insert(Visiting);
+    }
+
+    TerminatorInst *Terminator = Visiting->getTerminator();
+    if (isa<CleanupReturnInst>(Terminator) ||
+        isa<CatchReturnInst>(Terminator) ||
+        isa<CleanupEndPadInst>(Terminator)) {
+      // These blocks' successors have already been queued with the parent
+      // color.
+      continue;
+    }
+    for (BasicBlock *Succ : successors(Visiting)) {
+      if (isa<CatchEndPadInst>(Succ->getFirstNonPHI())) {
+        // The catchendpad needs to be visited with the parent's color, not
+        // the current color.  This will happen in the code above that visits
+        // any catchpad unwind successor with the parent color, so we can
+        // safely skip this successor here.
+        continue;
+      }
+      if (BlockColors[Succ].insert(Color).second) {
+        Worklist.push_back({Succ, Color});
+      }
+    }
+  }
+
+  // The processing above actually accumulated the parent set for this
+  // funclet into the color set for its entry; use the parent set to
+  // populate the children map, and reset the color set to include just
+  // the funclet itself (no instruction can target a funclet entry except on
+  // that transitions to the child funclet).
+  for (BasicBlock *FuncletEntry : EntryBlocks) {
+    std::set<BasicBlock *> &ColorMapItem = BlockColors[FuncletEntry];
+    for (BasicBlock *Parent : ColorMapItem)
+      FuncletChildren[Parent].insert(FuncletEntry);
+    ColorMapItem.clear();
+    ColorMapItem.insert(FuncletEntry);
+  }
+}
+
+bool WinEHPrepare::prepareExplicitEH(
+    Function &F, SmallVectorImpl<BasicBlock *> &EntryBlocks) {
+  // Remove unreachable blocks.  It is not valuable to assign them a color and
+  // their existence can trick us into thinking values are alive when they are
+  // not.
+  removeUnreachableBlocks(F);
+
+  // Determine which blocks are reachable from which funclet entries.
+  colorFunclets(F, EntryBlocks);
+
+  // Strip PHI nodes off of EH pads.
+  SmallVector<PHINode *, 16> PHINodes;
+  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE;) {
+    BasicBlock *BB = FI++;
+    if (!BB->isEHPad())
+      continue;
+    for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) {
+      Instruction *I = BI++;
+      auto *PN = dyn_cast<PHINode>(I);
+      // Stop at the first non-PHI.
+      if (!PN)
+        break;
+
+      AllocaInst *SpillSlot = insertPHILoads(PN, F);
+      if (SpillSlot)
+        insertPHIStores(PN, SpillSlot);
+
+      PHINodes.push_back(PN);
+    }
+  }
+
+  for (auto *PN : PHINodes) {
+    // There may be lingering uses on other EH PHIs being removed
+    PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
+    PN->eraseFromParent();
+  }
+
+  // Turn all inter-funclet uses of a Value into loads and stores.
+  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE;) {
+    BasicBlock *BB = FI++;
+    std::set<BasicBlock *> &ColorsForBB = BlockColors[BB];
+    for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) {
+      Instruction *I = BI++;
+      // Funclets are permitted to use static allocas.
+      if (auto *AI = dyn_cast<AllocaInst>(I))
+        if (AI->isStaticAlloca())
+          continue;
+
+      demoteNonlocalUses(I, ColorsForBB, F);
+    }
+  }
+  // Also demote function parameters used in funclets.
+  std::set<BasicBlock *> &ColorsForEntry = BlockColors[&F.getEntryBlock()];
+  for (Argument &Arg : F.args())
+    demoteNonlocalUses(&Arg, ColorsForEntry, F);
+
+  // We need to clone all blocks which belong to multiple funclets.  Values are
+  // remapped throughout the funclet to propogate both the new instructions
+  // *and* the new basic blocks themselves.
+  for (BasicBlock *FuncletPadBB : EntryBlocks) {
+    std::set<BasicBlock *> &BlocksInFunclet = FuncletBlocks[FuncletPadBB];
+
+    std::map<BasicBlock *, BasicBlock *> Orig2Clone;
+    ValueToValueMapTy VMap;
+    for (BasicBlock *BB : BlocksInFunclet) {
+      std::set<BasicBlock *> &ColorsForBB = BlockColors[BB];
+      // We don't need to do anything if the block is monochromatic.
+      size_t NumColorsForBB = ColorsForBB.size();
+      if (NumColorsForBB == 1)
+        continue;
+
+      // Create a new basic block and copy instructions into it!
+      BasicBlock *CBB =
+          CloneBasicBlock(BB, VMap, Twine(".for.", FuncletPadBB->getName()));
+      // Insert the clone immediately after the original to ensure determinism
+      // and to keep the same relative ordering of any funclet's blocks.
+      CBB->insertInto(&F, BB->getNextNode());
+
+      // Add basic block mapping.
+      VMap[BB] = CBB;
+
+      // Record delta operations that we need to perform to our color mappings.
+      Orig2Clone[BB] = CBB;
+    }
+
+    // Update our color mappings to reflect that one block has lost a color and
+    // another has gained a color.
+    for (auto &BBMapping : Orig2Clone) {
+      BasicBlock *OldBlock = BBMapping.first;
+      BasicBlock *NewBlock = BBMapping.second;
+
+      BlocksInFunclet.insert(NewBlock);
+      BlockColors[NewBlock].insert(FuncletPadBB);
+
+      BlocksInFunclet.erase(OldBlock);
+      BlockColors[OldBlock].erase(FuncletPadBB);
+    }
+
+    // Loop over all of the instructions in the function, fixing up operand
+    // references as we go.  This uses VMap to do all the hard work.
+    for (BasicBlock *BB : BlocksInFunclet)
+      // Loop over all instructions, fixing each one as we find it...
+      for (Instruction &I : *BB)
+        RemapInstruction(&I, VMap, RF_IgnoreMissingEntries);
+  }
+
+  // Remove implausible terminators and replace them with UnreachableInst.
+  for (auto &Funclet : FuncletBlocks) {
+    BasicBlock *FuncletPadBB = Funclet.first;
+    std::set<BasicBlock *> &BlocksInFunclet = Funclet.second;
+    Instruction *FirstNonPHI = FuncletPadBB->getFirstNonPHI();
+    auto *CatchPad = dyn_cast<CatchPadInst>(FirstNonPHI);
+    auto *CleanupPad = dyn_cast<CleanupPadInst>(FirstNonPHI);
+
+    for (BasicBlock *BB : BlocksInFunclet) {
+      TerminatorInst *TI = BB->getTerminator();
+      // CatchPadInst and CleanupPadInst can't transfer control to a ReturnInst.
+      bool IsUnreachableRet = isa<ReturnInst>(TI) && (CatchPad || CleanupPad);
+      // The token consumed by a CatchReturnInst must match the funclet token.
+      bool IsUnreachableCatchret = false;
+      if (auto *CRI = dyn_cast<CatchReturnInst>(TI))
+        IsUnreachableCatchret = CRI->getCatchPad() != CatchPad;
+      // The token consumed by a CleanupReturnInst must match the funclet token.
+      bool IsUnreachableCleanupret = false;
+      if (auto *CRI = dyn_cast<CleanupReturnInst>(TI))
+        IsUnreachableCleanupret = CRI->getCleanupPad() != CleanupPad;
+      // The token consumed by a CleanupEndPadInst must match the funclet token.
+      bool IsUnreachableCleanupendpad = false;
+      if (auto *CEPI = dyn_cast<CleanupEndPadInst>(TI))
+        IsUnreachableCleanupendpad = CEPI->getCleanupPad() != CleanupPad;
+      if (IsUnreachableRet || IsUnreachableCatchret ||
+          IsUnreachableCleanupret || IsUnreachableCleanupendpad) {
+        new UnreachableInst(BB->getContext(), TI);
+        TI->eraseFromParent();
+      }
+    }
+  }
+
+  // Clean-up some of the mess we made by removing useles PHI nodes, trivial
+  // branches, etc.
+  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE;) {
+    BasicBlock *BB = FI++;
+    SimplifyInstructionsInBlock(BB);
+    ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true);
+    MergeBlockIntoPredecessor(BB);
+  }
+
+  // We might have some unreachable blocks after cleaning up some impossible
+  // control flow.
+  removeUnreachableBlocks(F);
+
+  // Recolor the CFG to verify that all is well.
+  for (BasicBlock &BB : F) {
+    size_t NumColors = BlockColors[&BB].size();
+    assert(NumColors == 1 && "Expected monochromatic BB!");
+    if (NumColors == 0)
+      report_fatal_error("Uncolored BB!");
+    if (NumColors > 1)
+      report_fatal_error("Multicolor BB!");
+    bool EHPadHasPHI = BB.isEHPad() && isa<PHINode>(BB.begin());
+    assert(!EHPadHasPHI && "EH Pad still has a PHI!");
+    if (EHPadHasPHI)
+      report_fatal_error("EH Pad still has a PHI!");
+  }
+
+  BlockColors.clear();
+  FuncletBlocks.clear();
+  FuncletChildren.clear();
+
+  return true;
+}
+
+// TODO: Share loads when one use dominates another, or when a catchpad exit
+// dominates uses (needs dominators).
+AllocaInst *WinEHPrepare::insertPHILoads(PHINode *PN, Function &F) {
+  BasicBlock *PHIBlock = PN->getParent();
+  AllocaInst *SpillSlot = nullptr;
+
+  if (isa<CleanupPadInst>(PHIBlock->getFirstNonPHI())) {
+    // Insert a load in place of the PHI and replace all uses.
+    SpillSlot = new AllocaInst(PN->getType(), nullptr,
+                               Twine(PN->getName(), ".wineh.spillslot"),
+                               F.getEntryBlock().begin());
+    Value *V = new LoadInst(SpillSlot, Twine(PN->getName(), ".wineh.reload"),
+                            PHIBlock->getFirstInsertionPt());
+    PN->replaceAllUsesWith(V);
+    return SpillSlot;
+  }
+
+  DenseMap<BasicBlock *, Value *> Loads;
+  for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
+       UI != UE;) {
+    Use &U = *UI++;
+    auto *UsingInst = cast<Instruction>(U.getUser());
+    BasicBlock *UsingBB = UsingInst->getParent();
+    if (UsingBB->isEHPad()) {
+      // Use is on an EH pad phi.  Leave it alone; we'll insert loads and
+      // stores for it separately.
+      assert(isa<PHINode>(UsingInst));
+      continue;
+    }
+    replaceUseWithLoad(PN, U, SpillSlot, Loads, F);
+  }
+  return SpillSlot;
+}
+
+// TODO: improve store placement.  Inserting at def is probably good, but need
+// to be careful not to introduce interfering stores (needs liveness analysis).
+// TODO: identify related phi nodes that can share spill slots, and share them
+// (also needs liveness).
+void WinEHPrepare::insertPHIStores(PHINode *OriginalPHI,
+                                   AllocaInst *SpillSlot) {
+  // Use a worklist of (Block, Value) pairs -- the given Value needs to be
+  // stored to the spill slot by the end of the given Block.
+  SmallVector<std::pair<BasicBlock *, Value *>, 4> Worklist;
+
+  Worklist.push_back({OriginalPHI->getParent(), OriginalPHI});
+
+  while (!Worklist.empty()) {
+    BasicBlock *EHBlock;
+    Value *InVal;
+    std::tie(EHBlock, InVal) = Worklist.pop_back_val();
+
+    PHINode *PN = dyn_cast<PHINode>(InVal);
+    if (PN && PN->getParent() == EHBlock) {
+      // The value is defined by another PHI we need to remove, with no room to
+      // insert a store after the PHI, so each predecessor needs to store its
+      // incoming value.
+      for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) {
+        Value *PredVal = PN->getIncomingValue(i);
+
+        // Undef can safely be skipped.
+        if (isa<UndefValue>(PredVal))
+          continue;
+
+        insertPHIStore(PN->getIncomingBlock(i), PredVal, SpillSlot, Worklist);
+      }
+    } else {
+      // We need to store InVal, which dominates EHBlock, but can't put a store
+      // in EHBlock, so need to put stores in each predecessor.
+      for (BasicBlock *PredBlock : predecessors(EHBlock)) {
+        insertPHIStore(PredBlock, InVal, SpillSlot, Worklist);
+      }
+    }
+  }
+}
+
+void WinEHPrepare::insertPHIStore(
+    BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot,
+    SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist) {
+
+  if (PredBlock->isEHPad() &&
+      !isa<CleanupPadInst>(PredBlock->getFirstNonPHI())) {
+    // Pred is unsplittable, so we need to queue it on the worklist.
+    Worklist.push_back({PredBlock, PredVal});
+    return;
+  }
+
+  // Otherwise, insert the store at the end of the basic block.
+  new StoreInst(PredVal, SpillSlot, PredBlock->getTerminator());
+}
+
+// TODO: Share loads for same-funclet uses (requires dominators if funclets
+// aren't properly nested).
+void WinEHPrepare::demoteNonlocalUses(Value *V,
+                                      std::set<BasicBlock *> &ColorsForBB,
+                                      Function &F) {
+  // Tokens can only be used non-locally due to control flow involving
+  // unreachable edges.  Don't try to demote the token usage, we'll simply
+  // delete the cloned user later.
+  if (isa<CatchPadInst>(V) || isa<CleanupPadInst>(V))
+    return;
+
+  DenseMap<BasicBlock *, Value *> Loads;
+  AllocaInst *SpillSlot = nullptr;
+  for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); UI != UE;) {
+    Use &U = *UI++;
+    auto *UsingInst = cast<Instruction>(U.getUser());
+    BasicBlock *UsingBB = UsingInst->getParent();
+
+    // Is the Use inside a block which is colored the same as the Def?
+    // If so, we don't need to escape the Def because we will clone
+    // ourselves our own private copy.
+    std::set<BasicBlock *> &ColorsForUsingBB = BlockColors[UsingBB];
+    if (ColorsForUsingBB == ColorsForBB)
+      continue;
+
+    replaceUseWithLoad(V, U, SpillSlot, Loads, F);
+  }
+  if (SpillSlot) {
+    // Insert stores of the computed value into the stack slot.
+    // We have to be careful if I is an invoke instruction,
+    // because we can't insert the store AFTER the terminator instruction.
+    BasicBlock::iterator InsertPt;
+    if (isa<Argument>(V)) {
+      InsertPt = F.getEntryBlock().getTerminator();
+    } else if (isa<TerminatorInst>(V)) {
+      auto *II = cast<InvokeInst>(V);
+      // We cannot demote invoke instructions to the stack if their normal
+      // edge is critical. Therefore, split the critical edge and create a
+      // basic block into which the store can be inserted.
+      if (!II->getNormalDest()->getSinglePredecessor()) {
+        unsigned SuccNum =
+            GetSuccessorNumber(II->getParent(), II->getNormalDest());
+        assert(isCriticalEdge(II, SuccNum) && "Expected a critical edge!");
+        BasicBlock *NewBlock = SplitCriticalEdge(II, SuccNum);
+        assert(NewBlock && "Unable to split critical edge.");
+        // Update the color mapping for the newly split edge.
+        std::set<BasicBlock *> &ColorsForUsingBB = BlockColors[II->getParent()];
+        BlockColors[NewBlock] = ColorsForUsingBB;
+        for (BasicBlock *FuncletPad : ColorsForUsingBB)
+          FuncletBlocks[FuncletPad].insert(NewBlock);
+      }
+      InsertPt = II->getNormalDest()->getFirstInsertionPt();
+    } else {
+      InsertPt = cast<Instruction>(V);
+      ++InsertPt;
+      // Don't insert before PHI nodes or EH pad instrs.
+      for (; isa<PHINode>(InsertPt) || InsertPt->isEHPad(); ++InsertPt)
+        ;
+    }
+    new StoreInst(V, SpillSlot, InsertPt);
+  }
+}
+
+void WinEHPrepare::replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot,
+                                      DenseMap<BasicBlock *, Value *> &Loads,
+                                      Function &F) {
+  // Lazilly create the spill slot.
+  if (!SpillSlot)
+    SpillSlot = new AllocaInst(V->getType(), nullptr,
+                               Twine(V->getName(), ".wineh.spillslot"),
+                               F.getEntryBlock().begin());
+
+  auto *UsingInst = cast<Instruction>(U.getUser());
+  if (auto *UsingPHI = dyn_cast<PHINode>(UsingInst)) {
+    // If this is a PHI node, we can't insert a load of the value before
+    // the use.  Instead insert the load in the predecessor block
+    // corresponding to the incoming value.
+    //
+    // Note that if there are multiple edges from a basic block to this
+    // PHI node that we cannot have multiple loads.  The problem is that
+    // the resulting PHI node will have multiple values (from each load)
+    // coming in from the same block, which is illegal SSA form.
+    // For this reason, we keep track of and reuse loads we insert.
+    BasicBlock *IncomingBlock = UsingPHI->getIncomingBlock(U);
+    if (auto *CatchRet =
+            dyn_cast<CatchReturnInst>(IncomingBlock->getTerminator())) {
+      // Putting a load above a catchret and use on the phi would still leave
+      // a cross-funclet def/use.  We need to split the edge, change the
+      // catchret to target the new block, and put the load there.
+      BasicBlock *PHIBlock = UsingInst->getParent();
+      BasicBlock *NewBlock = SplitEdge(IncomingBlock, PHIBlock);
+      // SplitEdge gives us:
+      //   IncomingBlock:
+      //     ...
+      //     br label %NewBlock
+      //   NewBlock:
+      //     catchret label %PHIBlock
+      // But we need:
+      //   IncomingBlock:
+      //     ...
+      //     catchret label %NewBlock
+      //   NewBlock:
+      //     br label %PHIBlock
+      // So move the terminators to each others' blocks and swap their
+      // successors.
+      BranchInst *Goto = cast<BranchInst>(IncomingBlock->getTerminator());
+      Goto->removeFromParent();
+      CatchRet->removeFromParent();
+      IncomingBlock->getInstList().push_back(CatchRet);
+      NewBlock->getInstList().push_back(Goto);
+      Goto->setSuccessor(0, PHIBlock);
+      CatchRet->setSuccessor(NewBlock);
+      // Update the color mapping for the newly split edge.
+      std::set<BasicBlock *> &ColorsForPHIBlock = BlockColors[PHIBlock];
+      BlockColors[NewBlock] = ColorsForPHIBlock;
+      for (BasicBlock *FuncletPad : ColorsForPHIBlock)
+        FuncletBlocks[FuncletPad].insert(NewBlock);
+      // Treat the new block as incoming for load insertion.
+      IncomingBlock = NewBlock;
+    }
+    Value *&Load = Loads[IncomingBlock];
+    // Insert the load into the predecessor block
+    if (!Load)
+      Load = new LoadInst(SpillSlot, Twine(V->getName(), ".wineh.reload"),
+                          /*Volatile=*/false, IncomingBlock->getTerminator());
+
+    U.set(Load);
+  } else {
+    // Reload right before the old use.
+    auto *Load = new LoadInst(SpillSlot, Twine(V->getName(), ".wineh.reload"),
+                              /*Volatile=*/false, UsingInst);
+    U.set(Load);
+  }
+}