MIRParser: Split the 'parseIRConstant' method into two methods. NFC.
[oota-llvm.git] / lib / CodeGen / WinEHPrepare.cpp
index 83ae82353aae06b77c98ba9687a3c361dcb44909..68384f08b7c43991b2bc3e13093fe633376a9c1d 100644 (file)
@@ -121,7 +121,15 @@ private:
                            BasicBlock *EndBB);
 
   void processSEHCatchHandler(CatchHandler *Handler, BasicBlock *StartBB);
-
+  void insertPHIStores(PHINode *OriginalPHI, AllocaInst *SpillSlot);
+  void
+  insertPHIStore(BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot,
+                 SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist);
+  AllocaInst *insertPHILoads(PHINode *PN, Function &F);
+  void replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot,
+                          DenseMap<BasicBlock *, Value *> &Loads, Function &F);
+  void demoteNonlocalUses(Value *V, std::set<BasicBlock *> &ColorsForBB,
+                          Function &F);
   bool prepareExplicitEH(Function &F);
   void numberFunclet(BasicBlock *InitialBB, BasicBlock *FuncletBB);
 
@@ -2567,14 +2575,52 @@ struct WinEHNumbering {
 };
 }
 
-void WinEHNumbering::createUnwindMapEntry(int ToState, ActionHandler *AH) {
+static int addUnwindMapEntry(WinEHFuncInfo &FuncInfo, int ToState,
+                             const Value *V) {
   WinEHUnwindMapEntry UME;
   UME.ToState = ToState;
-  if (auto *CH = dyn_cast_or_null<CleanupHandler>(AH))
-    UME.Cleanup = cast<Function>(CH->getHandlerBlockOrFunc());
-  else
-    UME.Cleanup = nullptr;
+  UME.Cleanup = V;
   FuncInfo.UnwindMap.push_back(UME);
+  return FuncInfo.getLastStateNumber();
+}
+
+static void addTryBlockMapEntry(WinEHFuncInfo &FuncInfo, int TryLow,
+                                int TryHigh, int CatchHigh,
+                                ArrayRef<const CatchPadInst *> Handlers) {
+  WinEHTryBlockMapEntry TBME;
+  TBME.TryLow = TryLow;
+  TBME.TryHigh = TryHigh;
+  TBME.CatchHigh = CatchHigh;
+  assert(TBME.TryLow <= TBME.TryHigh);
+  for (const CatchPadInst *CPI : Handlers) {
+    WinEHHandlerType HT;
+    Constant *TypeInfo = cast<Constant>(CPI->getArgOperand(0));
+    if (TypeInfo->isNullValue()) {
+      HT.Adjectives = 0x40;
+      HT.TypeDescriptor = nullptr;
+    } else {
+      auto *GV = cast<GlobalVariable>(TypeInfo->stripPointerCasts());
+      // Selectors are always pointers to GlobalVariables with 'struct' type.
+      // The struct has two fields, adjectives and a type descriptor.
+      auto *CS = cast<ConstantStruct>(GV->getInitializer());
+      HT.Adjectives =
+          cast<ConstantInt>(CS->getAggregateElement(0U))->getZExtValue();
+      HT.TypeDescriptor =
+          cast<GlobalVariable>(CS->getAggregateElement(1)->stripPointerCasts());
+    }
+    HT.Handler = CPI->getParent();
+    // FIXME: Pass CPI->getArgOperand(1).
+    HT.CatchObjRecoverIdx = -1;
+    TBME.HandlerArray.push_back(HT);
+  }
+  FuncInfo.TryBlockMap.push_back(TBME);
+}
+
+void WinEHNumbering::createUnwindMapEntry(int ToState, ActionHandler *AH) {
+  Value *V = nullptr;
+  if (auto *CH = dyn_cast_or_null<CleanupHandler>(AH))
+    V = cast<Function>(CH->getHandlerBlockOrFunc());
+  addUnwindMapEntry(FuncInfo, ToState, V);
 }
 
 void WinEHNumbering::createTryBlockMapEntry(int TryLow, int TryHigh,
@@ -2830,7 +2876,7 @@ void WinEHNumbering::calculateStateNumbers(const Function &F) {
       continue;
     processCallSite(ActionList, II);
     ActionList.clear();
-    FuncInfo.LandingPadStateMap[LPI] = currentEHNumber();
+    FuncInfo.EHPadStateMap[LPI] = currentEHNumber();
     DEBUG(dbgs() << "Assigning state " << currentEHNumber()
                   << " to landing pad at " << LPI->getParent()->getName()
                   << '\n');
@@ -2894,10 +2940,114 @@ void WinEHNumbering::findActionRootLPads(const Function &F) {
   }
 }
 
+static const BasicBlock *getSingleCatchPadPredecessor(const BasicBlock &BB) {
+  for (const BasicBlock *PredBlock : predecessors(&BB))
+    if (isa<CatchPadInst>(PredBlock->getFirstNonPHI()))
+      return PredBlock;
+  return nullptr;
+}
+
+// Given BB which ends in an unwind edge, return the EHPad that this BB belongs
+// to. If the unwind edge came from an invoke, return null.
+static const BasicBlock *getEHPadFromPredecessor(const BasicBlock *BB) {
+  const TerminatorInst *TI = BB->getTerminator();
+  if (isa<InvokeInst>(TI))
+    return nullptr;
+  if (isa<CatchPadInst>(TI) || isa<CatchEndPadInst>(TI) ||
+      isa<TerminatePadInst>(TI))
+    return BB;
+  return cast<CleanupPadInst>(cast<CleanupReturnInst>(TI)->getReturnValue())
+      ->getParent();
+}
+
+static void calculateExplicitStateNumbers(WinEHFuncInfo &FuncInfo,
+                                          const BasicBlock &BB,
+                                          int ParentState) {
+  assert(BB.isEHPad());
+  const Instruction *FirstNonPHI = BB.getFirstNonPHI();
+  // All catchpad instructions will be handled when we process their
+  // respective catchendpad instruction.
+  if (isa<CatchPadInst>(FirstNonPHI))
+    return;
+
+  if (isa<CatchEndPadInst>(FirstNonPHI)) {
+    const BasicBlock *TryPad = &BB;
+    const BasicBlock *LastTryPad = nullptr;
+    SmallVector<const CatchPadInst *, 2> Handlers;
+    do {
+      LastTryPad = TryPad;
+      TryPad = getSingleCatchPadPredecessor(*TryPad);
+      if (TryPad)
+        Handlers.push_back(cast<CatchPadInst>(TryPad->getFirstNonPHI()));
+    } while (TryPad);
+    // We've pushed these back into reverse source order.  Reverse them to get
+    // the list back into source order.
+    std::reverse(Handlers.begin(), Handlers.end());
+    int TryLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr);
+    FuncInfo.EHPadStateMap[Handlers.front()] = TryLow;
+    for (const BasicBlock *PredBlock : predecessors(LastTryPad))
+      if ((PredBlock = getEHPadFromPredecessor(PredBlock)))
+        calculateExplicitStateNumbers(FuncInfo, *PredBlock, TryLow);
+    int CatchLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr);
+    FuncInfo.EHPadStateMap[FirstNonPHI] = CatchLow;
+    int TryHigh = CatchLow - 1;
+    for (const BasicBlock *PredBlock : predecessors(&BB))
+      if ((PredBlock = getEHPadFromPredecessor(PredBlock)))
+        calculateExplicitStateNumbers(FuncInfo, *PredBlock, CatchLow);
+    int CatchHigh = FuncInfo.getLastStateNumber();
+    addTryBlockMapEntry(FuncInfo, TryLow, TryHigh, CatchHigh, Handlers);
+    DEBUG(dbgs() << "TryLow[" << LastTryPad->getName() << "]: " << TryLow
+                 << '\n');
+    DEBUG(dbgs() << "TryHigh[" << LastTryPad->getName() << "]: " << TryHigh
+                 << '\n');
+    DEBUG(dbgs() << "CatchHigh[" << LastTryPad->getName() << "]: " << CatchHigh
+                 << '\n');
+  } else if (isa<CleanupPadInst>(FirstNonPHI)) {
+    int CleanupState = addUnwindMapEntry(FuncInfo, ParentState, &BB);
+    FuncInfo.EHPadStateMap[FirstNonPHI] = CleanupState;
+    DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB "
+                 << BB.getName() << '\n');
+    for (const BasicBlock *PredBlock : predecessors(&BB))
+      if ((PredBlock = getEHPadFromPredecessor(PredBlock)))
+        calculateExplicitStateNumbers(FuncInfo, *PredBlock, CleanupState);
+  } else if (isa<TerminatePadInst>(FirstNonPHI)) {
+    report_fatal_error("Not yet implemented!");
+  } else {
+    llvm_unreachable("unexpected EH Pad!");
+  }
+}
+
 void llvm::calculateWinCXXEHStateNumbers(const Function *ParentFn,
                                          WinEHFuncInfo &FuncInfo) {
   // Return if it's already been done.
-  if (!FuncInfo.LandingPadStateMap.empty())
+  if (!FuncInfo.EHPadStateMap.empty())
+    return;
+
+  bool IsExplicit = false;
+  for (const BasicBlock &BB : *ParentFn) {
+    if (!BB.isEHPad())
+      continue;
+    // Check if the EH Pad has no exceptional successors (i.e. it unwinds to
+    // caller).  Cleanups are a little bit of a special case because their
+    // control flow cannot be determined by looking at the pad but instead by
+    // the pad's users.
+    bool HasNoSuccessors = false;
+    const Instruction *FirstNonPHI = BB.getFirstNonPHI();
+    if (FirstNonPHI->mayThrow()) {
+      HasNoSuccessors = true;
+    } else if (auto *CPI = dyn_cast<CleanupPadInst>(FirstNonPHI)) {
+      HasNoSuccessors =
+          CPI->use_empty() ||
+          cast<CleanupReturnInst>(CPI->user_back())->unwindsToCaller();
+    }
+
+    if (!HasNoSuccessors)
+      continue;
+    calculateExplicitStateNumbers(FuncInfo, BB, -1);
+    IsExplicit = true;
+  }
+
+  if (IsExplicit)
     return;
 
   WinEHNumbering Num(FuncInfo);
@@ -2951,7 +3101,6 @@ void WinEHPrepare::numberFunclet(BasicBlock *InitialBB, BasicBlock *FuncletBB) {
 }
 
 bool WinEHPrepare::prepareExplicitEH(Function &F) {
-  LLVMContext &Context = F.getContext();
   // Remove unreachable blocks.  It is not valuable to assign them a color and
   // their existence can trick us into thinking values are alive when they are
   // not.
@@ -2981,98 +3130,31 @@ bool WinEHPrepare::prepareExplicitEH(Function &F) {
       numberFunclet(CRI->getSuccessor(), EntryBlock);
   }
 
-  // Insert cleanuppads before EH blocks with PHI nodes.
+  // Strip PHI nodes off of EH pads.
+  SmallVector<PHINode *, 16> PHINodes;
   for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE;) {
     BasicBlock *BB = FI++;
-    // Skip any BBs which aren't EH pads.
     if (!BB->isEHPad())
       continue;
-    // Skip any cleanuppads, they can hold non-PHI instructions.
-    if (isa<CleanupPadInst>(BB->getFirstNonPHI()))
-      continue;
-    // Skip any EH pads without PHIs, we don't need to worry about demoting into
-    // them.
-    if (!isa<PHINode>(BB->begin()))
-      continue;
-
-    // Create our new cleanuppad BB, terminate it with a cleanupret.
-    auto *NewCleanupBB = BasicBlock::Create(
-        Context, Twine(BB->getName(), ".wineh.phibb"), &F, BB);
-    auto *CPI = CleanupPadInst::Create(Type::getVoidTy(Context), {BB}, "",
-                                       NewCleanupBB);
-    CleanupReturnInst::Create(Context, /*RetVal=*/nullptr, BB, NewCleanupBB);
-
-    // Update the funclet data structures to keep them in the loop.
-    BlockColors[NewCleanupBB].insert(NewCleanupBB);
-    FuncletBlocks[NewCleanupBB].insert(NewCleanupBB);
-
-    // Reparent PHIs from the old EH BB into the cleanuppad.
     for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) {
       Instruction *I = BI++;
       auto *PN = dyn_cast<PHINode>(I);
       // Stop at the first non-PHI.
       if (!PN)
         break;
-      PN->removeFromParent();
-      PN->insertBefore(CPI);
-    }
 
-    // Redirect predecessors from the old EH BB to the cleanuppad.
-    std::set<BasicBlock *> Preds;
-    Preds.insert(pred_begin(BB), pred_end(BB));
-    for (BasicBlock *Pred : Preds) {
-      // Don't redirect the new cleanuppad to itself!
-      if (Pred == NewCleanupBB)
-        continue;
-      TerminatorInst *TI = Pred->getTerminator();
-      for (unsigned TII = 0, TIE = TI->getNumSuccessors(); TII != TIE; ++TII) {
-        BasicBlock *Successor = TI->getSuccessor(TII);
-        if (Successor == BB)
-          TI->setSuccessor(TII, NewCleanupBB);
-      }
+      AllocaInst *SpillSlot = insertPHILoads(PN, F);
+      if (SpillSlot)
+        insertPHIStores(PN, SpillSlot);
+
+      PHINodes.push_back(PN);
     }
   }
 
-  // Get rid of polychromatic PHI nodes.
-  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE;) {
-    BasicBlock *BB = FI++;
-    std::set<BasicBlock *> &ColorsForBB = BlockColors[BB];
-    bool IsEHPad = BB->isEHPad();
-    for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) {
-      Instruction *I = BI++;
-      auto *PN = dyn_cast<PHINode>(I);
-      // Stop at the first non-PHI node.
-      if (!PN)
-        break;
-
-      // EH pads cannot be lowered with PHI nodes prefacing them.
-      if (IsEHPad) {
-        // We should have removed PHIs from all non-cleanuppad blocks.
-        if (!isa<CleanupPadInst>(BB->getFirstNonPHI()))
-          report_fatal_error("Unexpected PHI on EH Pad");
-        DemotePHIToStack(PN);
-        continue;
-      }
-
-      // See if *all* the basic blocks involved in this PHI node are in the
-      // same, lone, color.  If so, demotion is not needed.
-      bool SameColor = ColorsForBB.size() == 1;
-      if (SameColor) {
-        for (unsigned PNI = 0, PNE = PN->getNumIncomingValues(); PNI != PNE;
-             ++PNI) {
-          BasicBlock *IncomingBB = PN->getIncomingBlock(PNI);
-          std::set<BasicBlock *> &ColorsForIncomingBB = BlockColors[IncomingBB];
-          // If the colors differ, bail out early and demote.
-          if (ColorsForIncomingBB != ColorsForBB) {
-            SameColor = false;
-            break;
-          }
-        }
-      }
-
-      if (!SameColor)
-        DemotePHIToStack(PN);
-    }
+  for (auto *PN : PHINodes) {
+    // There may be lingering uses on other EH PHIs being removed
+    PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
+    PN->eraseFromParent();
   }
 
   // Turn all inter-funclet uses of a Value into loads and stores.
@@ -3086,93 +3168,13 @@ bool WinEHPrepare::prepareExplicitEH(Function &F) {
         if (AI->isStaticAlloca())
           continue;
 
-      // FIXME: Our spill-placement algorithm is incredibly naive.  We should
-      // try to sink+hoist as much as possible to avoid redundant stores and reloads.
-      DenseMap<BasicBlock *, Value *> Loads;
-      AllocaInst *SpillSlot = nullptr;
-      for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
-           UI != UE;) {
-        Use &U = *UI++;
-        auto *UsingInst = cast<Instruction>(U.getUser());
-        BasicBlock *UsingBB = UsingInst->getParent();
-
-        // Is the Use inside a block which is colored with a subset of the Def?
-        // If so, we don't need to escape the Def because we will clone
-        // ourselves our own private copy.
-        std::set<BasicBlock *> &ColorsForUsingBB = BlockColors[UsingBB];
-        if (std::includes(ColorsForBB.begin(), ColorsForBB.end(),
-                          ColorsForUsingBB.begin(), ColorsForUsingBB.end()))
-          continue;
-
-        // Lazilly create the spill slot.  We spill immediately after the value
-        // in the BasicBlock.
-        // FIXME: This can be improved to spill at the block exit points.
-        if (!SpillSlot)
-          SpillSlot = new AllocaInst(I->getType(), nullptr,
-                                     Twine(I->getName(), ".wineh.spillslot"),
-                                     EntryBlock->begin());
-
-        if (auto *PN = dyn_cast<PHINode>(UsingInst)) {
-          // If this is a PHI node, we can't insert a load of the value before
-          // the use.  Instead insert the load in the predecessor block
-          // corresponding to the incoming value.
-          //
-          // Note that if there are multiple edges from a basic block to this
-          // PHI node that we cannot have multiple loads.  The problem is that
-          // the resulting PHI node will have multiple values (from each load)
-          // coming in from the same block, which is illegal SSA form.
-          // For this reason, we keep track of and reuse loads we insert.
-          BasicBlock *IncomingBlock = PN->getIncomingBlock(U);
-          Value *&V = Loads[IncomingBlock];
-          // Insert the load into the predecessor block
-          if (!V)
-            V = new LoadInst(SpillSlot, Twine(I->getName(), ".wineh.reload"),
-                             /*Volatile=*/false,
-                             IncomingBlock->getTerminator());
-          U.set(V);
-        } else {
-          // Reload right before the old use.
-          // FIXME: This can be improved to reload at a block entry point.
-          Value *V =
-              new LoadInst(SpillSlot, Twine(I->getName(), ".wineh.reload"),
-                           /*Volatile=*/false, UsingInst);
-          U.set(V);
-        }
-      }
-      if (SpillSlot) {
-        // Insert stores of the computed value into the stack slot.
-        // We have to be careful if I is an invoke instruction,
-        // because we can't insert the store AFTER the terminator instruction.
-        BasicBlock::iterator InsertPt;
-        if (!isa<TerminatorInst>(I)) {
-          InsertPt = I;
-          ++InsertPt;
-          // Don't insert before PHI nodes or EH pad instrs.
-          for (; isa<PHINode>(InsertPt) || InsertPt->isEHPad(); ++InsertPt)
-            ;
-        } else {
-          auto *II = cast<InvokeInst>(I);
-          // We cannot demote invoke instructions to the stack if their normal
-          // edge is critical. Therefore, split the critical edge and create a
-          // basic block into which the store can be inserted.
-          if (!II->getNormalDest()->getSinglePredecessor()) {
-            unsigned SuccNum = GetSuccessorNumber(BB, II->getNormalDest());
-            assert(isCriticalEdge(II, SuccNum) && "Expected a critical edge!");
-            BasicBlock *NewBlock = SplitCriticalEdge(II, SuccNum);
-            assert(NewBlock && "Unable to split critical edge.");
-            // Update the color mapping for the newly split edge.
-            std::set<BasicBlock *> &ColorsForUsingBB =
-                BlockColors[II->getParent()];
-            BlockColors[NewBlock] = ColorsForUsingBB;
-            for (BasicBlock *FuncletPad : ColorsForUsingBB)
-              FuncletBlocks[FuncletPad].insert(NewBlock);
-          }
-          InsertPt = II->getNormalDest()->getFirstInsertionPt();
-        }
-        new StoreInst(I, SpillSlot, InsertPt);
-      }
+      demoteNonlocalUses(I, ColorsForBB, F);
     }
   }
+  // Also demote function parameters used in funclets.
+  std::set<BasicBlock *> &ColorsForEntry = BlockColors[&F.getEntryBlock()];
+  for (Argument &Arg : F.args())
+    demoteNonlocalUses(&Arg, ColorsForEntry, F);
 
   // We need to clone all blocks which belong to multiple funclets.  Values are
   // remapped throughout the funclet to propogate both the new instructions
@@ -3225,6 +3227,33 @@ bool WinEHPrepare::prepareExplicitEH(Function &F) {
         RemapInstruction(&I, VMap, RF_IgnoreMissingEntries);
   }
 
+  // Remove implausible terminators and replace them with UnreachableInst.
+  for (auto &Funclet : FuncletBlocks) {
+    BasicBlock *FuncletPadBB = Funclet.first;
+    std::set<BasicBlock *> &BlocksInFunclet = Funclet.second;
+    Instruction *FirstNonPHI = FuncletPadBB->getFirstNonPHI();
+    auto *CatchPad = dyn_cast<CatchPadInst>(FirstNonPHI);
+    auto *CleanupPad = dyn_cast<CleanupPadInst>(FirstNonPHI);
+
+    for (BasicBlock *BB : BlocksInFunclet) {
+      TerminatorInst *TI = BB->getTerminator();
+      // CatchPadInst and CleanupPadInst can't transfer control to a ReturnInst.
+      bool IsUnreachableRet = isa<ReturnInst>(TI) && (CatchPad || CleanupPad);
+      // The token consumed by a CatchReturnInst must match the funclet token.
+      bool IsUnreachableCatchret = false;
+      if (auto *CRI = dyn_cast<CatchReturnInst>(TI))
+        IsUnreachableCatchret = CRI->getReturnValue() != CatchPad;
+      // The token consumed by a CleanupPadInst must match the funclet token.
+      bool IsUnreachableCleanupret = false;
+      if (auto *CRI = dyn_cast<CleanupReturnInst>(TI))
+        IsUnreachableCleanupret = CRI->getReturnValue() != CleanupPad;
+      if (IsUnreachableRet || IsUnreachableCatchret || IsUnreachableCleanupret) {
+        new UnreachableInst(BB->getContext(), TI);
+        TI->eraseFromParent();
+      }
+    }
+  }
+
   // Clean-up some of the mess we made by removing useles PHI nodes, trivial
   // branches, etc.
   for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE;) {
@@ -3234,9 +3263,6 @@ bool WinEHPrepare::prepareExplicitEH(Function &F) {
     MergeBlockIntoPredecessor(BB);
   }
 
-  // TODO: Do something about cleanupblocks which branch to implausible
-  // cleanuprets.
-
   // We might have some unreachable blocks after cleaning up some impossible
   // control flow.
   removeUnreachableBlocks(F);
@@ -3257,5 +3283,232 @@ bool WinEHPrepare::prepareExplicitEH(Function &F) {
 
   BlockColors.clear();
   FuncletBlocks.clear();
+
   return true;
 }
+
+// TODO: Share loads when one use dominates another, or when a catchpad exit
+// dominates uses (needs dominators).
+AllocaInst *WinEHPrepare::insertPHILoads(PHINode *PN, Function &F) {
+  BasicBlock *PHIBlock = PN->getParent();
+  AllocaInst *SpillSlot = nullptr;
+
+  if (isa<CleanupPadInst>(PHIBlock->getFirstNonPHI())) {
+    // Insert a load in place of the PHI and replace all uses.
+    SpillSlot = new AllocaInst(PN->getType(), nullptr,
+                               Twine(PN->getName(), ".wineh.spillslot"),
+                               F.getEntryBlock().begin());
+    Value *V = new LoadInst(SpillSlot, Twine(PN->getName(), ".wineh.reload"),
+                            PHIBlock->getFirstInsertionPt());
+    PN->replaceAllUsesWith(V);
+    return SpillSlot;
+  }
+
+  DenseMap<BasicBlock *, Value *> Loads;
+  for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
+       UI != UE;) {
+    Use &U = *UI++;
+    auto *UsingInst = cast<Instruction>(U.getUser());
+    BasicBlock *UsingBB = UsingInst->getParent();
+    if (UsingBB->isEHPad()) {
+      // Use is on an EH pad phi.  Leave it alone; we'll insert loads and
+      // stores for it separately.
+      assert(isa<PHINode>(UsingInst));
+      continue;
+    }
+    replaceUseWithLoad(PN, U, SpillSlot, Loads, F);
+  }
+  return SpillSlot;
+}
+
+// TODO: improve store placement.  Inserting at def is probably good, but need
+// to be careful not to introduce interfering stores (needs liveness analysis).
+// TODO: identify related phi nodes that can share spill slots, and share them
+// (also needs liveness).
+void WinEHPrepare::insertPHIStores(PHINode *OriginalPHI,
+                                   AllocaInst *SpillSlot) {
+  // Use a worklist of (Block, Value) pairs -- the given Value needs to be
+  // stored to the spill slot by the end of the given Block.
+  SmallVector<std::pair<BasicBlock *, Value *>, 4> Worklist;
+
+  Worklist.push_back({OriginalPHI->getParent(), OriginalPHI});
+
+  while (!Worklist.empty()) {
+    BasicBlock *EHBlock;
+    Value *InVal;
+    std::tie(EHBlock, InVal) = Worklist.pop_back_val();
+
+    PHINode *PN = dyn_cast<PHINode>(InVal);
+    if (PN && PN->getParent() == EHBlock) {
+      // The value is defined by another PHI we need to remove, with no room to
+      // insert a store after the PHI, so each predecessor needs to store its
+      // incoming value.
+      for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) {
+        Value *PredVal = PN->getIncomingValue(i);
+
+        // Undef can safely be skipped.
+        if (isa<UndefValue>(PredVal))
+          continue;
+
+        insertPHIStore(PN->getIncomingBlock(i), PredVal, SpillSlot, Worklist);
+      }
+    } else {
+      // We need to store InVal, which dominates EHBlock, but can't put a store
+      // in EHBlock, so need to put stores in each predecessor.
+      for (BasicBlock *PredBlock : predecessors(EHBlock)) {
+        insertPHIStore(PredBlock, InVal, SpillSlot, Worklist);
+      }
+    }
+  }
+}
+
+void WinEHPrepare::insertPHIStore(
+    BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot,
+    SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist) {
+
+  if (PredBlock->isEHPad() &&
+      !isa<CleanupPadInst>(PredBlock->getFirstNonPHI())) {
+    // Pred is unsplittable, so we need to queue it on the worklist.
+    Worklist.push_back({PredBlock, PredVal});
+    return;
+  }
+
+  // Otherwise, insert the store at the end of the basic block.
+  new StoreInst(PredVal, SpillSlot, PredBlock->getTerminator());
+}
+
+// TODO: Share loads for same-funclet uses (requires dominators if funclets
+// aren't properly nested).
+void WinEHPrepare::demoteNonlocalUses(Value *V,
+                                      std::set<BasicBlock *> &ColorsForBB,
+                                      Function &F) {
+  // Tokens can only be used non-locally due to control flow involving
+  // unreachable edges.  Don't try to demote the token usage, we'll simply
+  // delete the cloned user later.
+  if (isa<CatchPadInst>(V) || isa<CleanupPadInst>(V))
+    return;
+
+  DenseMap<BasicBlock *, Value *> Loads;
+  AllocaInst *SpillSlot = nullptr;
+  for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); UI != UE;) {
+    Use &U = *UI++;
+    auto *UsingInst = cast<Instruction>(U.getUser());
+    BasicBlock *UsingBB = UsingInst->getParent();
+
+    // Is the Use inside a block which is colored with a subset of the Def?
+    // If so, we don't need to escape the Def because we will clone
+    // ourselves our own private copy.
+    std::set<BasicBlock *> &ColorsForUsingBB = BlockColors[UsingBB];
+    if (std::includes(ColorsForBB.begin(), ColorsForBB.end(),
+                      ColorsForUsingBB.begin(), ColorsForUsingBB.end()))
+      continue;
+
+    replaceUseWithLoad(V, U, SpillSlot, Loads, F);
+  }
+  if (SpillSlot) {
+    // Insert stores of the computed value into the stack slot.
+    // We have to be careful if I is an invoke instruction,
+    // because we can't insert the store AFTER the terminator instruction.
+    BasicBlock::iterator InsertPt;
+    if (isa<Argument>(V)) {
+      InsertPt = F.getEntryBlock().getTerminator();
+    } else if (isa<TerminatorInst>(V)) {
+      auto *II = cast<InvokeInst>(V);
+      // We cannot demote invoke instructions to the stack if their normal
+      // edge is critical. Therefore, split the critical edge and create a
+      // basic block into which the store can be inserted.
+      if (!II->getNormalDest()->getSinglePredecessor()) {
+        unsigned SuccNum =
+            GetSuccessorNumber(II->getParent(), II->getNormalDest());
+        assert(isCriticalEdge(II, SuccNum) && "Expected a critical edge!");
+        BasicBlock *NewBlock = SplitCriticalEdge(II, SuccNum);
+        assert(NewBlock && "Unable to split critical edge.");
+        // Update the color mapping for the newly split edge.
+        std::set<BasicBlock *> &ColorsForUsingBB = BlockColors[II->getParent()];
+        BlockColors[NewBlock] = ColorsForUsingBB;
+        for (BasicBlock *FuncletPad : ColorsForUsingBB)
+          FuncletBlocks[FuncletPad].insert(NewBlock);
+      }
+      InsertPt = II->getNormalDest()->getFirstInsertionPt();
+    } else {
+      InsertPt = cast<Instruction>(V);
+      ++InsertPt;
+      // Don't insert before PHI nodes or EH pad instrs.
+      for (; isa<PHINode>(InsertPt) || InsertPt->isEHPad(); ++InsertPt)
+        ;
+    }
+    new StoreInst(V, SpillSlot, InsertPt);
+  }
+}
+
+void WinEHPrepare::replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot,
+                                      DenseMap<BasicBlock *, Value *> &Loads,
+                                      Function &F) {
+  // Lazilly create the spill slot.
+  if (!SpillSlot)
+    SpillSlot = new AllocaInst(V->getType(), nullptr,
+                               Twine(V->getName(), ".wineh.spillslot"),
+                               F.getEntryBlock().begin());
+
+  auto *UsingInst = cast<Instruction>(U.getUser());
+  if (auto *UsingPHI = dyn_cast<PHINode>(UsingInst)) {
+    // If this is a PHI node, we can't insert a load of the value before
+    // the use.  Instead insert the load in the predecessor block
+    // corresponding to the incoming value.
+    //
+    // Note that if there are multiple edges from a basic block to this
+    // PHI node that we cannot have multiple loads.  The problem is that
+    // the resulting PHI node will have multiple values (from each load)
+    // coming in from the same block, which is illegal SSA form.
+    // For this reason, we keep track of and reuse loads we insert.
+    BasicBlock *IncomingBlock = UsingPHI->getIncomingBlock(U);
+    if (auto *CatchRet =
+            dyn_cast<CatchReturnInst>(IncomingBlock->getTerminator())) {
+      // Putting a load above a catchret and use on the phi would still leave
+      // a cross-funclet def/use.  We need to split the edge, change the
+      // catchret to target the new block, and put the load there.
+      BasicBlock *PHIBlock = UsingInst->getParent();
+      BasicBlock *NewBlock = SplitEdge(IncomingBlock, PHIBlock);
+      // SplitEdge gives us:
+      //   IncomingBlock:
+      //     ...
+      //     br label %NewBlock
+      //   NewBlock:
+      //     catchret label %PHIBlock
+      // But we need:
+      //   IncomingBlock:
+      //     ...
+      //     catchret label %NewBlock
+      //   NewBlock:
+      //     br label %PHIBlock
+      // So move the terminators to each others' blocks and swap their
+      // successors.
+      BranchInst *Goto = cast<BranchInst>(IncomingBlock->getTerminator());
+      Goto->removeFromParent();
+      CatchRet->removeFromParent();
+      IncomingBlock->getInstList().push_back(CatchRet);
+      NewBlock->getInstList().push_back(Goto);
+      Goto->setSuccessor(0, PHIBlock);
+      CatchRet->setSuccessor(NewBlock);
+      // Update the color mapping for the newly split edge.
+      std::set<BasicBlock *> &ColorsForPHIBlock = BlockColors[PHIBlock];
+      BlockColors[NewBlock] = ColorsForPHIBlock;
+      for (BasicBlock *FuncletPad : ColorsForPHIBlock)
+        FuncletBlocks[FuncletPad].insert(NewBlock);
+      // Treat the new block as incoming for load insertion.
+      IncomingBlock = NewBlock;
+    }
+    Value *&Load = Loads[IncomingBlock];
+    // Insert the load into the predecessor block
+    if (!Load)
+      Load = new LoadInst(SpillSlot, Twine(V->getName(), ".wineh.reload"),
+                          /*Volatile=*/false, IncomingBlock->getTerminator());
+
+    U.set(Load);
+  } else {
+    // Reload right before the old use.
+    auto *Load = new LoadInst(SpillSlot, Twine(V->getName(), ".wineh.reload"),
+                              /*Volatile=*/false, UsingInst);
+    U.set(Load);
+  }
+}