Added ARM::mls for armv6t2.
[oota-llvm.git] / lib / CodeGen / TwoAddressInstructionPass.cpp
index 794f772101e98839cedaf640e596ab9395239662..3c404046f15e49e875ccde2756fb780bd8b33bce 100644 (file)
@@ -53,6 +53,7 @@ STATISTIC(NumAggrCommuted    , "Number of instructions aggressively commuted");
 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
 STATISTIC(Num3AddrSunk,        "Number of 3-address instructions sunk");
 STATISTIC(NumReMats,           "Number of instructions re-materialized");
+STATISTIC(NumDeletes,          "Number of dead instructions deleted");
 
 namespace {
   class VISIBILITY_HIDDEN TwoAddressInstructionPass
@@ -62,28 +63,51 @@ namespace {
     MachineRegisterInfo *MRI;
     LiveVariables *LV;
 
+    // DistanceMap - Keep track the distance of a MI from the start of the
+    // current basic block.
+    DenseMap<MachineInstr*, unsigned> DistanceMap;
+
+    // SrcRegMap - A map from virtual registers to physical registers which
+    // are likely targets to be coalesced to due to copies from physical
+    // registers to virtual registers. e.g. v1024 = move r0.
+    DenseMap<unsigned, unsigned> SrcRegMap;
+
+    // DstRegMap - A map from virtual registers to physical registers which
+    // are likely targets to be coalesced to due to copies to physical
+    // registers from virtual registers. e.g. r1 = move v1024.
+    DenseMap<unsigned, unsigned> DstRegMap;
+
     bool Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI,
                               unsigned Reg,
                               MachineBasicBlock::iterator OldPos);
 
     bool isProfitableToReMat(unsigned Reg, const TargetRegisterClass *RC,
                              MachineInstr *MI, MachineInstr *DefMI,
-                             MachineBasicBlock *MBB, unsigned Loc,
-                             DenseMap<MachineInstr*, unsigned> &DistanceMap);
+                             MachineBasicBlock *MBB, unsigned Loc);
 
     bool NoUseAfterLastDef(unsigned Reg, MachineBasicBlock *MBB, unsigned Dist,
-                           DenseMap<MachineInstr*, unsigned> &DistanceMap,
                            unsigned &LastDef);
 
+    MachineInstr *FindLastUseInMBB(unsigned Reg, MachineBasicBlock *MBB,
+                                   unsigned Dist);
+
     bool isProfitableToCommute(unsigned regB, unsigned regC,
                                MachineInstr *MI, MachineBasicBlock *MBB,
-                               unsigned Dist,
-                               DenseMap<MachineInstr*, unsigned> &DistanceMap);
+                               unsigned Dist);
 
     bool CommuteInstruction(MachineBasicBlock::iterator &mi,
                             MachineFunction::iterator &mbbi,
-                            unsigned RegC, unsigned Dist,
-                            DenseMap<MachineInstr*, unsigned> &DistanceMap);
+                            unsigned RegB, unsigned RegC, unsigned Dist);
+
+    bool isProfitableToConv3Addr(unsigned RegA);
+
+    bool ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
+                            MachineBasicBlock::iterator &nmi,
+                            MachineFunction::iterator &mbbi,
+                            unsigned RegB, unsigned Dist);
+
+    void ProcessCopy(MachineInstr *MI, MachineBasicBlock *MBB,
+                     SmallPtrSet<MachineInstr*, 8> &Processed);
   public:
     static char ID; // Pass identification, replacement for typeid
     TwoAddressInstructionPass() : MachineFunctionPass(&ID) {}
@@ -156,7 +180,7 @@ bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB,
     break;
   }
 
-  if (!KillMI || KillMI->getParent() != MBB)
+  if (!KillMI || KillMI->getParent() != MBB || KillMI == MI)
     return false;
 
   // If any of the definitions are used by another instruction between the
@@ -220,7 +244,7 @@ static bool isTwoAddrUse(MachineInstr *UseMI, unsigned Reg) {
   for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) {
     MachineOperand &MO = UseMI->getOperand(i);
     if (MO.isReg() && MO.getReg() == Reg &&
-        (MO.isDef() || TID.getOperandConstraint(i, TOI::TIED_TO) != -1))
+        (MO.isDef() || UseMI->isRegTiedToDefOperand(i)))
       // Earlier use is a two-address one.
       return true;
   }
@@ -232,10 +256,9 @@ static bool isTwoAddrUse(MachineInstr *UseMI, unsigned Reg) {
 /// the register.
 bool
 TwoAddressInstructionPass::isProfitableToReMat(unsigned Reg,
-                                const TargetRegisterClass *RC,
-                                MachineInstr *MI, MachineInstr *DefMI,
-                                MachineBasicBlock *MBB, unsigned Loc,
-                                DenseMap<MachineInstr*, unsigned> &DistanceMap){
+                                         const TargetRegisterClass *RC,
+                                         MachineInstr *MI, MachineInstr *DefMI,
+                                         MachineBasicBlock *MBB, unsigned Loc) {
   bool OtherUse = false;
   for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
          UE = MRI->use_end(); UI != UE; ++UI) {
@@ -268,9 +291,8 @@ TwoAddressInstructionPass::isProfitableToReMat(unsigned Reg,
 /// two-address instruction which is being processed. It also returns the last
 /// def location by reference
 bool TwoAddressInstructionPass::NoUseAfterLastDef(unsigned Reg,
-                                 MachineBasicBlock *MBB, unsigned Dist,
-                                 DenseMap<MachineInstr*, unsigned> &DistanceMap,
-                                 unsigned &LastDef) {
+                                           MachineBasicBlock *MBB, unsigned Dist,
+                                           unsigned &LastDef) {
   LastDef = 0;
   unsigned LastUse = Dist;
   for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
@@ -291,12 +313,184 @@ bool TwoAddressInstructionPass::NoUseAfterLastDef(unsigned Reg,
   return !(LastUse > LastDef && LastUse < Dist);
 }
 
+MachineInstr *TwoAddressInstructionPass::FindLastUseInMBB(unsigned Reg,
+                                                         MachineBasicBlock *MBB,
+                                                         unsigned Dist) {
+  unsigned LastUseDist = 0;
+  MachineInstr *LastUse = 0;
+  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
+         E = MRI->reg_end(); I != E; ++I) {
+    MachineOperand &MO = I.getOperand();
+    MachineInstr *MI = MO.getParent();
+    if (MI->getParent() != MBB)
+      continue;
+    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
+    if (DI == DistanceMap.end())
+      continue;
+    if (DI->second >= Dist)
+      continue;
+
+    if (MO.isUse() && DI->second > LastUseDist) {
+      LastUse = DI->first;
+      LastUseDist = DI->second;
+    }
+  }
+  return LastUse;
+}
+
+/// isCopyToReg - Return true if the specified MI is a copy instruction or
+/// a extract_subreg instruction. It also returns the source and destination
+/// registers and whether they are physical registers by reference.
+static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
+                        unsigned &SrcReg, unsigned &DstReg,
+                        bool &IsSrcPhys, bool &IsDstPhys) {
+  SrcReg = 0;
+  DstReg = 0;
+  unsigned SrcSubIdx, DstSubIdx;
+  if (!TII->isMoveInstr(MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) {
+    if (MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG) {
+      DstReg = MI.getOperand(0).getReg();
+      SrcReg = MI.getOperand(1).getReg();
+    } else if (MI.getOpcode() == TargetInstrInfo::INSERT_SUBREG) {
+      DstReg = MI.getOperand(0).getReg();
+      SrcReg = MI.getOperand(2).getReg();
+    } else if (MI.getOpcode() == TargetInstrInfo::SUBREG_TO_REG) {
+      DstReg = MI.getOperand(0).getReg();
+      SrcReg = MI.getOperand(2).getReg();
+    }
+  }
+
+  if (DstReg) {
+    IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
+    IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
+    return true;
+  }
+  return false;
+}
+
+/// isKilled - Test if the given register value, which is used by the given
+/// instruction, is killed by the given instruction. This looks through
+/// coalescable copies to see if the original value is potentially not killed.
+///
+/// For example, in this code:
+///
+///   %reg1034 = copy %reg1024
+///   %reg1035 = copy %reg1025<kill>
+///   %reg1036 = add %reg1034<kill>, %reg1035<kill>
+///
+/// %reg1034 is not considered to be killed, since it is copied from a
+/// register which is not killed. Treating it as not killed lets the
+/// normal heuristics commute the (two-address) add, which lets
+/// coalescing eliminate the extra copy.
+///
+static bool isKilled(MachineInstr &MI, unsigned Reg,
+                     const MachineRegisterInfo *MRI,
+                     const TargetInstrInfo *TII) {
+  MachineInstr *DefMI = &MI;
+  for (;;) {
+    if (!DefMI->killsRegister(Reg))
+      return false;
+    if (TargetRegisterInfo::isPhysicalRegister(Reg))
+      return true;
+    MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
+    // If there are multiple defs, we can't do a simple analysis, so just
+    // go with what the kill flag says.
+    if (next(Begin) != MRI->def_end())
+      return true;
+    DefMI = &*Begin;
+    bool IsSrcPhys, IsDstPhys;
+    unsigned SrcReg,  DstReg;
+    // If the def is something other than a copy, then it isn't going to
+    // be coalesced, so follow the kill flag.
+    if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
+      return true;
+    Reg = SrcReg;
+  }
+}
+
+/// isTwoAddrUse - Return true if the specified MI uses the specified register
+/// as a two-address use. If so, return the destination register by reference.
+static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
+  const TargetInstrDesc &TID = MI.getDesc();
+  unsigned NumOps = (MI.getOpcode() == TargetInstrInfo::INLINEASM)
+    ? MI.getNumOperands() : TID.getNumOperands();
+  for (unsigned i = 0; i != NumOps; ++i) {
+    const MachineOperand &MO = MI.getOperand(i);
+    if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
+      continue;
+    unsigned ti;
+    if (MI.isRegTiedToDefOperand(i, &ti)) {
+      DstReg = MI.getOperand(ti).getReg();
+      return true;
+    }
+  }
+  return false;
+}
+
+/// findOnlyInterestingUse - Given a register, if has a single in-basic block
+/// use, return the use instruction if it's a copy or a two-address use.
+static
+MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB,
+                                     MachineRegisterInfo *MRI,
+                                     const TargetInstrInfo *TII,
+                                     bool &IsCopy,
+                                     unsigned &DstReg, bool &IsDstPhys) {
+  MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg);
+  if (UI == MRI->use_end())
+    return 0;
+  MachineInstr &UseMI = *UI;
+  if (++UI != MRI->use_end())
+    // More than one use.
+    return 0;
+  if (UseMI.getParent() != MBB)
+    return 0;
+  unsigned SrcReg;
+  bool IsSrcPhys;
+  if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
+    IsCopy = true;
+    return &UseMI;
+  }
+  IsDstPhys = false;
+  if (isTwoAddrUse(UseMI, Reg, DstReg)) {
+    IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
+    return &UseMI;
+  }
+  return 0;
+}
+
+/// getMappedReg - Return the physical register the specified virtual register
+/// might be mapped to.
+static unsigned
+getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) {
+  while (TargetRegisterInfo::isVirtualRegister(Reg))  {
+    DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg);
+    if (SI == RegMap.end())
+      return 0;
+    Reg = SI->second;
+  }
+  if (TargetRegisterInfo::isPhysicalRegister(Reg))
+    return Reg;
+  return 0;
+}
+
+/// regsAreCompatible - Return true if the two registers are equal or aliased.
+///
+static bool
+regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
+  if (RegA == RegB)
+    return true;
+  if (!RegA || !RegB)
+    return false;
+  return TRI->regsOverlap(RegA, RegB);
+}
+
+
 /// isProfitableToReMat - Return true if it's potentially profitable to commute
 /// the two-address instruction that's being processed.
 bool
 TwoAddressInstructionPass::isProfitableToCommute(unsigned regB, unsigned regC,
-                MachineInstr *MI, MachineBasicBlock *MBB,
-                unsigned Dist, DenseMap<MachineInstr*, unsigned> &DistanceMap) {
+                                       MachineInstr *MI, MachineBasicBlock *MBB,
+                                       unsigned Dist) {
   // Determine if it's profitable to commute this two address instruction. In
   // general, we want no uses between this instruction and the definition of
   // the two-address register.
@@ -322,16 +516,31 @@ TwoAddressInstructionPass::isProfitableToCommute(unsigned regB, unsigned regC,
   // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
   // let's see if it's worth commuting it.
 
+  // Look for situations like this:
+  // %reg1024<def> = MOV r1
+  // %reg1025<def> = MOV r0
+  // %reg1026<def> = ADD %reg1024, %reg1025
+  // r0            = MOV %reg1026
+  // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
+  unsigned FromRegB = getMappedReg(regB, SrcRegMap);
+  unsigned FromRegC = getMappedReg(regC, SrcRegMap);
+  unsigned ToRegB = getMappedReg(regB, DstRegMap);
+  unsigned ToRegC = getMappedReg(regC, DstRegMap);
+  if (!regsAreCompatible(FromRegB, ToRegB, TRI) &&
+      (regsAreCompatible(FromRegB, ToRegC, TRI) ||
+       regsAreCompatible(FromRegC, ToRegB, TRI)))
+    return true;
+
   // If there is a use of regC between its last def (could be livein) and this
   // instruction, then bail.
   unsigned LastDefC = 0;
-  if (!NoUseAfterLastDef(regC, MBB, Dist, DistanceMap, LastDefC))
+  if (!NoUseAfterLastDef(regC, MBB, Dist, LastDefC))
     return false;
 
   // If there is a use of regB between its last def (could be livein) and this
   // instruction, then go ahead and make this transformation.
   unsigned LastDefB = 0;
-  if (!NoUseAfterLastDef(regB, MBB, Dist, DistanceMap, LastDefB))
+  if (!NoUseAfterLastDef(regB, MBB, Dist, LastDefB))
     return true;
 
   // Since there are no intervening uses for both registers, then commute
@@ -344,9 +553,8 @@ TwoAddressInstructionPass::isProfitableToCommute(unsigned regB, unsigned regC,
 /// successful.
 bool
 TwoAddressInstructionPass::CommuteInstruction(MachineBasicBlock::iterator &mi,
-                                              MachineFunction::iterator &mbbi,
-                                              unsigned RegC, unsigned Dist,
-                               DenseMap<MachineInstr*, unsigned> &DistanceMap) {
+                               MachineFunction::iterator &mbbi,
+                               unsigned RegB, unsigned RegC, unsigned Dist) {
   MachineInstr *MI = mi;
   DOUT << "2addr: COMMUTING  : " << *MI;
   MachineInstr *NewMI = TII->commuteInstruction(MI);
@@ -368,6 +576,161 @@ TwoAddressInstructionPass::CommuteInstruction(MachineBasicBlock::iterator &mi,
     mi = NewMI;
     DistanceMap.insert(std::make_pair(NewMI, Dist));
   }
+
+  // Update source register map.
+  unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
+  if (FromRegC) {
+    unsigned RegA = MI->getOperand(0).getReg();
+    SrcRegMap[RegA] = FromRegC;
+  }
+
+  return true;
+}
+
+/// isProfitableToConv3Addr - Return true if it is profitable to convert the
+/// given 2-address instruction to a 3-address one.
+bool
+TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA) {
+  // Look for situations like this:
+  // %reg1024<def> = MOV r1
+  // %reg1025<def> = MOV r0
+  // %reg1026<def> = ADD %reg1024, %reg1025
+  // r2            = MOV %reg1026
+  // Turn ADD into a 3-address instruction to avoid a copy.
+  unsigned FromRegA = getMappedReg(RegA, SrcRegMap);
+  unsigned ToRegA = getMappedReg(RegA, DstRegMap);
+  return (FromRegA && ToRegA && !regsAreCompatible(FromRegA, ToRegA, TRI));
+}
+
+/// ConvertInstTo3Addr - Convert the specified two-address instruction into a
+/// three address one. Return true if this transformation was successful.
+bool
+TwoAddressInstructionPass::ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
+                                              MachineBasicBlock::iterator &nmi,
+                                              MachineFunction::iterator &mbbi,
+                                              unsigned RegB, unsigned Dist) {
+  MachineInstr *NewMI = TII->convertToThreeAddress(mbbi, mi, LV);
+  if (NewMI) {
+    DOUT << "2addr: CONVERTING 2-ADDR: " << *mi;
+    DOUT << "2addr:         TO 3-ADDR: " << *NewMI;
+    bool Sunk = false;
+
+    if (NewMI->findRegisterUseOperand(RegB, false, TRI))
+      // FIXME: Temporary workaround. If the new instruction doesn't
+      // uses RegB, convertToThreeAddress must have created more
+      // then one instruction.
+      Sunk = Sink3AddrInstruction(mbbi, NewMI, RegB, mi);
+
+    mbbi->erase(mi); // Nuke the old inst.
+
+    if (!Sunk) {
+      DistanceMap.insert(std::make_pair(NewMI, Dist));
+      mi = NewMI;
+      nmi = next(mi);
+    }
+    return true;
+  }
+
+  return false;
+}
+
+/// ProcessCopy - If the specified instruction is not yet processed, process it
+/// if it's a copy. For a copy instruction, we find the physical registers the
+/// source and destination registers might be mapped to. These are kept in
+/// point-to maps used to determine future optimizations. e.g.
+/// v1024 = mov r0
+/// v1025 = mov r1
+/// v1026 = add v1024, v1025
+/// r1    = mov r1026
+/// If 'add' is a two-address instruction, v1024, v1026 are both potentially
+/// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
+/// potentially joined with r1 on the output side. It's worthwhile to commute
+/// 'add' to eliminate a copy.
+void TwoAddressInstructionPass::ProcessCopy(MachineInstr *MI,
+                                     MachineBasicBlock *MBB,
+                                     SmallPtrSet<MachineInstr*, 8> &Processed) {
+  if (Processed.count(MI))
+    return;
+
+  bool IsSrcPhys, IsDstPhys;
+  unsigned SrcReg, DstReg;
+  if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
+    return;
+
+  if (IsDstPhys && !IsSrcPhys)
+    DstRegMap.insert(std::make_pair(SrcReg, DstReg));
+  else if (!IsDstPhys && IsSrcPhys) {
+    bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
+    if (!isNew)
+      assert(SrcRegMap[DstReg] == SrcReg &&
+             "Can't map to two src physical registers!");
+
+    SmallVector<unsigned, 4> VirtRegPairs;
+    bool IsCopy = false;
+    unsigned NewReg = 0;
+    while (MachineInstr *UseMI = findOnlyInterestingUse(DstReg, MBB, MRI,TII,
+                                                   IsCopy, NewReg, IsDstPhys)) {
+      if (IsCopy) {
+        if (!Processed.insert(UseMI))
+          break;
+      }
+
+      DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
+      if (DI != DistanceMap.end())
+        // Earlier in the same MBB.Reached via a back edge.
+        break;
+
+      if (IsDstPhys) {
+        VirtRegPairs.push_back(NewReg);
+        break;
+      }
+      bool isNew = SrcRegMap.insert(std::make_pair(NewReg, DstReg)).second;
+      if (!isNew)
+        assert(SrcRegMap[NewReg] == DstReg &&
+               "Can't map to two src physical registers!");
+      VirtRegPairs.push_back(NewReg);
+      DstReg = NewReg;
+    }
+
+    if (!VirtRegPairs.empty()) {
+      unsigned ToReg = VirtRegPairs.back();
+      VirtRegPairs.pop_back();
+      while (!VirtRegPairs.empty()) {
+        unsigned FromReg = VirtRegPairs.back();
+        VirtRegPairs.pop_back();
+        bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
+        if (!isNew)
+          assert(DstRegMap[FromReg] == ToReg &&
+                 "Can't map to two dst physical registers!");
+        ToReg = FromReg;
+      }
+    }
+  }
+
+  Processed.insert(MI);
+}
+
+/// isSafeToDelete - If the specified instruction does not produce any side
+/// effects and all of its defs are dead, then it's safe to delete.
+static bool isSafeToDelete(MachineInstr *MI, unsigned Reg,
+                           const TargetInstrInfo *TII,
+                           SmallVector<unsigned, 4> &Kills) {
+  const TargetInstrDesc &TID = MI->getDesc();
+  if (TID.mayStore() || TID.isCall())
+    return false;
+  if (TID.isTerminator() || TID.hasUnmodeledSideEffects())
+    return false;
+
+  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+    MachineOperand &MO = MI->getOperand(i);
+    if (!MO.isReg())
+      continue;
+    if (MO.isDef() && !MO.isDead())
+      return false;
+    if (MO.isUse() && MO.getReg() != Reg && MO.isKill())
+      Kills.push_back(MO.getReg());
+  }
+
   return true;
 }
 
@@ -390,14 +753,14 @@ bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
   BitVector ReMatRegs;
   ReMatRegs.resize(MRI->getLastVirtReg()+1);
 
-  // DistanceMap - Keep track the distance of a MI from the start of the
-  // current basic block.
-  DenseMap<MachineInstr*, unsigned> DistanceMap;
-
+  SmallPtrSet<MachineInstr*, 8> Processed;
   for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end();
        mbbi != mbbe; ++mbbi) {
     unsigned Dist = 0;
     DistanceMap.clear();
+    SrcRegMap.clear();
+    DstRegMap.clear();
+    Processed.clear();
     for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end();
          mi != me; ) {
       MachineBasicBlock::iterator nmi = next(mi);
@@ -405,9 +768,14 @@ bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
       bool FirstTied = true;
 
       DistanceMap.insert(std::make_pair(mi, ++Dist));
-      for (unsigned si = 1, e = TID.getNumOperands(); si < e; ++si) {
-        int ti = TID.getOperandConstraint(si, TOI::TIED_TO);
-        if (ti == -1)
+
+      ProcessCopy(&*mi, &*mbbi, Processed);
+
+      unsigned NumOps = (mi->getOpcode() == TargetInstrInfo::INLINEASM)
+        ? mi->getNumOperands() : TID.getNumOperands();
+      for (unsigned si = 0; si < NumOps; ++si) {
+        unsigned ti = 0;
+        if (!mi->isRegTiedToDefOperand(si, &ti))
           continue;
 
         if (FirstTied) {
@@ -431,8 +799,7 @@ bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
           unsigned regA = mi->getOperand(ti).getReg();
           unsigned regB = mi->getOperand(si).getReg();
 
-          assert(TargetRegisterInfo::isVirtualRegister(regA) &&
-                 TargetRegisterInfo::isVirtualRegister(regB) &&
+          assert(TargetRegisterInfo::isVirtualRegister(regB) &&
                  "cannot update physical register live information");
 
 #ifndef NDEBUG
@@ -440,7 +807,7 @@ bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
           // b + a for example) because our transformation will not work. This
           // should never occur because we are in SSA form.
           for (unsigned i = 0; i != mi->getNumOperands(); ++i)
-            assert((int)i == ti ||
+            assert(i == ti ||
                    !mi->getOperand(i).isReg() ||
                    mi->getOperand(i).getReg() != regA);
 #endif
@@ -449,7 +816,64 @@ bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
           // rearrange the code to make it so.  Making it the killing user will
           // allow us to coalesce A and B together, eliminating the copy we are
           // about to insert.
-          if (!mi->killsRegister(regB)) {
+          if (!isKilled(*mi, regB, MRI, TII)) {
+            // If regA is dead and the instruction can be deleted, just delete
+            // it so it doesn't clobber regB.
+            SmallVector<unsigned, 4> Kills;
+            if (mi->getOperand(ti).isDead() &&
+                isSafeToDelete(mi, regB, TII, Kills)) {
+              SmallVector<std::pair<std::pair<unsigned, bool>
+                ,MachineInstr*>, 4> NewKills;
+              bool ReallySafe = true;
+              // If this instruction kills some virtual registers, we need
+              // update the kill information. If it's not possible to do so,
+              // then bail out.
+              while (!Kills.empty()) {
+                unsigned Kill = Kills.back();
+                Kills.pop_back();
+                if (TargetRegisterInfo::isPhysicalRegister(Kill)) {
+                  ReallySafe = false;
+                  break;
+                }
+                MachineInstr *LastKill = FindLastUseInMBB(Kill, &*mbbi, Dist);
+                if (LastKill) {
+                  bool isModRef = LastKill->modifiesRegister(Kill);
+                  NewKills.push_back(std::make_pair(std::make_pair(Kill,isModRef),
+                                                    LastKill));
+                } else {
+                  ReallySafe = false;
+                  break;
+                }
+              }
+
+              if (ReallySafe) {
+                if (LV) {
+                  while (!NewKills.empty()) {
+                    MachineInstr *NewKill = NewKills.back().second;
+                    unsigned Kill = NewKills.back().first.first;
+                    bool isDead = NewKills.back().first.second;
+                    NewKills.pop_back();
+                    if (LV->removeVirtualRegisterKilled(Kill,  mi)) {
+                      if (isDead)
+                        LV->addVirtualRegisterDead(Kill, NewKill);
+                      else
+                        LV->addVirtualRegisterKilled(Kill, NewKill);
+                    }
+                  }
+                }
+
+                // We're really going to nuke the old inst. If regB was marked
+                // as a kill we need to update its Kills list.
+                if (mi->getOperand(si).isKill())
+                  LV->removeVirtualRegisterKilled(regB, mi);
+
+                mbbi->erase(mi); // Nuke the old inst.
+                mi = nmi;
+                ++NumDeletes;
+                break; // Done with this instruction.
+              }
+            }
+
             // If this instruction is commutative, check to see if C dies.  If
             // so, swap the B and C operands.  This makes the live ranges of A
             // and C joinable.
@@ -458,8 +882,8 @@ bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
               assert(mi->getOperand(3-si).isReg() &&
                      "Not a proper commutative instruction!");
               unsigned regC = mi->getOperand(3-si).getReg();
-              if (mi->killsRegister(regC)) {
-                if (CommuteInstruction(mi, mbbi, regC, Dist, DistanceMap)) {
+              if (isKilled(*mi, regC, MRI, TII)) {
+                if (CommuteInstruction(mi, mbbi, regB, regC, Dist)) {
                   ++NumCommuted;
                   regB = regC;
                   goto InstructionRearranged;
@@ -477,26 +901,7 @@ bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
                 assert(TID.getOperandConstraint(i, TOI::TIED_TO) == -1);
 #endif
 
-              MachineInstr *NewMI = TII->convertToThreeAddress(mbbi, mi, LV);
-              if (NewMI) {
-                DOUT << "2addr: CONVERTING 2-ADDR: " << *mi;
-                DOUT << "2addr:         TO 3-ADDR: " << *NewMI;
-                bool Sunk = false;
-
-                if (NewMI->findRegisterUseOperand(regB, false, TRI))
-                  // FIXME: Temporary workaround. If the new instruction doesn't
-                  // uses regB, convertToThreeAddress must have created more
-                  // then one instruction.
-                  Sunk = Sink3AddrInstruction(mbbi, NewMI, regB, mi);
-
-                mbbi->erase(mi); // Nuke the old inst.
-
-                if (!Sunk) {
-                  DistanceMap.insert(std::make_pair(NewMI, Dist));
-                  mi = NewMI;
-                  nmi = next(mi);
-                }
-
+              if (ConvertInstTo3Addr(mi, nmi, mbbi, regB, Dist)) {
                 ++NumConvertedTo3Addr;
                 break; // Done with this instruction.
               }
@@ -506,29 +911,41 @@ bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
           // If it's profitable to commute the instruction, do so.
           if (TID.isCommutable() && mi->getNumOperands() >= 3) {
             unsigned regC = mi->getOperand(3-si).getReg();
-            if (isProfitableToCommute(regB, regC, mi, mbbi, Dist, DistanceMap))
-              if (CommuteInstruction(mi, mbbi, regC, Dist, DistanceMap)) {
+            if (isProfitableToCommute(regB, regC, mi, mbbi, Dist))
+              if (CommuteInstruction(mi, mbbi, regB, regC, Dist)) {
                 ++NumAggrCommuted;
                 ++NumCommuted;
                 regB = regC;
+                goto InstructionRearranged;
               }
           }
 
+          // If it's profitable to convert the 2-address instruction to a
+          // 3-address one, do so.
+          if (TID.isConvertibleTo3Addr() && isProfitableToConv3Addr(regA)) {
+            if (ConvertInstTo3Addr(mi, nmi, mbbi, regB, Dist)) {
+              ++NumConvertedTo3Addr;
+              break; // Done with this instruction.
+            }
+          }
+
         InstructionRearranged:
-          const TargetRegisterClass* rc = MRI->getRegClass(regA);
+          const TargetRegisterClass* rc = MRI->getRegClass(regB);
           MachineInstr *DefMI = MRI->getVRegDef(regB);
           // If it's safe and profitable, remat the definition instead of
           // copying it.
           if (DefMI &&
               DefMI->getDesc().isAsCheapAsAMove() &&
               DefMI->isSafeToReMat(TII, regB) &&
-              isProfitableToReMat(regB, rc, mi, DefMI, mbbi, Dist,DistanceMap)){
+              isProfitableToReMat(regB, rc, mi, DefMI, mbbi, Dist)){
             DEBUG(cerr << "2addr: REMATTING : " << *DefMI << "\n");
             TII->reMaterialize(*mbbi, mi, regA, DefMI);
             ReMatRegs.set(regB);
             ++NumReMats;
           } else {
-            TII->copyRegToReg(*mbbi, mi, regA, regB, rc, rc);
+            bool Emitted = TII->copyRegToReg(*mbbi, mi, regA, regB, rc, rc);
+            (void)Emitted;
+            assert(Emitted && "Unable to issue a copy instruction!\n");
           }
 
           MachineBasicBlock::iterator prevMI = prior(mi);
@@ -538,11 +955,6 @@ bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
 
           // Update live variables for regB.
           if (LV) {
-            LiveVariables::VarInfo& varInfoB = LV->getVarInfo(regB);
-
-            // regB is used in this BB.
-            varInfoB.UsedBlocks[mbbi->getNumber()] = true;
-
             if (LV->removeVirtualRegisterKilled(regB,  mi))
               LV->addVirtualRegisterKilled(regB, prevMI);