Change the post-RA scheduler to iterate through the
[oota-llvm.git] / lib / CodeGen / TwoAddressInstructionPass.cpp
index dec401c55d0fc73e738d34d26bc9323b9b819546..794f772101e98839cedaf640e596ab9395239662 100644 (file)
 #include "llvm/CodeGen/MachineFunctionPass.h"
 #include "llvm/CodeGen/MachineInstr.h"
 #include "llvm/CodeGen/MachineRegisterInfo.h"
-#include "llvm/Target/MRegisterInfo.h"
+#include "llvm/Target/TargetRegisterInfo.h"
 #include "llvm/Target/TargetInstrInfo.h"
 #include "llvm/Target/TargetMachine.h"
-#include "llvm/Support/Debug.h"
+#include "llvm/Target/TargetOptions.h"
 #include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallSet.h"
 #include "llvm/ADT/Statistic.h"
 #include "llvm/ADT/STLExtras.h"
 using namespace llvm;
 
 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
 STATISTIC(NumCommuted        , "Number of instructions commuted to coalesce");
+STATISTIC(NumAggrCommuted    , "Number of instructions aggressively commuted");
 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
+STATISTIC(Num3AddrSunk,        "Number of 3-address instructions sunk");
+STATISTIC(NumReMats,           "Number of instructions re-materialized");
 
 namespace {
-  struct VISIBILITY_HIDDEN TwoAddressInstructionPass
-   : public MachineFunctionPass {
+  class VISIBILITY_HIDDEN TwoAddressInstructionPass
+    : public MachineFunctionPass {
+    const TargetInstrInfo *TII;
+    const TargetRegisterInfo *TRI;
+    MachineRegisterInfo *MRI;
+    LiveVariables *LV;
+
+    bool Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI,
+                              unsigned Reg,
+                              MachineBasicBlock::iterator OldPos);
+
+    bool isProfitableToReMat(unsigned Reg, const TargetRegisterClass *RC,
+                             MachineInstr *MI, MachineInstr *DefMI,
+                             MachineBasicBlock *MBB, unsigned Loc,
+                             DenseMap<MachineInstr*, unsigned> &DistanceMap);
+
+    bool NoUseAfterLastDef(unsigned Reg, MachineBasicBlock *MBB, unsigned Dist,
+                           DenseMap<MachineInstr*, unsigned> &DistanceMap,
+                           unsigned &LastDef);
+
+    bool isProfitableToCommute(unsigned regB, unsigned regC,
+                               MachineInstr *MI, MachineBasicBlock *MBB,
+                               unsigned Dist,
+                               DenseMap<MachineInstr*, unsigned> &DistanceMap);
+
+    bool CommuteInstruction(MachineBasicBlock::iterator &mi,
+                            MachineFunction::iterator &mbbi,
+                            unsigned RegC, unsigned Dist,
+                            DenseMap<MachineInstr*, unsigned> &DistanceMap);
+  public:
     static char ID; // Pass identification, replacement for typeid
-    TwoAddressInstructionPass() : MachineFunctionPass((intptr_t)&ID) {}
+    TwoAddressInstructionPass() : MachineFunctionPass(&ID) {}
 
-    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
+    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+      AU.addPreserved<LiveVariables>();
+      AU.addPreservedID(MachineLoopInfoID);
+      AU.addPreservedID(MachineDominatorsID);
+      if (StrongPHIElim)
+        AU.addPreservedID(StrongPHIEliminationID);
+      else
+        AU.addPreservedID(PHIEliminationID);
+      MachineFunctionPass::getAnalysisUsage(AU);
+    }
 
-    /// runOnMachineFunction - pass entry point
+    /// runOnMachineFunction - Pass entry point.
     bool runOnMachineFunction(MachineFunction&);
   };
+}
+
+char TwoAddressInstructionPass::ID = 0;
+static RegisterPass<TwoAddressInstructionPass>
+X("twoaddressinstruction", "Two-Address instruction pass");
+
+const PassInfo *const llvm::TwoAddressInstructionPassID = &X;
+
+/// Sink3AddrInstruction - A two-address instruction has been converted to a
+/// three-address instruction to avoid clobbering a register. Try to sink it
+/// past the instruction that would kill the above mentioned register to reduce
+/// register pressure.
+bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB,
+                                           MachineInstr *MI, unsigned SavedReg,
+                                           MachineBasicBlock::iterator OldPos) {
+  // Check if it's safe to move this instruction.
+  bool SeenStore = true; // Be conservative.
+  if (!MI->isSafeToMove(TII, SeenStore))
+    return false;
+
+  unsigned DefReg = 0;
+  SmallSet<unsigned, 4> UseRegs;
+
+  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+    const MachineOperand &MO = MI->getOperand(i);
+    if (!MO.isReg())
+      continue;
+    unsigned MOReg = MO.getReg();
+    if (!MOReg)
+      continue;
+    if (MO.isUse() && MOReg != SavedReg)
+      UseRegs.insert(MO.getReg());
+    if (!MO.isDef())
+      continue;
+    if (MO.isImplicit())
+      // Don't try to move it if it implicitly defines a register.
+      return false;
+    if (DefReg)
+      // For now, don't move any instructions that define multiple registers.
+      return false;
+    DefReg = MO.getReg();
+  }
+
+  // Find the instruction that kills SavedReg.
+  MachineInstr *KillMI = NULL;
+  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(SavedReg),
+         UE = MRI->use_end(); UI != UE; ++UI) {
+    MachineOperand &UseMO = UI.getOperand();
+    if (!UseMO.isKill())
+      continue;
+    KillMI = UseMO.getParent();
+    break;
+  }
+
+  if (!KillMI || KillMI->getParent() != MBB)
+    return false;
 
-  char TwoAddressInstructionPass::ID = 0;
-  RegisterPass<TwoAddressInstructionPass>
-  X("twoaddressinstruction", "Two-Address instruction pass");
+  // If any of the definitions are used by another instruction between the
+  // position and the kill use, then it's not safe to sink it.
+  // 
+  // FIXME: This can be sped up if there is an easy way to query whether an
+  // instruction is before or after another instruction. Then we can use
+  // MachineRegisterInfo def / use instead.
+  MachineOperand *KillMO = NULL;
+  MachineBasicBlock::iterator KillPos = KillMI;
+  ++KillPos;
+
+  unsigned NumVisited = 0;
+  for (MachineBasicBlock::iterator I = next(OldPos); I != KillPos; ++I) {
+    MachineInstr *OtherMI = I;
+    if (NumVisited > 30)  // FIXME: Arbitrary limit to reduce compile time cost.
+      return false;
+    ++NumVisited;
+    for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
+      MachineOperand &MO = OtherMI->getOperand(i);
+      if (!MO.isReg())
+        continue;
+      unsigned MOReg = MO.getReg();
+      if (!MOReg)
+        continue;
+      if (DefReg == MOReg)
+        return false;
+
+      if (MO.isKill()) {
+        if (OtherMI == KillMI && MOReg == SavedReg)
+          // Save the operand that kills the register. We want to unset the kill
+          // marker if we can sink MI past it.
+          KillMO = &MO;
+        else if (UseRegs.count(MOReg))
+          // One of the uses is killed before the destination.
+          return false;
+      }
+    }
+  }
+
+  // Update kill and LV information.
+  KillMO->setIsKill(false);
+  KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
+  KillMO->setIsKill(true);
+  
+  if (LV)
+    LV->replaceKillInstruction(SavedReg, KillMI, MI);
+
+  // Move instruction to its destination.
+  MBB->remove(MI);
+  MBB->insert(KillPos, MI);
+
+  ++Num3AddrSunk;
+  return true;
+}
+
+/// isTwoAddrUse - Return true if the specified MI is using the specified
+/// register as a two-address operand.
+static bool isTwoAddrUse(MachineInstr *UseMI, unsigned Reg) {
+  const TargetInstrDesc &TID = UseMI->getDesc();
+  for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) {
+    MachineOperand &MO = UseMI->getOperand(i);
+    if (MO.isReg() && MO.getReg() == Reg &&
+        (MO.isDef() || TID.getOperandConstraint(i, TOI::TIED_TO) != -1))
+      // Earlier use is a two-address one.
+      return true;
+  }
+  return false;
 }
 
-const PassInfo *llvm::TwoAddressInstructionPassID = X.getPassInfo();
+/// isProfitableToReMat - Return true if the heuristics determines it is likely
+/// to be profitable to re-materialize the definition of Reg rather than copy
+/// the register.
+bool
+TwoAddressInstructionPass::isProfitableToReMat(unsigned Reg,
+                                const TargetRegisterClass *RC,
+                                MachineInstr *MI, MachineInstr *DefMI,
+                                MachineBasicBlock *MBB, unsigned Loc,
+                                DenseMap<MachineInstr*, unsigned> &DistanceMap){
+  bool OtherUse = false;
+  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
+         UE = MRI->use_end(); UI != UE; ++UI) {
+    MachineOperand &UseMO = UI.getOperand();
+    MachineInstr *UseMI = UseMO.getParent();
+    MachineBasicBlock *UseMBB = UseMI->getParent();
+    if (UseMBB == MBB) {
+      DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
+      if (DI != DistanceMap.end() && DI->second == Loc)
+        continue;  // Current use.
+      OtherUse = true;
+      // There is at least one other use in the MBB that will clobber the
+      // register. 
+      if (isTwoAddrUse(UseMI, Reg))
+        return true;
+    }
+  }
+
+  // If other uses in MBB are not two-address uses, then don't remat.
+  if (OtherUse)
+    return false;
+
+  // No other uses in the same block, remat if it's defined in the same
+  // block so it does not unnecessarily extend the live range.
+  return MBB == DefMI->getParent();
+}
+
+/// NoUseAfterLastDef - Return true if there are no intervening uses between the
+/// last instruction in the MBB that defines the specified register and the
+/// two-address instruction which is being processed. It also returns the last
+/// def location by reference
+bool TwoAddressInstructionPass::NoUseAfterLastDef(unsigned Reg,
+                                 MachineBasicBlock *MBB, unsigned Dist,
+                                 DenseMap<MachineInstr*, unsigned> &DistanceMap,
+                                 unsigned &LastDef) {
+  LastDef = 0;
+  unsigned LastUse = Dist;
+  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
+         E = MRI->reg_end(); I != E; ++I) {
+    MachineOperand &MO = I.getOperand();
+    MachineInstr *MI = MO.getParent();
+    if (MI->getParent() != MBB)
+      continue;
+    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
+    if (DI == DistanceMap.end())
+      continue;
+    if (MO.isUse() && DI->second < LastUse)
+      LastUse = DI->second;
+    if (MO.isDef() && DI->second > LastDef)
+      LastDef = DI->second;
+  }
 
-void TwoAddressInstructionPass::getAnalysisUsage(AnalysisUsage &AU) const {
-  AU.addRequired<LiveVariables>();
-  AU.addPreserved<LiveVariables>();
-  AU.addPreservedID(MachineLoopInfoID);
-  AU.addPreservedID(MachineDominatorsID);
-  AU.addPreservedID(PHIEliminationID);
-  MachineFunctionPass::getAnalysisUsage(AU);
+  return !(LastUse > LastDef && LastUse < Dist);
 }
 
-/// runOnMachineFunction - Reduce two-address instructions to two
-/// operands.
+/// isProfitableToReMat - Return true if it's potentially profitable to commute
+/// the two-address instruction that's being processed.
+bool
+TwoAddressInstructionPass::isProfitableToCommute(unsigned regB, unsigned regC,
+                MachineInstr *MI, MachineBasicBlock *MBB,
+                unsigned Dist, DenseMap<MachineInstr*, unsigned> &DistanceMap) {
+  // Determine if it's profitable to commute this two address instruction. In
+  // general, we want no uses between this instruction and the definition of
+  // the two-address register.
+  // e.g.
+  // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
+  // %reg1029<def> = MOV8rr %reg1028
+  // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
+  // insert => %reg1030<def> = MOV8rr %reg1028
+  // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
+  // In this case, it might not be possible to coalesce the second MOV8rr
+  // instruction if the first one is coalesced. So it would be profitable to
+  // commute it:
+  // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
+  // %reg1029<def> = MOV8rr %reg1028
+  // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
+  // insert => %reg1030<def> = MOV8rr %reg1029
+  // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>  
+
+  if (!MI->killsRegister(regC))
+    return false;
+
+  // Ok, we have something like:
+  // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
+  // let's see if it's worth commuting it.
+
+  // If there is a use of regC between its last def (could be livein) and this
+  // instruction, then bail.
+  unsigned LastDefC = 0;
+  if (!NoUseAfterLastDef(regC, MBB, Dist, DistanceMap, LastDefC))
+    return false;
+
+  // If there is a use of regB between its last def (could be livein) and this
+  // instruction, then go ahead and make this transformation.
+  unsigned LastDefB = 0;
+  if (!NoUseAfterLastDef(regB, MBB, Dist, DistanceMap, LastDefB))
+    return true;
+
+  // Since there are no intervening uses for both registers, then commute
+  // if the def of regC is closer. Its live interval is shorter.
+  return LastDefB && LastDefC && LastDefC > LastDefB;
+}
+
+/// CommuteInstruction - Commute a two-address instruction and update the basic
+/// block, distance map, and live variables if needed. Return true if it is
+/// successful.
+bool
+TwoAddressInstructionPass::CommuteInstruction(MachineBasicBlock::iterator &mi,
+                                              MachineFunction::iterator &mbbi,
+                                              unsigned RegC, unsigned Dist,
+                               DenseMap<MachineInstr*, unsigned> &DistanceMap) {
+  MachineInstr *MI = mi;
+  DOUT << "2addr: COMMUTING  : " << *MI;
+  MachineInstr *NewMI = TII->commuteInstruction(MI);
+
+  if (NewMI == 0) {
+    DOUT << "2addr: COMMUTING FAILED!\n";
+    return false;
+  }
+
+  DOUT << "2addr: COMMUTED TO: " << *NewMI;
+  // If the instruction changed to commute it, update livevar.
+  if (NewMI != MI) {
+    if (LV)
+      // Update live variables
+      LV->replaceKillInstruction(RegC, MI, NewMI);
+
+    mbbi->insert(mi, NewMI);           // Insert the new inst
+    mbbi->erase(mi);                   // Nuke the old inst.
+    mi = NewMI;
+    DistanceMap.insert(std::make_pair(NewMI, Dist));
+  }
+  return true;
+}
+
+/// runOnMachineFunction - Reduce two-address instructions to two operands.
 ///
 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
   DOUT << "Machine Function\n";
   const TargetMachine &TM = MF.getTarget();
-  const TargetInstrInfo &TII = *TM.getInstrInfo();
-  LiveVariables &LV = getAnalysis<LiveVariables>();
+  MRI = &MF.getRegInfo();
+  TII = TM.getInstrInfo();
+  TRI = TM.getRegisterInfo();
+  LV = getAnalysisIfAvailable<LiveVariables>();
 
   bool MadeChange = false;
 
   DOUT << "********** REWRITING TWO-ADDR INSTRS **********\n";
   DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';
 
+  // ReMatRegs - Keep track of the registers whose def's are remat'ed.
+  BitVector ReMatRegs;
+  ReMatRegs.resize(MRI->getLastVirtReg()+1);
+
+  // DistanceMap - Keep track the distance of a MI from the start of the
+  // current basic block.
+  DenseMap<MachineInstr*, unsigned> DistanceMap;
+
   for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end();
        mbbi != mbbe; ++mbbi) {
+    unsigned Dist = 0;
+    DistanceMap.clear();
     for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end();
-         mi != me; ++mi) {
+         mi != me; ) {
+      MachineBasicBlock::iterator nmi = next(mi);
       const TargetInstrDesc &TID = mi->getDesc();
-
       bool FirstTied = true;
+
+      DistanceMap.insert(std::make_pair(mi, ++Dist));
       for (unsigned si = 1, e = TID.getNumOperands(); si < e; ++si) {
         int ti = TID.getOperandConstraint(si, TOI::TIED_TO);
         if (ti == -1)
@@ -105,15 +414,16 @@ bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
           ++NumTwoAddressInstrs;
           DOUT << '\t'; DEBUG(mi->print(*cerr.stream(), &TM));
         }
+
         FirstTied = false;
 
-        assert(mi->getOperand(si).isRegister() && mi->getOperand(si).getReg() &&
+        assert(mi->getOperand(si).isReg() && mi->getOperand(si).getReg() &&
                mi->getOperand(si).isUse() && "two address instruction invalid");
 
-        // if the two operands are the same we just remove the use
+        // If the two operands are the same we just remove the use
         // and mark the def as def&use, otherwise we have to insert a copy.
         if (mi->getOperand(ti).getReg() != mi->getOperand(si).getReg()) {
-          // rewrite:
+          // Rewrite:
           //     a = b op c
           // to:
           //     a = b
@@ -121,8 +431,8 @@ bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
           unsigned regA = mi->getOperand(ti).getReg();
           unsigned regB = mi->getOperand(si).getReg();
 
-          assert(MRegisterInfo::isVirtualRegister(regA) &&
-                 MRegisterInfo::isVirtualRegister(regB) &&
+          assert(TargetRegisterInfo::isVirtualRegister(regA) &&
+                 TargetRegisterInfo::isVirtualRegister(regB) &&
                  "cannot update physical register live information");
 
 #ifndef NDEBUG
@@ -131,7 +441,7 @@ bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
           // should never occur because we are in SSA form.
           for (unsigned i = 0; i != mi->getNumOperands(); ++i)
             assert((int)i == ti ||
-                   !mi->getOperand(i).isRegister() ||
+                   !mi->getOperand(i).isReg() ||
                    mi->getOperand(i).getReg() != regA);
 #endif
 
@@ -139,30 +449,17 @@ bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
           // rearrange the code to make it so.  Making it the killing user will
           // allow us to coalesce A and B together, eliminating the copy we are
           // about to insert.
-          if (!LV.KillsRegister(mi, regB)) {
+          if (!mi->killsRegister(regB)) {
             // If this instruction is commutative, check to see if C dies.  If
             // so, swap the B and C operands.  This makes the live ranges of A
             // and C joinable.
             // FIXME: This code also works for A := B op C instructions.
             if (TID.isCommutable() && mi->getNumOperands() >= 3) {
-              assert(mi->getOperand(3-si).isRegister() &&
+              assert(mi->getOperand(3-si).isReg() &&
                      "Not a proper commutative instruction!");
               unsigned regC = mi->getOperand(3-si).getReg();
-              if (LV.KillsRegister(mi, regC)) {
-                DOUT << "2addr: COMMUTING  : " << *mi;
-                MachineInstr *NewMI = TII.commuteInstruction(mi);
-                if (NewMI == 0) {
-                  DOUT << "2addr: COMMUTING FAILED!\n";
-                } else {
-                  DOUT << "2addr: COMMUTED TO: " << *NewMI;
-                  // If the instruction changed to commute it, update livevar.
-                  if (NewMI != mi) {
-                    LV.instructionChanged(mi, NewMI);  // Update live variables
-                    mbbi->insert(mi, NewMI);           // Insert the new inst
-                    mbbi->erase(mi);                   // Nuke the old inst.
-                    mi = NewMI;
-                  }
-
+              if (mi->killsRegister(regC)) {
+                if (CommuteInstruction(mi, mbbi, regC, Dist, DistanceMap)) {
                   ++NumCommuted;
                   regB = regC;
                   goto InstructionRearranged;
@@ -176,46 +473,88 @@ bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
               // FIXME: This assumes there are no more operands which are tied
               // to another register.
 #ifndef NDEBUG
-              for (unsigned i = si+1, e = TID.getNumOperands(); i < e; ++i)
+              for (unsigned i = si + 1, e = TID.getNumOperands(); i < e; ++i)
                 assert(TID.getOperandConstraint(i, TOI::TIED_TO) == -1);
 #endif
 
-              if (MachineInstr *New = TII.convertToThreeAddress(mbbi, mi, LV)) {
+              MachineInstr *NewMI = TII->convertToThreeAddress(mbbi, mi, LV);
+              if (NewMI) {
                 DOUT << "2addr: CONVERTING 2-ADDR: " << *mi;
-                DOUT << "2addr:         TO 3-ADDR: " << *New;
-                mbbi->erase(mi);                 // Nuke the old inst.
-                mi = New;
+                DOUT << "2addr:         TO 3-ADDR: " << *NewMI;
+                bool Sunk = false;
+
+                if (NewMI->findRegisterUseOperand(regB, false, TRI))
+                  // FIXME: Temporary workaround. If the new instruction doesn't
+                  // uses regB, convertToThreeAddress must have created more
+                  // then one instruction.
+                  Sunk = Sink3AddrInstruction(mbbi, NewMI, regB, mi);
+
+                mbbi->erase(mi); // Nuke the old inst.
+
+                if (!Sunk) {
+                  DistanceMap.insert(std::make_pair(NewMI, Dist));
+                  mi = NewMI;
+                  nmi = next(mi);
+                }
+
                 ++NumConvertedTo3Addr;
-                // Done with this instruction.
-                break;
+                break; // Done with this instruction.
               }
             }
           }
 
+          // If it's profitable to commute the instruction, do so.
+          if (TID.isCommutable() && mi->getNumOperands() >= 3) {
+            unsigned regC = mi->getOperand(3-si).getReg();
+            if (isProfitableToCommute(regB, regC, mi, mbbi, Dist, DistanceMap))
+              if (CommuteInstruction(mi, mbbi, regC, Dist, DistanceMap)) {
+                ++NumAggrCommuted;
+                ++NumCommuted;
+                regB = regC;
+              }
+          }
+
         InstructionRearranged:
-          const TargetRegisterClass* rc = MF.getRegInfo().getRegClass(regA);
-          TII.copyRegToReg(*mbbi, mi, regA, regB, rc, rc);
+          const TargetRegisterClass* rc = MRI->getRegClass(regA);
+          MachineInstr *DefMI = MRI->getVRegDef(regB);
+          // If it's safe and profitable, remat the definition instead of
+          // copying it.
+          if (DefMI &&
+              DefMI->getDesc().isAsCheapAsAMove() &&
+              DefMI->isSafeToReMat(TII, regB) &&
+              isProfitableToReMat(regB, rc, mi, DefMI, mbbi, Dist,DistanceMap)){
+            DEBUG(cerr << "2addr: REMATTING : " << *DefMI << "\n");
+            TII->reMaterialize(*mbbi, mi, regA, DefMI);
+            ReMatRegs.set(regB);
+            ++NumReMats;
+          } else {
+            TII->copyRegToReg(*mbbi, mi, regA, regB, rc, rc);
+          }
 
-          MachineBasicBlock::iterator prevMi = prior(mi);
-          DOUT << "\t\tprepend:\t"; DEBUG(prevMi->print(*cerr.stream(), &TM));
+          MachineBasicBlock::iterator prevMI = prior(mi);
+          // Update DistanceMap.
+          DistanceMap.insert(std::make_pair(prevMI, Dist));
+          DistanceMap[mi] = ++Dist;
 
-          // Update live variables for regA
-          LiveVariables::VarInfo& varInfo = LV.getVarInfo(regA);
-          varInfo.DefInst = prevMi;
+          // Update live variables for regB.
+          if (LV) {
+            LiveVariables::VarInfo& varInfoB = LV->getVarInfo(regB);
 
-          // update live variables for regB
-          LiveVariables::VarInfo& varInfoB = LV.getVarInfo(regB);
-          // regB is used in this BB.
-          varInfoB.UsedBlocks[mbbi->getNumber()] = true;
-          if (LV.removeVirtualRegisterKilled(regB, mbbi, mi))
-            LV.addVirtualRegisterKilled(regB, prevMi);
+            // regB is used in this BB.
+            varInfoB.UsedBlocks[mbbi->getNumber()] = true;
 
-          if (LV.removeVirtualRegisterDead(regB, mbbi, mi))
-            LV.addVirtualRegisterDead(regB, prevMi);
+            if (LV->removeVirtualRegisterKilled(regB,  mi))
+              LV->addVirtualRegisterKilled(regB, prevMI);
+
+            if (LV->removeVirtualRegisterDead(regB, mi))
+              LV->addVirtualRegisterDead(regB, prevMI);
+          }
 
-          // replace all occurences of regB with regA
+          DOUT << "\t\tprepend:\t"; DEBUG(prevMI->print(*cerr.stream(), &TM));
+          
+          // Replace all occurences of regB with regA.
           for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
-            if (mi->getOperand(i).isRegister() &&
+            if (mi->getOperand(i).isReg() &&
                 mi->getOperand(i).getReg() == regB)
               mi->getOperand(i).setReg(regA);
           }
@@ -227,7 +566,19 @@ bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
 
         DOUT << "\t\trewrite to:\t"; DEBUG(mi->print(*cerr.stream(), &TM));
       }
+
+      mi = nmi;
+    }
+  }
+
+  // Some remat'ed instructions are dead.
+  int VReg = ReMatRegs.find_first();
+  while (VReg != -1) {
+    if (MRI->use_empty(VReg)) {
+      MachineInstr *DefMI = MRI->getVRegDef(VReg);
+      DefMI->eraseFromParent();
     }
+    VReg = ReMatRegs.find_next(VReg);
   }
 
   return MadeChange;