Handle load/store of misaligned vectors that are the
[oota-llvm.git] / lib / CodeGen / StrongPHIElimination.cpp
index c5e9c343fc7c92a05b9f3ab077bacab209d8684d..cdf827d50e6e9b055f4f2119a5fb36cf2f1ba2f4 100644 (file)
@@ -2,8 +2,8 @@
 //
 //                     The LLVM Compiler Infrastructure
 //
-// This file was developed by Owen Anderson and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
 //
 //===----------------------------------------------------------------------===//
 //
 #include "llvm/CodeGen/MachineDominators.h"
 #include "llvm/CodeGen/MachineFunctionPass.h"
 #include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
 #include "llvm/Target/TargetInstrInfo.h"
 #include "llvm/Target/TargetMachine.h"
+#include "llvm/ADT/DepthFirstIterator.h"
 #include "llvm/ADT/Statistic.h"
 #include "llvm/Support/Compiler.h"
 using namespace llvm;
@@ -37,14 +39,33 @@ namespace {
     static char ID; // Pass identification, replacement for typeid
     StrongPHIElimination() : MachineFunctionPass((intptr_t)&ID) {}
 
+    // Waiting stores, for each MBB, the set of copies that need to
+    // be inserted into that MBB
+    DenseMap<MachineBasicBlock*,
+             std::map<unsigned, unsigned> > Waiting;
+    
+    // Stacks holds the renaming stack for each register
+    std::map<unsigned, std::vector<unsigned> > Stacks;
+    
+    // Registers in UsedByAnother are PHI nodes that are themselves
+    // used as operands to another another PHI node
+    std::set<unsigned> UsedByAnother;
+    
+    // RenameSets are the sets of operands to a PHI (the defining instruction
+    // of the key) that can be renamed without copies
+    std::map<unsigned, std::set<unsigned> > RenameSets;
+
+    // Store the DFS-in number of each block
+    DenseMap<MachineBasicBlock*, unsigned> preorder;
+    
+    // Store the DFS-out number of each block
+    DenseMap<MachineBasicBlock*, unsigned> maxpreorder;
+
     bool runOnMachineFunction(MachineFunction &Fn);
     
     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
-      AU.addPreserved<LiveVariables>();
-      AU.addPreservedID(PHIEliminationID);
       AU.addRequired<MachineDominatorTree>();
       AU.addRequired<LiveVariables>();
-      AU.setPreservesAll();
       MachineFunctionPass::getAnalysisUsage(AU);
     }
     
@@ -52,20 +73,33 @@ namespace {
       preorder.clear();
       maxpreorder.clear();
       
-      waiting.clear();
+      Waiting.clear();
+      Stacks.clear();
+      UsedByAnother.clear();
+      RenameSets.clear();
     }
 
   private:
+    
+    /// DomForestNode - Represents a node in the "dominator forest".  This is
+    /// a forest in which the nodes represent registers and the edges
+    /// represent a dominance relation in the block defining those registers.
     struct DomForestNode {
     private:
+      // Store references to our children
       std::vector<DomForestNode*> children;
+      // The register we represent
       unsigned reg;
       
+      // Add another node as our child
       void addChild(DomForestNode* DFN) { children.push_back(DFN); }
       
     public:
       typedef std::vector<DomForestNode*>::iterator iterator;
       
+      // Create a DomForestNode by providing the register it represents, and
+      // the node to be its parent.  The virtual root node has register 0
+      // and a null parent.
       DomForestNode(unsigned r, DomForestNode* parent) : reg(r) {
         if (parent)
           parent->addChild(this);
@@ -76,23 +110,25 @@ namespace {
           delete *I;
       }
       
+      /// getReg - Return the regiser that this node represents
       inline unsigned getReg() { return reg; }
       
+      // Provide iterator access to our children
       inline DomForestNode::iterator begin() { return children.begin(); }
       inline DomForestNode::iterator end() { return children.end(); }
     };
     
-    DenseMap<MachineBasicBlock*, unsigned> preorder;
-    DenseMap<MachineBasicBlock*, unsigned> maxpreorder;
-    
-    DenseMap<MachineBasicBlock*, std::vector<MachineInstr*> > waiting;
-    
-    
     void computeDFS(MachineFunction& MF);
-    void processPHI(MachineInstr* P);
-    
-    std::vector<DomForestNode*> computeDomForest(std::set<unsigned>& instrs);
+    void processBlock(MachineBasicBlock* MBB);
     
+    std::vector<DomForestNode*> computeDomForest(std::set<unsigned>& instrs,
+                                                 MachineRegisterInfo& MRI);
+    void processPHIUnion(MachineInstr* Inst,
+                         std::set<unsigned>& PHIUnion,
+                         std::vector<StrongPHIElimination::DomForestNode*>& DF,
+                         std::vector<std::pair<unsigned, unsigned> >& locals);
+    void ScheduleCopies(MachineBasicBlock* MBB, std::set<unsigned>& pushed);
+    void InsertCopies(MachineBasicBlock* MBB, std::set<MachineBasicBlock*>& v);
   };
 
   char StrongPHIElimination::ID = 0;
@@ -146,91 +182,586 @@ void StrongPHIElimination::computeDFS(MachineFunction& MF) {
   }
 }
 
+/// PreorderSorter - a helper class that is used to sort registers
+/// according to the preorder number of their defining blocks
 class PreorderSorter {
 private:
   DenseMap<MachineBasicBlock*, unsigned>& preorder;
-  LiveVariables& LV;
+  MachineRegisterInfo& MRI;
   
 public:
   PreorderSorter(DenseMap<MachineBasicBlock*, unsigned>& p,
-                LiveVariables& L) : preorder(p), LV(L) { }
+                MachineRegisterInfo& M) : preorder(p), MRI(M) { }
   
   bool operator()(unsigned A, unsigned B) {
     if (A == B)
       return false;
     
-    MachineBasicBlock* ABlock = LV.getVarInfo(A).DefInst->getParent();
-    MachineBasicBlock* BBlock = LV.getVarInfo(A).DefInst->getParent();
+    MachineBasicBlock* ABlock = MRI.getVRegDef(A)->getParent();
+    MachineBasicBlock* BBlock = MRI.getVRegDef(B)->getParent();
     
     if (preorder[ABlock] < preorder[BBlock])
       return true;
     else if (preorder[ABlock] > preorder[BBlock])
       return false;
     
-    assert(0 && "Error sorting by dominance!");
     return false;
   }
 };
 
+/// computeDomForest - compute the subforest of the DomTree corresponding
+/// to the defining blocks of the registers in question
 std::vector<StrongPHIElimination::DomForestNode*>
-StrongPHIElimination::computeDomForest(std::set<unsigned>& regs) {
-  LiveVariables& LV = getAnalysis<LiveVariables>();
-  
+StrongPHIElimination::computeDomForest(std::set<unsigned>& regs, 
+                                       MachineRegisterInfo& MRI) {
+  // Begin by creating a virtual root node, since the actual results
+  // may well be a forest.  Assume this node has maximum DFS-out number.
   DomForestNode* VirtualRoot = new DomForestNode(0, 0);
   maxpreorder.insert(std::make_pair((MachineBasicBlock*)0, ~0UL));
   
+  // Populate a worklist with the registers
   std::vector<unsigned> worklist;
   worklist.reserve(regs.size());
   for (std::set<unsigned>::iterator I = regs.begin(), E = regs.end();
        I != E; ++I)
     worklist.push_back(*I);
   
-  PreorderSorter PS(preorder, LV);
+  // Sort the registers by the DFS-in number of their defining block
+  PreorderSorter PS(preorder, MRI);
   std::sort(worklist.begin(), worklist.end(), PS);
   
+  // Create a "current parent" stack, and put the virtual root on top of it
   DomForestNode* CurrentParent = VirtualRoot;
   std::vector<DomForestNode*> stack;
   stack.push_back(VirtualRoot);
   
+  // Iterate over all the registers in the previously computed order
   for (std::vector<unsigned>::iterator I = worklist.begin(), E = worklist.end();
        I != E; ++I) {
-    unsigned pre = preorder[LV.getVarInfo(*I).DefInst->getParent()];
-    MachineBasicBlock* parentBlock =
-      LV.getVarInfo(CurrentParent->getReg()).DefInst->getParent();
+    unsigned pre = preorder[MRI.getVRegDef(*I)->getParent()];
+    MachineBasicBlock* parentBlock = CurrentParent->getReg() ?
+                 MRI.getVRegDef(CurrentParent->getReg())->getParent() :
+                 0;
     
+    // If the DFS-in number of the register is greater than the DFS-out number
+    // of the current parent, repeatedly pop the parent stack until it isn't.
     while (pre > maxpreorder[parentBlock]) {
       stack.pop_back();
       CurrentParent = stack.back();
       
-      parentBlock = LV.getVarInfo(CurrentParent->getReg()).DefInst->getParent();
+      parentBlock = CurrentParent->getReg() ?
+                   MRI.getVRegDef(CurrentParent->getReg())->getParent() :
+                   0;
     }
     
+    // Now that we've found the appropriate parent, create a DomForestNode for
+    // this register and attach it to the forest
     DomForestNode* child = new DomForestNode(*I, CurrentParent);
+    
+    // Push this new node on the "current parent" stack
     stack.push_back(child);
     CurrentParent = child;
   }
   
+  // Return a vector containing the children of the virtual root node
   std::vector<DomForestNode*> ret;
   ret.insert(ret.end(), VirtualRoot->begin(), VirtualRoot->end());
   return ret;
 }
 
-void StrongPHIElimination::processPHI(MachineInstr* P) {
+/// isLiveIn - helper method that determines, from a VarInfo, if a register
+/// is live into a block
+static bool isLiveIn(unsigned r, MachineBasicBlock* MBB,
+                     MachineRegisterInfo& MRI, LiveVariables& LV) {
+  LiveVariables::VarInfo V = LV.getVarInfo(r);
+  if (V.AliveBlocks.test(MBB->getNumber()))
+    return true;
+  
+  if (MRI.getVRegDef(r)->getParent() != MBB &&
+      V.UsedBlocks.test(MBB->getNumber()))
+    return true;
+  
+  return false;
+}
+
+/// isLiveOut - help method that determines, from a VarInfo, if a register is
+/// live out of a block.
+static bool isLiveOut(unsigned r, MachineBasicBlock* MBB,
+                      MachineRegisterInfo& MRI, LiveVariables& LV) {
+  LiveVariables::VarInfo& V = LV.getVarInfo(r);
+  if (MBB == MRI.getVRegDef(r)->getParent() ||
+      V.UsedBlocks.test(MBB->getNumber())) {
+    for (std::vector<MachineInstr*>::iterator I = V.Kills.begin(), 
+         E = V.Kills.end(); I != E; ++I)
+      if ((*I)->getParent() == MBB)
+        return false;
+    
+    return true;
+  }
+  
+  return false;
+}
+
+/// interferes - checks for local interferences by scanning a block.  The only
+/// trick parameter is 'mode' which tells it the relationship of the two
+/// registers. 0 - defined in the same block, 1 - first properly dominates
+/// second, 2 - second properly dominates first 
+static bool interferes(unsigned a, unsigned b, MachineBasicBlock* scan,
+                       LiveVariables& LV, unsigned mode) {
+  MachineInstr* def = 0;
+  MachineInstr* kill = 0;
+  
+  // The code is still in SSA form at this point, so there is only one
+  // definition per VReg.  Thus we can safely use MRI->getVRegDef().
+  const MachineRegisterInfo* MRI = &scan->getParent()->getRegInfo();
+  
+  bool interference = false;
+  
+  // Wallk the block, checking for interferences
+  for (MachineBasicBlock::iterator MBI = scan->begin(), MBE = scan->end();
+       MBI != MBE; ++MBI) {
+    MachineInstr* curr = MBI;
+    
+    // Same defining block...
+    if (mode == 0) {
+      if (curr == MRI->getVRegDef(a)) {
+        // If we find our first definition, save it
+        if (!def) {
+          def = curr;
+        // If there's already an unkilled definition, then 
+        // this is an interference
+        } else if (!kill) {
+          interference = true;
+          break;
+        // If there's a definition followed by a KillInst, then
+        // they can't interfere
+        } else {
+          interference = false;
+          break;
+        }
+      // Symmetric with the above
+      } else if (curr == MRI->getVRegDef(b)) {
+        if (!def) {
+          def = curr;
+        } else if (!kill) {
+          interference = true;
+          break;
+        } else {
+          interference = false;
+          break;
+        }
+      // Store KillInsts if they match up with the definition
+      } else if (LV.KillsRegister(curr, a)) {
+        if (def == MRI->getVRegDef(a)) {
+          kill = curr;
+        } else if (LV.KillsRegister(curr, b)) {
+          if (def == MRI->getVRegDef(b)) {
+            kill = curr;
+          }
+        }
+      }
+    // First properly dominates second...
+    } else if (mode == 1) {
+      if (curr == MRI->getVRegDef(b)) {
+        // Definition of second without kill of first is an interference
+        if (!kill) {
+          interference = true;
+          break;
+        // Definition after a kill is a non-interference
+        } else {
+          interference = false;
+          break;
+        }
+      // Save KillInsts of First
+      } else if (LV.KillsRegister(curr, a)) {
+        kill = curr;
+      }
+    // Symmetric with the above
+    } else if (mode == 2) {
+      if (curr == MRI->getVRegDef(a)) {
+        if (!kill) {
+          interference = true;
+          break;
+        } else {
+          interference = false;
+          break;
+        }
+      } else if (LV.KillsRegister(curr, b)) {
+        kill = curr;
+      }
+    }
+  }
+  
+  return interference;
+}
+
+/// processBlock - Determine how to break up PHIs in the current block.  Each
+/// PHI is broken up by some combination of renaming its operands and inserting
+/// copies.  This method is responsible for determining which operands receive
+/// which treatment.
+void StrongPHIElimination::processBlock(MachineBasicBlock* MBB) {
+  LiveVariables& LV = getAnalysis<LiveVariables>();
+  MachineRegisterInfo& MRI = MBB->getParent()->getRegInfo();
+  
+  // Holds names that have been added to a set in any PHI within this block
+  // before the current one.
+  std::set<unsigned> ProcessedNames;
+  
+  // Iterate over all the PHI nodes in this block
+  MachineBasicBlock::iterator P = MBB->begin();
+  while (P != MBB->end() && P->getOpcode() == TargetInstrInfo::PHI) {
+    unsigned DestReg = P->getOperand(0).getReg();
+
+    // PHIUnion is the set of incoming registers to the PHI node that
+    // are going to be renames rather than having copies inserted.  This set
+    // is refinded over the course of this function.  UnionedBlocks is the set
+    // of corresponding MBBs.
+    std::set<unsigned> PHIUnion;
+    std::set<MachineBasicBlock*> UnionedBlocks;
+  
+    // Iterate over the operands of the PHI node
+    for (int i = P->getNumOperands() - 1; i >= 2; i-=2) {
+      unsigned SrcReg = P->getOperand(i-1).getReg();
+    
+      // Check for trivial interferences via liveness information, allowing us
+      // to avoid extra work later.  Any registers that interfere cannot both
+      // be in the renaming set, so choose one and add copies for it instead.
+      // The conditions are:
+      //   1) if the operand is live into the PHI node's block OR
+      //   2) if the PHI node is live out of the operand's defining block OR
+      //   3) if the operand is itself a PHI node and the original PHI is
+      //      live into the operand's defining block OR
+      //   4) if the operand is already being renamed for another PHI node
+      //      in this block OR
+      //   5) if any two operands are defined in the same block, insert copies
+      //      for one of them
+      if (isLiveIn(SrcReg, P->getParent(), MRI, LV) ||
+          isLiveOut(P->getOperand(0).getReg(),
+                    MRI.getVRegDef(SrcReg)->getParent(), MRI, LV) ||
+          ( MRI.getVRegDef(SrcReg)->getOpcode() == TargetInstrInfo::PHI &&
+            isLiveIn(P->getOperand(0).getReg(),
+                     MRI.getVRegDef(SrcReg)->getParent(), MRI, LV) ) ||
+          ProcessedNames.count(SrcReg) ||
+          UnionedBlocks.count(MRI.getVRegDef(SrcReg)->getParent())) {
+        
+        // Add a copy for the selected register
+        MachineBasicBlock* From = P->getOperand(i).getMBB();
+        Waiting[From].insert(std::make_pair(SrcReg, DestReg));
+        UsedByAnother.insert(SrcReg);
+      } else {
+        // Otherwise, add it to the renaming set
+        PHIUnion.insert(SrcReg);
+        UnionedBlocks.insert(MRI.getVRegDef(SrcReg)->getParent());
+      }
+    }
+    
+    // Compute the dominator forest for the renaming set.  This is a forest
+    // where the nodes are the registers and the edges represent dominance 
+    // relations between the defining blocks of the registers
+    std::vector<StrongPHIElimination::DomForestNode*> DF = 
+                                                computeDomForest(PHIUnion, MRI);
+    
+    // Walk DomForest to resolve interferences at an inter-block level.  This
+    // will remove registers from the renaming set (and insert copies for them)
+    // if interferences are found.
+    std::vector<std::pair<unsigned, unsigned> > localInterferences;
+    processPHIUnion(P, PHIUnion, DF, localInterferences);
+    
+    // The dominator forest walk may have returned some register pairs whose
+    // interference cannot be determines from dominator analysis.  We now 
+    // examine these pairs for local interferences.
+    for (std::vector<std::pair<unsigned, unsigned> >::iterator I =
+        localInterferences.begin(), E = localInterferences.end(); I != E; ++I) {
+      std::pair<unsigned, unsigned> p = *I;
+      
+      MachineDominatorTree& MDT = getAnalysis<MachineDominatorTree>();
+      
+      // Determine the block we need to scan and the relationship between
+      // the two registers
+      MachineBasicBlock* scan = 0;
+      unsigned mode = 0;
+      if (MRI.getVRegDef(p.first)->getParent() ==
+          MRI.getVRegDef(p.second)->getParent()) {
+        scan = MRI.getVRegDef(p.first)->getParent();
+        mode = 0; // Same block
+      } else if (MDT.dominates(MRI.getVRegDef(p.first)->getParent(),
+                               MRI.getVRegDef(p.second)->getParent())) {
+        scan = MRI.getVRegDef(p.second)->getParent();
+        mode = 1; // First dominates second
+      } else {
+        scan = MRI.getVRegDef(p.first)->getParent();
+        mode = 2; // Second dominates first
+      }
+      
+      // If there's an interference, we need to insert  copies
+      if (interferes(p.first, p.second, scan, LV, mode)) {
+        // Insert copies for First
+        for (int i = P->getNumOperands() - 1; i >= 2; i-=2) {
+          if (P->getOperand(i-1).getReg() == p.first) {
+            unsigned SrcReg = p.first;
+            MachineBasicBlock* From = P->getOperand(i).getMBB();
+            
+            Waiting[From].insert(std::make_pair(SrcReg,
+                                                P->getOperand(0).getReg()));
+            UsedByAnother.insert(SrcReg);
+            
+            PHIUnion.erase(SrcReg);
+          }
+        }
+      }
+    }
+    
+    // Add the renaming set for this PHI node to our overal renaming information
+    RenameSets.insert(std::make_pair(P->getOperand(0).getReg(), PHIUnion));
+    
+    // Remember which registers are already renamed, so that we don't try to 
+    // rename them for another PHI node in this block
+    ProcessedNames.insert(PHIUnion.begin(), PHIUnion.end());
+    
+    ++P;
+  }
+}
+
+/// processPHIUnion - Take a set of candidate registers to be coallesced when
+/// decomposing the PHI instruction.  Use the DominanceForest to remove the ones
+/// that are known to interfere, and flag others that need to be checked for
+/// local interferences.
+void StrongPHIElimination::processPHIUnion(MachineInstr* Inst,
+                                           std::set<unsigned>& PHIUnion,
+                        std::vector<StrongPHIElimination::DomForestNode*>& DF,
+                        std::vector<std::pair<unsigned, unsigned> >& locals) {
+  
+  std::vector<DomForestNode*> worklist(DF.begin(), DF.end());
+  SmallPtrSet<DomForestNode*, 4> visited;
+  
+  // Code is still in SSA form, so we can use MRI::getVRegDef()
+  MachineRegisterInfo& MRI = Inst->getParent()->getParent()->getRegInfo();
+  
+  LiveVariables& LV = getAnalysis<LiveVariables>();
+  unsigned DestReg = Inst->getOperand(0).getReg();
+  
+  // DF walk on the DomForest
+  while (!worklist.empty()) {
+    DomForestNode* DFNode = worklist.back();
+    
+    visited.insert(DFNode);
+    
+    bool inserted = false;
+    for (DomForestNode::iterator CI = DFNode->begin(), CE = DFNode->end();
+         CI != CE; ++CI) {
+      DomForestNode* child = *CI;   
+      
+      // If the current node is live-out of the defining block of one of its
+      // children, insert a copy for it.  NOTE: The paper actually calls for
+      // a more elaborate heuristic for determining whether to insert copies
+      // for the child or the parent.  In the interest of simplicity, we're
+      // just always choosing the parent.
+      if (isLiveOut(DFNode->getReg(),
+          MRI.getVRegDef(child->getReg())->getParent(), MRI, LV)) {
+        // Insert copies for parent
+        for (int i = Inst->getNumOperands() - 1; i >= 2; i-=2) {
+          if (Inst->getOperand(i-1).getReg() == DFNode->getReg()) {
+            unsigned SrcReg = DFNode->getReg();
+            MachineBasicBlock* From = Inst->getOperand(i).getMBB();
+            
+            Waiting[From].insert(std::make_pair(SrcReg, DestReg));
+            UsedByAnother.insert(SrcReg);
+            
+            PHIUnion.erase(SrcReg);
+          }
+        }
+      
+      // If a node is live-in to the defining block of one of its children, but
+      // not live-out, then we need to scan that block for local interferences.
+      } else if (isLiveIn(DFNode->getReg(),
+                          MRI.getVRegDef(child->getReg())->getParent(),
+                          MRI, LV) ||
+                 MRI.getVRegDef(DFNode->getReg())->getParent() ==
+                                 MRI.getVRegDef(child->getReg())->getParent()) {
+        // Add (p, c) to possible local interferences
+        locals.push_back(std::make_pair(DFNode->getReg(), child->getReg()));
+      }
+      
+      if (!visited.count(child)) {
+        worklist.push_back(child);
+        inserted = true;
+      }
+    }
+    
+    if (!inserted) worklist.pop_back();
+  }
+}
+
+/// ScheduleCopies - Insert copies into predecessor blocks, scheduling
+/// them properly so as to avoid the 'lost copy' and the 'virtual swap'
+/// problems.
+///
+/// Based on "Practical Improvements to the Construction and Destruction
+/// of Static Single Assignment Form" by Briggs, et al.
+void StrongPHIElimination::ScheduleCopies(MachineBasicBlock* MBB,
+                                          std::set<unsigned>& pushed) {
+  // FIXME: This function needs to update LiveVariables
+  std::map<unsigned, unsigned>& copy_set= Waiting[MBB];
+  
+  std::map<unsigned, unsigned> worklist;
+  std::map<unsigned, unsigned> map;
+  
+  // Setup worklist of initial copies
+  for (std::map<unsigned, unsigned>::iterator I = copy_set.begin(),
+       E = copy_set.end(); I != E; ) {
+    map.insert(std::make_pair(I->first, I->first));
+    map.insert(std::make_pair(I->second, I->second));
+         
+    if (!UsedByAnother.count(I->first)) {
+      worklist.insert(*I);
+      
+      // Avoid iterator invalidation
+      unsigned first = I->first;
+      ++I;
+      copy_set.erase(first);
+    } else {
+      ++I;
+    }
+  }
+  
+  LiveVariables& LV = getAnalysis<LiveVariables>();
+  MachineFunction* MF = MBB->getParent();
+  MachineRegisterInfo& MRI = MF->getRegInfo();
+  const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
+  
+  // Iterate over the worklist, inserting copies
+  while (!worklist.empty() || !copy_set.empty()) {
+    while (!worklist.empty()) {
+      std::pair<unsigned, unsigned> curr = *worklist.begin();
+      worklist.erase(curr.first);
+      
+      const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(curr.first);
+      
+      if (isLiveOut(curr.second, MBB, MRI, LV)) {
+        // Create a temporary
+        unsigned t = MF->getRegInfo().createVirtualRegister(RC);
+        
+        // Insert copy from curr.second to a temporary at
+        // the Phi defining curr.second
+        MachineBasicBlock::iterator PI = MRI.getVRegDef(curr.second);
+        TII->copyRegToReg(*PI->getParent(), PI, t,
+                          curr.second, RC, RC);
+        
+        // Push temporary on Stacks
+        Stacks[curr.second].push_back(t);
+        
+        // Insert curr.second in pushed
+        pushed.insert(curr.second);
+      }
+      
+      // Insert copy from map[curr.first] to curr.second
+      TII->copyRegToReg(*MBB, MBB->getFirstTerminator(), curr.second,
+                        map[curr.first], RC, RC);
+      map[curr.first] = curr.second;
+      
+      // If curr.first is a destination in copy_set...
+      for (std::map<unsigned, unsigned>::iterator I = copy_set.begin(),
+           E = copy_set.end(); I != E; )
+        if (curr.first == I->second) {
+          std::pair<unsigned, unsigned> temp = *I;
+          
+          // Avoid iterator invalidation
+          ++I;
+          copy_set.erase(temp.first);
+          worklist.insert(temp);
+          
+          break;
+        } else {
+          ++I;
+        }
+    }
+    
+    if (!copy_set.empty()) {
+      std::pair<unsigned, unsigned> curr = *copy_set.begin();
+      copy_set.erase(curr.first);
+      
+      const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(curr.first);
+      
+      // Insert a copy from dest to a new temporary t at the end of b
+      unsigned t = MF->getRegInfo().createVirtualRegister(RC);
+      TII->copyRegToReg(*MBB, MBB->getFirstTerminator(), t,
+                        curr.second, RC, RC);
+      map[curr.second] = t;
+      
+      worklist.insert(curr);
+    }
+  }
+}
+
+/// InsertCopies - insert copies into MBB and all of its successors
+void StrongPHIElimination::InsertCopies(MachineBasicBlock* MBB,
+                                        std::set<MachineBasicBlock*>& visited) {
+  visited.insert(MBB);
+  
+  std::set<unsigned> pushed;
+  
+  // Rewrite register uses from Stacks
+  for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
+      I != E; ++I)
+    for (unsigned i = 0; i < I->getNumOperands(); ++i)
+      if (I->getOperand(i).isRegister() &&
+          Stacks[I->getOperand(i).getReg()].size()) {
+        I->getOperand(i).setReg(Stacks[I->getOperand(i).getReg()].back());
+      }
   
+  // Schedule the copies for this block
+  ScheduleCopies(MBB, pushed);
+  
+  // Recur to our successors
+  for (GraphTraits<MachineBasicBlock*>::ChildIteratorType I = 
+       GraphTraits<MachineBasicBlock*>::child_begin(MBB), E =
+       GraphTraits<MachineBasicBlock*>::child_end(MBB); I != E; ++I)
+    if (!visited.count(*I))
+      InsertCopies(*I, visited);
+  
+  // As we exit this block, pop the names we pushed while processing it
+  for (std::set<unsigned>::iterator I = pushed.begin(), 
+       E = pushed.end(); I != E; ++I)
+    Stacks[*I].pop_back();
 }
 
 bool StrongPHIElimination::runOnMachineFunction(MachineFunction &Fn) {
+  // Compute DFS numbers of each block
   computeDFS(Fn);
   
+  // Determine which phi node operands need copies
+  for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
+    if (!I->empty() &&
+        I->begin()->getOpcode() == TargetInstrInfo::PHI)
+      processBlock(I);
+  
+  // Insert copies
+  // FIXME: This process should probably preserve LiveVariables
+  std::set<MachineBasicBlock*> visited;
+  InsertCopies(Fn.begin(), visited);
+  
+  // Perform renaming
+  typedef std::map<unsigned, std::set<unsigned> > RenameSetType;
+  for (RenameSetType::iterator I = RenameSets.begin(), E = RenameSets.end();
+       I != E; ++I)
+    for (std::set<unsigned>::iterator SI = I->second.begin(),
+         SE = I->second.end(); SI != SE; ++SI)
+      Fn.getRegInfo().replaceRegWith(*SI, I->first);
+  
+  // FIXME: Insert last-minute copies
+  
+  // Remove PHIs
+  std::vector<MachineInstr*> phis;
   for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
-    for (MachineBasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE;
-         ++BI) {
+    for (MachineBasicBlock::iterator BI = I->begin(), BE = I->end();
+         BI != BE; ++BI)
       if (BI->getOpcode() == TargetInstrInfo::PHI)
-        processPHI(BI);
-      else
-        break;
-    }
+        phis.push_back(BI);
   }
   
+  for (std::vector<MachineInstr*>::iterator I = phis.begin(), E = phis.end();
+       I != E; ++I)
+    (*I)->eraseFromParent();
+  
   return false;
 }