Change the post-RA scheduler to iterate through the
[oota-llvm.git] / lib / CodeGen / TwoAddressInstructionPass.cpp
index f2815eecffb17ae3212ffaaf2bd4161b02e02c0d..794f772101e98839cedaf640e596ab9395239662 100644 (file)
@@ -2,8 +2,8 @@
 //
 //                     The LLVM Compiler Infrastructure
 //
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
 //
 //===----------------------------------------------------------------------===//
 //
 //===----------------------------------------------------------------------===//
 
 #define DEBUG_TYPE "twoaddrinstr"
-#include "llvm/Function.h"
 #include "llvm/CodeGen/Passes.h"
+#include "llvm/Function.h"
 #include "llvm/CodeGen/LiveVariables.h"
 #include "llvm/CodeGen/MachineFunctionPass.h"
 #include "llvm/CodeGen/MachineInstr.h"
-#include "llvm/CodeGen/SSARegMap.h"
-#include "llvm/Target/MRegisterInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Target/TargetRegisterInfo.h"
 #include "llvm/Target/TargetInstrInfo.h"
 #include "llvm/Target/TargetMachine.h"
-#include "Support/Debug.h"
-#include "Support/Statistic.h"
-#include "Support/STLExtras.h"
-#include <iostream>
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/STLExtras.h"
 using namespace llvm;
 
+STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
+STATISTIC(NumCommuted        , "Number of instructions commuted to coalesce");
+STATISTIC(NumAggrCommuted    , "Number of instructions aggressively commuted");
+STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
+STATISTIC(Num3AddrSunk,        "Number of 3-address instructions sunk");
+STATISTIC(NumReMats,           "Number of instructions re-materialized");
+
 namespace {
-    Statistic<> numTwoAddressInstrs("twoaddressinstruction",
-                                    "Number of two-address instructions");
-    Statistic<> numInstrsAdded("twoaddressinstruction",
-                               "Number of instructions added");
-
-    struct TwoAddressInstructionPass : public MachineFunctionPass
-    {
-        virtual void getAnalysisUsage(AnalysisUsage &AU) const;
-
-        /// runOnMachineFunction - pass entry point
-        bool runOnMachineFunction(MachineFunction&);
-    };
-
-    RegisterPass<TwoAddressInstructionPass> X(
-        "twoaddressinstruction", "Two-Address instruction pass");
-};
-
-const PassInfo *llvm::TwoAddressInstructionPassID = X.getPassInfo();
-
-void TwoAddressInstructionPass::getAnalysisUsage(AnalysisUsage &AU) const
-{
-    AU.addPreserved<LiveVariables>();
-    AU.addPreservedID(PHIEliminationID);
-    MachineFunctionPass::getAnalysisUsage(AU);
+  class VISIBILITY_HIDDEN TwoAddressInstructionPass
+    : public MachineFunctionPass {
+    const TargetInstrInfo *TII;
+    const TargetRegisterInfo *TRI;
+    MachineRegisterInfo *MRI;
+    LiveVariables *LV;
+
+    bool Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI,
+                              unsigned Reg,
+                              MachineBasicBlock::iterator OldPos);
+
+    bool isProfitableToReMat(unsigned Reg, const TargetRegisterClass *RC,
+                             MachineInstr *MI, MachineInstr *DefMI,
+                             MachineBasicBlock *MBB, unsigned Loc,
+                             DenseMap<MachineInstr*, unsigned> &DistanceMap);
+
+    bool NoUseAfterLastDef(unsigned Reg, MachineBasicBlock *MBB, unsigned Dist,
+                           DenseMap<MachineInstr*, unsigned> &DistanceMap,
+                           unsigned &LastDef);
+
+    bool isProfitableToCommute(unsigned regB, unsigned regC,
+                               MachineInstr *MI, MachineBasicBlock *MBB,
+                               unsigned Dist,
+                               DenseMap<MachineInstr*, unsigned> &DistanceMap);
+
+    bool CommuteInstruction(MachineBasicBlock::iterator &mi,
+                            MachineFunction::iterator &mbbi,
+                            unsigned RegC, unsigned Dist,
+                            DenseMap<MachineInstr*, unsigned> &DistanceMap);
+  public:
+    static char ID; // Pass identification, replacement for typeid
+    TwoAddressInstructionPass() : MachineFunctionPass(&ID) {}
+
+    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+      AU.addPreserved<LiveVariables>();
+      AU.addPreservedID(MachineLoopInfoID);
+      AU.addPreservedID(MachineDominatorsID);
+      if (StrongPHIElim)
+        AU.addPreservedID(StrongPHIEliminationID);
+      else
+        AU.addPreservedID(PHIEliminationID);
+      MachineFunctionPass::getAnalysisUsage(AU);
+    }
+
+    /// runOnMachineFunction - Pass entry point.
+    bool runOnMachineFunction(MachineFunction&);
+  };
+}
+
+char TwoAddressInstructionPass::ID = 0;
+static RegisterPass<TwoAddressInstructionPass>
+X("twoaddressinstruction", "Two-Address instruction pass");
+
+const PassInfo *const llvm::TwoAddressInstructionPassID = &X;
+
+/// Sink3AddrInstruction - A two-address instruction has been converted to a
+/// three-address instruction to avoid clobbering a register. Try to sink it
+/// past the instruction that would kill the above mentioned register to reduce
+/// register pressure.
+bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB,
+                                           MachineInstr *MI, unsigned SavedReg,
+                                           MachineBasicBlock::iterator OldPos) {
+  // Check if it's safe to move this instruction.
+  bool SeenStore = true; // Be conservative.
+  if (!MI->isSafeToMove(TII, SeenStore))
+    return false;
+
+  unsigned DefReg = 0;
+  SmallSet<unsigned, 4> UseRegs;
+
+  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+    const MachineOperand &MO = MI->getOperand(i);
+    if (!MO.isReg())
+      continue;
+    unsigned MOReg = MO.getReg();
+    if (!MOReg)
+      continue;
+    if (MO.isUse() && MOReg != SavedReg)
+      UseRegs.insert(MO.getReg());
+    if (!MO.isDef())
+      continue;
+    if (MO.isImplicit())
+      // Don't try to move it if it implicitly defines a register.
+      return false;
+    if (DefReg)
+      // For now, don't move any instructions that define multiple registers.
+      return false;
+    DefReg = MO.getReg();
+  }
+
+  // Find the instruction that kills SavedReg.
+  MachineInstr *KillMI = NULL;
+  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(SavedReg),
+         UE = MRI->use_end(); UI != UE; ++UI) {
+    MachineOperand &UseMO = UI.getOperand();
+    if (!UseMO.isKill())
+      continue;
+    KillMI = UseMO.getParent();
+    break;
+  }
+
+  if (!KillMI || KillMI->getParent() != MBB)
+    return false;
+
+  // If any of the definitions are used by another instruction between the
+  // position and the kill use, then it's not safe to sink it.
+  // 
+  // FIXME: This can be sped up if there is an easy way to query whether an
+  // instruction is before or after another instruction. Then we can use
+  // MachineRegisterInfo def / use instead.
+  MachineOperand *KillMO = NULL;
+  MachineBasicBlock::iterator KillPos = KillMI;
+  ++KillPos;
+
+  unsigned NumVisited = 0;
+  for (MachineBasicBlock::iterator I = next(OldPos); I != KillPos; ++I) {
+    MachineInstr *OtherMI = I;
+    if (NumVisited > 30)  // FIXME: Arbitrary limit to reduce compile time cost.
+      return false;
+    ++NumVisited;
+    for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
+      MachineOperand &MO = OtherMI->getOperand(i);
+      if (!MO.isReg())
+        continue;
+      unsigned MOReg = MO.getReg();
+      if (!MOReg)
+        continue;
+      if (DefReg == MOReg)
+        return false;
+
+      if (MO.isKill()) {
+        if (OtherMI == KillMI && MOReg == SavedReg)
+          // Save the operand that kills the register. We want to unset the kill
+          // marker if we can sink MI past it.
+          KillMO = &MO;
+        else if (UseRegs.count(MOReg))
+          // One of the uses is killed before the destination.
+          return false;
+      }
+    }
+  }
+
+  // Update kill and LV information.
+  KillMO->setIsKill(false);
+  KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
+  KillMO->setIsKill(true);
+  
+  if (LV)
+    LV->replaceKillInstruction(SavedReg, KillMI, MI);
+
+  // Move instruction to its destination.
+  MBB->remove(MI);
+  MBB->insert(KillPos, MI);
+
+  ++Num3AddrSunk;
+  return true;
+}
+
+/// isTwoAddrUse - Return true if the specified MI is using the specified
+/// register as a two-address operand.
+static bool isTwoAddrUse(MachineInstr *UseMI, unsigned Reg) {
+  const TargetInstrDesc &TID = UseMI->getDesc();
+  for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) {
+    MachineOperand &MO = UseMI->getOperand(i);
+    if (MO.isReg() && MO.getReg() == Reg &&
+        (MO.isDef() || TID.getOperandConstraint(i, TOI::TIED_TO) != -1))
+      // Earlier use is a two-address one.
+      return true;
+  }
+  return false;
+}
+
+/// isProfitableToReMat - Return true if the heuristics determines it is likely
+/// to be profitable to re-materialize the definition of Reg rather than copy
+/// the register.
+bool
+TwoAddressInstructionPass::isProfitableToReMat(unsigned Reg,
+                                const TargetRegisterClass *RC,
+                                MachineInstr *MI, MachineInstr *DefMI,
+                                MachineBasicBlock *MBB, unsigned Loc,
+                                DenseMap<MachineInstr*, unsigned> &DistanceMap){
+  bool OtherUse = false;
+  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
+         UE = MRI->use_end(); UI != UE; ++UI) {
+    MachineOperand &UseMO = UI.getOperand();
+    MachineInstr *UseMI = UseMO.getParent();
+    MachineBasicBlock *UseMBB = UseMI->getParent();
+    if (UseMBB == MBB) {
+      DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
+      if (DI != DistanceMap.end() && DI->second == Loc)
+        continue;  // Current use.
+      OtherUse = true;
+      // There is at least one other use in the MBB that will clobber the
+      // register. 
+      if (isTwoAddrUse(UseMI, Reg))
+        return true;
+    }
+  }
+
+  // If other uses in MBB are not two-address uses, then don't remat.
+  if (OtherUse)
+    return false;
+
+  // No other uses in the same block, remat if it's defined in the same
+  // block so it does not unnecessarily extend the live range.
+  return MBB == DefMI->getParent();
+}
+
+/// NoUseAfterLastDef - Return true if there are no intervening uses between the
+/// last instruction in the MBB that defines the specified register and the
+/// two-address instruction which is being processed. It also returns the last
+/// def location by reference
+bool TwoAddressInstructionPass::NoUseAfterLastDef(unsigned Reg,
+                                 MachineBasicBlock *MBB, unsigned Dist,
+                                 DenseMap<MachineInstr*, unsigned> &DistanceMap,
+                                 unsigned &LastDef) {
+  LastDef = 0;
+  unsigned LastUse = Dist;
+  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
+         E = MRI->reg_end(); I != E; ++I) {
+    MachineOperand &MO = I.getOperand();
+    MachineInstr *MI = MO.getParent();
+    if (MI->getParent() != MBB)
+      continue;
+    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
+    if (DI == DistanceMap.end())
+      continue;
+    if (MO.isUse() && DI->second < LastUse)
+      LastUse = DI->second;
+    if (MO.isDef() && DI->second > LastDef)
+      LastDef = DI->second;
+  }
+
+  return !(LastUse > LastDef && LastUse < Dist);
 }
 
-/// runOnMachineFunction - Reduce two-address instructions to two
-/// operands.
+/// isProfitableToReMat - Return true if it's potentially profitable to commute
+/// the two-address instruction that's being processed.
+bool
+TwoAddressInstructionPass::isProfitableToCommute(unsigned regB, unsigned regC,
+                MachineInstr *MI, MachineBasicBlock *MBB,
+                unsigned Dist, DenseMap<MachineInstr*, unsigned> &DistanceMap) {
+  // Determine if it's profitable to commute this two address instruction. In
+  // general, we want no uses between this instruction and the definition of
+  // the two-address register.
+  // e.g.
+  // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
+  // %reg1029<def> = MOV8rr %reg1028
+  // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
+  // insert => %reg1030<def> = MOV8rr %reg1028
+  // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
+  // In this case, it might not be possible to coalesce the second MOV8rr
+  // instruction if the first one is coalesced. So it would be profitable to
+  // commute it:
+  // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
+  // %reg1029<def> = MOV8rr %reg1028
+  // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
+  // insert => %reg1030<def> = MOV8rr %reg1029
+  // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>  
+
+  if (!MI->killsRegister(regC))
+    return false;
+
+  // Ok, we have something like:
+  // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
+  // let's see if it's worth commuting it.
+
+  // If there is a use of regC between its last def (could be livein) and this
+  // instruction, then bail.
+  unsigned LastDefC = 0;
+  if (!NoUseAfterLastDef(regC, MBB, Dist, DistanceMap, LastDefC))
+    return false;
+
+  // If there is a use of regB between its last def (could be livein) and this
+  // instruction, then go ahead and make this transformation.
+  unsigned LastDefB = 0;
+  if (!NoUseAfterLastDef(regB, MBB, Dist, DistanceMap, LastDefB))
+    return true;
+
+  // Since there are no intervening uses for both registers, then commute
+  // if the def of regC is closer. Its live interval is shorter.
+  return LastDefB && LastDefC && LastDefC > LastDefB;
+}
+
+/// CommuteInstruction - Commute a two-address instruction and update the basic
+/// block, distance map, and live variables if needed. Return true if it is
+/// successful.
+bool
+TwoAddressInstructionPass::CommuteInstruction(MachineBasicBlock::iterator &mi,
+                                              MachineFunction::iterator &mbbi,
+                                              unsigned RegC, unsigned Dist,
+                               DenseMap<MachineInstr*, unsigned> &DistanceMap) {
+  MachineInstr *MI = mi;
+  DOUT << "2addr: COMMUTING  : " << *MI;
+  MachineInstr *NewMI = TII->commuteInstruction(MI);
+
+  if (NewMI == 0) {
+    DOUT << "2addr: COMMUTING FAILED!\n";
+    return false;
+  }
+
+  DOUT << "2addr: COMMUTED TO: " << *NewMI;
+  // If the instruction changed to commute it, update livevar.
+  if (NewMI != MI) {
+    if (LV)
+      // Update live variables
+      LV->replaceKillInstruction(RegC, MI, NewMI);
+
+    mbbi->insert(mi, NewMI);           // Insert the new inst
+    mbbi->erase(mi);                   // Nuke the old inst.
+    mi = NewMI;
+    DistanceMap.insert(std::make_pair(NewMI, Dist));
+  }
+  return true;
+}
+
+/// runOnMachineFunction - Reduce two-address instructions to two operands.
 ///
 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
-    DEBUG(std::cerr << "Machine Function\n");
-    const TargetMachine &TM = MF.getTarget();
-    const MRegisterInfo &MRI = *TM.getRegisterInfo();
-    const TargetInstrInfo &TII = *TM.getInstrInfo();
-    LiveVariables* LV = getAnalysisToUpdate<LiveVariables>();
+  DOUT << "Machine Function\n";
+  const TargetMachine &TM = MF.getTarget();
+  MRI = &MF.getRegInfo();
+  TII = TM.getInstrInfo();
+  TRI = TM.getRegisterInfo();
+  LV = getAnalysisIfAvailable<LiveVariables>();
 
-    bool MadeChange = false;
+  bool MadeChange = false;
 
-    DEBUG(std::cerr << "********** REWRITING TWO-ADDR INSTRS **********\n");
-    DEBUG(std::cerr << "********** Function: "
-          << MF.getFunction()->getName() << '\n');
+  DOUT << "********** REWRITING TWO-ADDR INSTRS **********\n";
+  DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';
 
-    for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end();
-         mbbi != mbbe; ++mbbi) {
-        for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end();
-             mi != me; ++mi) {
-            unsigned opcode = mi->getOpcode();
+  // ReMatRegs - Keep track of the registers whose def's are remat'ed.
+  BitVector ReMatRegs;
+  ReMatRegs.resize(MRI->getLastVirtReg()+1);
 
-            // ignore if it is not a two-address instruction
-            if (!TII.isTwoAddrInstr(opcode))
-                continue;
+  // DistanceMap - Keep track the distance of a MI from the start of the
+  // current basic block.
+  DenseMap<MachineInstr*, unsigned> DistanceMap;
 
-            ++numTwoAddressInstrs;
+  for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end();
+       mbbi != mbbe; ++mbbi) {
+    unsigned Dist = 0;
+    DistanceMap.clear();
+    for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end();
+         mi != me; ) {
+      MachineBasicBlock::iterator nmi = next(mi);
+      const TargetInstrDesc &TID = mi->getDesc();
+      bool FirstTied = true;
 
-            DEBUG(std::cerr << '\t'; mi->print(std::cerr, &TM));
+      DistanceMap.insert(std::make_pair(mi, ++Dist));
+      for (unsigned si = 1, e = TID.getNumOperands(); si < e; ++si) {
+        int ti = TID.getOperandConstraint(si, TOI::TIED_TO);
+        if (ti == -1)
+          continue;
 
-            assert(mi->getOperand(1).isRegister() &&
-                   mi->getOperand(1).getReg() &&
-                   mi->getOperand(1).isUse() &&
-                   "two address instruction invalid");
+        if (FirstTied) {
+          ++NumTwoAddressInstrs;
+          DOUT << '\t'; DEBUG(mi->print(*cerr.stream(), &TM));
+        }
 
-            // if the two operands are the same we just remove the use
-            // and mark the def as def&use
-            if (mi->getOperand(0).getReg() ==
-                mi->getOperand(1).getReg()) {
-            }
-            else {
-                MadeChange = true;
-
-                // rewrite:
-                //     a = b op c
-                // to:
-                //     a = b
-                //     a = a op c
-                unsigned regA = mi->getOperand(0).getReg();
-                unsigned regB = mi->getOperand(1).getReg();
-
-                assert(MRegisterInfo::isVirtualRegister(regA) &&
-                       MRegisterInfo::isVirtualRegister(regB) &&
-                       "cannot update physical register live information");
-
-                // first make sure we do not have a use of a in the
-                // instruction (a = b + a for example) because our
-                // transformation will not work. This should never occur
-                // because we are in SSA form.
-                for (unsigned i = 1; i != mi->getNumOperands(); ++i)
-                    assert(!mi->getOperand(i).isRegister() ||
-                           mi->getOperand(i).getReg() != regA);
-
-                const TargetRegisterClass* rc =
-                    MF.getSSARegMap()->getRegClass(regA);
-                unsigned Added = MRI.copyRegToReg(*mbbi, mi, regA, regB, rc);
-                numInstrsAdded += Added;
-
-                MachineBasicBlock::iterator prevMi = prior(mi);
-                DEBUG(std::cerr << "\t\tprepend:\t";
-                      prevMi->print(std::cerr, &TM));
-
-                if (LV) {
-                    // update live variables for regA
-                    assert(Added == 1 &&
-                           "Cannot handle multi-instruction copies yet!");
-                    LiveVariables::VarInfo& varInfo = LV->getVarInfo(regA);
-                    varInfo.DefInst = prevMi;
-
-                    // update live variables for regB
-                    if (LV->removeVirtualRegisterKilled(regB, &*mbbi, mi))
-                        LV->addVirtualRegisterKilled(regB, prevMi);
-
-                    if (LV->removeVirtualRegisterDead(regB, &*mbbi, mi))
-                        LV->addVirtualRegisterDead(regB, prevMi);
+        FirstTied = false;
+
+        assert(mi->getOperand(si).isReg() && mi->getOperand(si).getReg() &&
+               mi->getOperand(si).isUse() && "two address instruction invalid");
+
+        // If the two operands are the same we just remove the use
+        // and mark the def as def&use, otherwise we have to insert a copy.
+        if (mi->getOperand(ti).getReg() != mi->getOperand(si).getReg()) {
+          // Rewrite:
+          //     a = b op c
+          // to:
+          //     a = b
+          //     a = a op c
+          unsigned regA = mi->getOperand(ti).getReg();
+          unsigned regB = mi->getOperand(si).getReg();
+
+          assert(TargetRegisterInfo::isVirtualRegister(regA) &&
+                 TargetRegisterInfo::isVirtualRegister(regB) &&
+                 "cannot update physical register live information");
+
+#ifndef NDEBUG
+          // First, verify that we don't have a use of a in the instruction (a =
+          // b + a for example) because our transformation will not work. This
+          // should never occur because we are in SSA form.
+          for (unsigned i = 0; i != mi->getNumOperands(); ++i)
+            assert((int)i == ti ||
+                   !mi->getOperand(i).isReg() ||
+                   mi->getOperand(i).getReg() != regA);
+#endif
+
+          // If this instruction is not the killing user of B, see if we can
+          // rearrange the code to make it so.  Making it the killing user will
+          // allow us to coalesce A and B together, eliminating the copy we are
+          // about to insert.
+          if (!mi->killsRegister(regB)) {
+            // If this instruction is commutative, check to see if C dies.  If
+            // so, swap the B and C operands.  This makes the live ranges of A
+            // and C joinable.
+            // FIXME: This code also works for A := B op C instructions.
+            if (TID.isCommutable() && mi->getNumOperands() >= 3) {
+              assert(mi->getOperand(3-si).isReg() &&
+                     "Not a proper commutative instruction!");
+              unsigned regC = mi->getOperand(3-si).getReg();
+              if (mi->killsRegister(regC)) {
+                if (CommuteInstruction(mi, mbbi, regC, Dist, DistanceMap)) {
+                  ++NumCommuted;
+                  regB = regC;
+                  goto InstructionRearranged;
                 }
+              }
+            }
+
+            // If this instruction is potentially convertible to a true
+            // three-address instruction,
+            if (TID.isConvertibleTo3Addr()) {
+              // FIXME: This assumes there are no more operands which are tied
+              // to another register.
+#ifndef NDEBUG
+              for (unsigned i = si + 1, e = TID.getNumOperands(); i < e; ++i)
+                assert(TID.getOperandConstraint(i, TOI::TIED_TO) == -1);
+#endif
+
+              MachineInstr *NewMI = TII->convertToThreeAddress(mbbi, mi, LV);
+              if (NewMI) {
+                DOUT << "2addr: CONVERTING 2-ADDR: " << *mi;
+                DOUT << "2addr:         TO 3-ADDR: " << *NewMI;
+                bool Sunk = false;
+
+                if (NewMI->findRegisterUseOperand(regB, false, TRI))
+                  // FIXME: Temporary workaround. If the new instruction doesn't
+                  // uses regB, convertToThreeAddress must have created more
+                  // then one instruction.
+                  Sunk = Sink3AddrInstruction(mbbi, NewMI, regB, mi);
 
-                // replace all occurences of regB with regA
-                for (unsigned i = 1, e = mi->getNumOperands(); i != e; ++i) {
-                    if (mi->getOperand(i).isRegister() &&
-                        mi->getOperand(i).getReg() == regB)
-                        mi->SetMachineOperandReg(i, regA);
+                mbbi->erase(mi); // Nuke the old inst.
+
+                if (!Sunk) {
+                  DistanceMap.insert(std::make_pair(NewMI, Dist));
+                  mi = NewMI;
+                  nmi = next(mi);
                 }
+
+                ++NumConvertedTo3Addr;
+                break; // Done with this instruction.
+              }
             }
+          }
+
+          // If it's profitable to commute the instruction, do so.
+          if (TID.isCommutable() && mi->getNumOperands() >= 3) {
+            unsigned regC = mi->getOperand(3-si).getReg();
+            if (isProfitableToCommute(regB, regC, mi, mbbi, Dist, DistanceMap))
+              if (CommuteInstruction(mi, mbbi, regC, Dist, DistanceMap)) {
+                ++NumAggrCommuted;
+                ++NumCommuted;
+                regB = regC;
+              }
+          }
+
+        InstructionRearranged:
+          const TargetRegisterClass* rc = MRI->getRegClass(regA);
+          MachineInstr *DefMI = MRI->getVRegDef(regB);
+          // If it's safe and profitable, remat the definition instead of
+          // copying it.
+          if (DefMI &&
+              DefMI->getDesc().isAsCheapAsAMove() &&
+              DefMI->isSafeToReMat(TII, regB) &&
+              isProfitableToReMat(regB, rc, mi, DefMI, mbbi, Dist,DistanceMap)){
+            DEBUG(cerr << "2addr: REMATTING : " << *DefMI << "\n");
+            TII->reMaterialize(*mbbi, mi, regA, DefMI);
+            ReMatRegs.set(regB);
+            ++NumReMats;
+          } else {
+            TII->copyRegToReg(*mbbi, mi, regA, regB, rc, rc);
+          }
 
-            assert(mi->getOperand(0).isDef());
-            mi->getOperand(0).setUse();
-            mi->RemoveOperand(1);
+          MachineBasicBlock::iterator prevMI = prior(mi);
+          // Update DistanceMap.
+          DistanceMap.insert(std::make_pair(prevMI, Dist));
+          DistanceMap[mi] = ++Dist;
 
-            DEBUG(std::cerr << "\t\trewrite to:\t";
-                  mi->print(std::cerr, &TM));
+          // Update live variables for regB.
+          if (LV) {
+            LiveVariables::VarInfo& varInfoB = LV->getVarInfo(regB);
+
+            // regB is used in this BB.
+            varInfoB.UsedBlocks[mbbi->getNumber()] = true;
+
+            if (LV->removeVirtualRegisterKilled(regB,  mi))
+              LV->addVirtualRegisterKilled(regB, prevMI);
+
+            if (LV->removeVirtualRegisterDead(regB, mi))
+              LV->addVirtualRegisterDead(regB, prevMI);
+          }
+
+          DOUT << "\t\tprepend:\t"; DEBUG(prevMI->print(*cerr.stream(), &TM));
+          
+          // Replace all occurences of regB with regA.
+          for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
+            if (mi->getOperand(i).isReg() &&
+                mi->getOperand(i).getReg() == regB)
+              mi->getOperand(i).setReg(regA);
+          }
         }
+
+        assert(mi->getOperand(ti).isDef() && mi->getOperand(si).isUse());
+        mi->getOperand(ti).setReg(mi->getOperand(si).getReg());
+        MadeChange = true;
+
+        DOUT << "\t\trewrite to:\t"; DEBUG(mi->print(*cerr.stream(), &TM));
+      }
+
+      mi = nmi;
+    }
+  }
+
+  // Some remat'ed instructions are dead.
+  int VReg = ReMatRegs.find_first();
+  while (VReg != -1) {
+    if (MRI->use_empty(VReg)) {
+      MachineInstr *DefMI = MRI->getVRegDef(VReg);
+      DefMI->eraseFromParent();
     }
+    VReg = ReMatRegs.find_next(VReg);
+  }
 
-    return MadeChange;
+  return MadeChange;
 }