TargetLowering.h #includes SelectionDAGNodes.h, so it doesn't need its
[oota-llvm.git] / lib / CodeGen / SelectionDAG / TargetLowering.cpp
index 6a2f91fc66937859505409d4c50dc7732b8671f4..bbd222285e4cf1fe2a1550cddb07e799d4c6b6ad 100644 (file)
@@ -83,6 +83,26 @@ static void InitLibcallNames(const char **Names) {
   Names[RTLIB::SQRT_F64] = "sqrt";
   Names[RTLIB::SQRT_F80] = "sqrtl";
   Names[RTLIB::SQRT_PPCF128] = "sqrtl";
+  Names[RTLIB::LOG_F32] = "logf";
+  Names[RTLIB::LOG_F64] = "log";
+  Names[RTLIB::LOG_F80] = "logl";
+  Names[RTLIB::LOG_PPCF128] = "logl";
+  Names[RTLIB::LOG2_F32] = "log2f";
+  Names[RTLIB::LOG2_F64] = "log2";
+  Names[RTLIB::LOG2_F80] = "log2l";
+  Names[RTLIB::LOG2_PPCF128] = "log2l";
+  Names[RTLIB::LOG10_F32] = "log10f";
+  Names[RTLIB::LOG10_F64] = "log10";
+  Names[RTLIB::LOG10_F80] = "log10l";
+  Names[RTLIB::LOG10_PPCF128] = "log10l";
+  Names[RTLIB::EXP_F32] = "expf";
+  Names[RTLIB::EXP_F64] = "exp";
+  Names[RTLIB::EXP_F80] = "expl";
+  Names[RTLIB::EXP_PPCF128] = "expl";
+  Names[RTLIB::EXP2_F32] = "exp2f";
+  Names[RTLIB::EXP2_F64] = "exp2";
+  Names[RTLIB::EXP2_F80] = "exp2l";
+  Names[RTLIB::EXP2_PPCF128] = "exp2l";
   Names[RTLIB::SIN_F32] = "sinf";
   Names[RTLIB::SIN_F64] = "sin";
   Names[RTLIB::SIN_F80] = "sinl";
@@ -378,14 +398,13 @@ static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
 
 TargetLowering::TargetLowering(TargetMachine &tm)
   : TM(tm), TD(TM.getTargetData()) {
-  assert(ISD::BUILTIN_OP_END <= OpActionsCapacity &&
-         "Fixed size array in TargetLowering is not large enough!");
   // All operations default to being supported.
   memset(OpActions, 0, sizeof(OpActions));
-  memset(LoadXActions, 0, sizeof(LoadXActions));
+  memset(LoadExtActions, 0, sizeof(LoadExtActions));
   memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
   memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
   memset(ConvertActions, 0, sizeof(ConvertActions));
+  memset(CondCodeActions, 0, sizeof(CondCodeActions));
 
   // Set default actions for various operations.
   for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
@@ -410,6 +429,18 @@ TargetLowering::TargetLowering(TargetMachine &tm)
   setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
   setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
 
+  // These library functions default to expand.
+  setOperationAction(ISD::FLOG , MVT::f64, Expand);
+  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
+  setOperationAction(ISD::FLOG10,MVT::f64, Expand);
+  setOperationAction(ISD::FEXP , MVT::f64, Expand);
+  setOperationAction(ISD::FEXP2, MVT::f64, Expand);
+  setOperationAction(ISD::FLOG , MVT::f32, Expand);
+  setOperationAction(ISD::FLOG2, MVT::f32, Expand);
+  setOperationAction(ISD::FLOG10,MVT::f32, Expand);
+  setOperationAction(ISD::FEXP , MVT::f32, Expand);
+  setOperationAction(ISD::FEXP2, MVT::f32, Expand);
+
   // Default ISD::TRAP to expand (which turns it into abort).
   setOperationAction(ISD::TRAP, MVT::Other, Expand);
     
@@ -429,7 +460,7 @@ TargetLowering::TargetLowering(TargetMachine &tm)
   StackPointerRegisterToSaveRestore = 0;
   ExceptionPointerRegister = 0;
   ExceptionSelectorRegister = 0;
-  SetCCResultContents = UndefinedSetCCResult;
+  BooleanContents = UndefinedBooleanContent;
   SchedPreferenceInfo = SchedulingForLatency;
   JumpBufSize = 0;
   JumpBufAlignment = 0;
@@ -441,7 +472,8 @@ TargetLowering::TargetLowering(TargetMachine &tm)
   InitCmpLibcallCCs(CmpLibcallCCs);
 
   // Tell Legalize whether the assembler supports DEBUG_LOC.
-  if (!TM.getTargetAsmInfo()->hasDotLocAndDotFile())
+  const TargetAsmInfo *TASM = TM.getTargetAsmInfo();
+  if (!TASM || !TASM->hasDotLocAndDotFile())
     setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
 }
 
@@ -538,8 +570,32 @@ void TargetLowering::computeRegisterProperties() {
                                IntermediateVT, NumIntermediates,
                                RegisterVT);
       RegisterTypeForVT[i] = RegisterVT;
-      TransformToType[i] = MVT::Other; // this isn't actually used
-      ValueTypeActions.setTypeAction(VT, Expand);
+      
+      // Determine if there is a legal wider type.
+      bool IsLegalWiderType = false;
+      MVT EltVT = VT.getVectorElementType();
+      unsigned NElts = VT.getVectorNumElements();
+      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
+        MVT SVT = (MVT::SimpleValueType)nVT;
+        if (isTypeLegal(SVT) && SVT.getVectorElementType() == EltVT &&
+            SVT.getVectorNumElements() > NElts) {
+          TransformToType[i] = SVT;
+          ValueTypeActions.setTypeAction(VT, Promote);
+          IsLegalWiderType = true;
+          break;
+        }
+      }
+      if (!IsLegalWiderType) {
+        MVT NVT = VT.getPow2VectorType();
+        if (NVT == VT) {
+          // Type is already a power of 2.  The default action is to split.
+          TransformToType[i] = MVT::Other;
+          ValueTypeActions.setTypeAction(VT, Expand);
+        } else {
+          TransformToType[i] = NVT;
+          ValueTypeActions.setTypeAction(VT, Promote);
+        }
+      }
     }
   }
 }
@@ -549,7 +605,7 @@ const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
 }
 
 
-MVT TargetLowering::getSetCCResultType(const SDValue &) const {
+MVT TargetLowering::getSetCCResultType(MVT VT) const {
   return getValueType(TD->getIntPtrType());
 }
 
@@ -608,6 +664,20 @@ unsigned TargetLowering::getVectorTypeBreakdown(MVT VT,
   return 1;
 }
 
+/// getWidenVectorType: given a vector type, returns the type to widen to
+/// (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
+/// If there is no vector type that we want to widen to, returns MVT::Other
+/// When and where to widen is target dependent based on the cost of
+/// scalarizing vs using the wider vector type.
+MVT TargetLowering::getWidenVectorType(MVT VT) {
+  assert(VT.isVector());
+  if (isTypeLegal(VT))
+    return VT;
+  // Default is not to widen until moved to LegalizeTypes
+  return MVT::Other;
+}
+
 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
 /// function arguments in the caller parameter area.  This is the actual
 /// alignment, not its logarithm.
@@ -622,6 +692,23 @@ SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
   return Table;
 }
 
+bool
+TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
+  // Assume that everything is safe in static mode.
+  if (getTargetMachine().getRelocationModel() == Reloc::Static)
+    return true;
+
+  // In dynamic-no-pic mode, assume that known defined values are safe.
+  if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
+      GA &&
+      !GA->getGlobal()->isDeclaration() &&
+      !GA->getGlobal()->mayBeOverridden())
+    return true;
+
+  // Otherwise assume nothing is safe.
+  return false;
+}
+
 //===----------------------------------------------------------------------===//
 //  Optimization Methods
 //===----------------------------------------------------------------------===//
@@ -880,7 +967,7 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
     break;
   case ISD::SHL:
     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
-      unsigned ShAmt = SA->getValue();
+      unsigned ShAmt = SA->getZExtValue();
       SDValue InOp = Op.getOperand(0);
 
       // If the shift count is an invalid immediate, don't do anything.
@@ -893,7 +980,7 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
       if (InOp.getOpcode() == ISD::SRL &&
           isa<ConstantSDNode>(InOp.getOperand(1))) {
         if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
-          unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
+          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
           unsigned Opc = ISD::SHL;
           int Diff = ShAmt-C1;
           if (Diff < 0) {
@@ -912,16 +999,16 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
       if (SimplifyDemandedBits(Op.getOperand(0), NewMask.lshr(ShAmt),
                                KnownZero, KnownOne, TLO, Depth+1))
         return true;
-      KnownZero <<= SA->getValue();
-      KnownOne  <<= SA->getValue();
+      KnownZero <<= SA->getZExtValue();
+      KnownOne  <<= SA->getZExtValue();
       // low bits known zero.
-      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getValue());
+      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
     }
     break;
   case ISD::SRL:
     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
       MVT VT = Op.getValueType();
-      unsigned ShAmt = SA->getValue();
+      unsigned ShAmt = SA->getZExtValue();
       unsigned VTSize = VT.getSizeInBits();
       SDValue InOp = Op.getOperand(0);
       
@@ -935,7 +1022,7 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
       if (InOp.getOpcode() == ISD::SHL &&
           isa<ConstantSDNode>(InOp.getOperand(1))) {
         if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
-          unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
+          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
           unsigned Opc = ISD::SRL;
           int Diff = ShAmt-C1;
           if (Diff < 0) {
@@ -965,7 +1052,7 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
   case ISD::SRA:
     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
       MVT VT = Op.getValueType();
-      unsigned ShAmt = SA->getValue();
+      unsigned ShAmt = SA->getZExtValue();
       
       // If the shift count is an invalid immediate, don't do anything.
       if (ShAmt >= BitWidth)
@@ -1142,10 +1229,10 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
         if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
           APInt HighBits = APInt::getHighBitsSet(InBitWidth,
                                                  InBitWidth - BitWidth);
-          HighBits = HighBits.lshr(ShAmt->getValue());
+          HighBits = HighBits.lshr(ShAmt->getZExtValue());
           HighBits.trunc(BitWidth);
           
-          if (ShAmt->getValue() < BitWidth && !(HighBits & NewMask)) {
+          if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
             // None of the shifted in bits are needed.  Add a truncate of the
             // shift input, then shift it.
             SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, 
@@ -1270,7 +1357,7 @@ TargetLowering::SimplifySetCC(MVT VT, SDValue N0, SDValue N1,
       if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
           N0.getOperand(0).getOpcode() == ISD::CTLZ &&
           N0.getOperand(1).getOpcode() == ISD::Constant) {
-        unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
+        unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
         if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
             ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
           if ((C1 == 0) == (Cond == ISD::SETEQ)) {
@@ -1287,7 +1374,61 @@ TargetLowering::SimplifySetCC(MVT VT, SDValue N0, SDValue N1,
                               Zero, Cond);
         }
       }
-      
+
+      // If the LHS is '(and load, const)', the RHS is 0,
+      // the test is for equality or unsigned, and all 1 bits of the const are
+      // in the same partial word, see if we can shorten the load.
+      if (DCI.isBeforeLegalize() &&
+          N0.getOpcode() == ISD::AND && C1 == 0 &&
+          isa<LoadSDNode>(N0.getOperand(0)) &&
+          N0.getOperand(0).getNode()->hasOneUse() &&
+          isa<ConstantSDNode>(N0.getOperand(1))) {
+        LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
+        uint64_t Mask = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
+        uint64_t bestMask = 0;
+        unsigned bestWidth = 0, bestOffset = 0;
+        if (!Lod->isVolatile() && Lod->isUnindexed()) {
+          unsigned origWidth = N0.getValueType().getSizeInBits();
+          // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 
+          // 8 bits, but have to be careful...
+          if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
+            origWidth = Lod->getMemoryVT().getSizeInBits();
+          for (unsigned width = origWidth / 2; width>=8; width /= 2) {
+            uint64_t newMask = (1ULL << width) - 1;
+            for (unsigned offset=0; offset<origWidth/width; offset++) {
+              if ((newMask & Mask)==Mask) {
+                if (!TD->isLittleEndian())
+                  bestOffset = (origWidth/width - offset - 1) * (width/8);
+                else
+                  bestOffset = (uint64_t)offset * (width/8);
+                bestMask = Mask >> (offset * (width/8) * 8);
+                bestWidth = width;
+                break;
+              }
+              newMask = newMask << width;
+            }
+          }
+        }
+        if (bestWidth) {
+          MVT newVT = MVT::getIntegerVT(bestWidth);
+          if (newVT.isRound()) {
+            MVT PtrType = Lod->getOperand(1).getValueType();
+            SDValue Ptr = Lod->getBasePtr();
+            if (bestOffset != 0)
+              Ptr = DAG.getNode(ISD::ADD, PtrType, Lod->getBasePtr(),
+                                DAG.getConstant(bestOffset, PtrType));
+            unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
+            SDValue NewLoad = DAG.getLoad(newVT, Lod->getChain(), Ptr,
+                                          Lod->getSrcValue(), 
+                                          Lod->getSrcValueOffset() + bestOffset,
+                                          false, NewAlign);
+            return DAG.getSetCC(VT, DAG.getNode(ISD::AND, newVT, NewLoad,
+                                            DAG.getConstant(bestMask, newVT)),
+                                    DAG.getConstant(0LL, newVT), Cond);
+          }
+        }
+      }
+
       // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
       if (N0.getOpcode() == ISD::ZERO_EXTEND) {
         unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
@@ -1369,7 +1510,7 @@ TargetLowering::SimplifySetCC(MVT VT, SDValue N0, SDValue N1,
         
         // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
         if (N0.getOpcode() == ISD::SETCC) {
-          bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getValue() != 1);
+          bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getZExtValue() != 1);
           if (TrueWhenTrue)
             return N0;
           
@@ -1464,12 +1605,19 @@ TargetLowering::SimplifySetCC(MVT VT, SDValue N0, SDValue N1,
       // by changing cc.
 
       // SETUGT X, SINTMAX  -> SETLT X, 0
-      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
-          C1 == (~0ULL >> (65-OperandBitSize)))
+      if (Cond == ISD::SETUGT && 
+          C1 == APInt::getSignedMaxValue(OperandBitSize))
         return DAG.getSetCC(VT, N0, DAG.getConstant(0, N1.getValueType()),
                             ISD::SETLT);
 
-      // FIXME: Implement the rest of these.
+      // SETULT X, SINTMIN  -> SETGT X, -1
+      if (Cond == ISD::SETULT &&
+          C1 == APInt::getSignedMinValue(OperandBitSize)) {
+        SDValue ConstMinusOne =
+            DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
+                            N1.getValueType());
+        return DAG.getSetCC(VT, N0, ConstMinusOne, ISD::SETGT);
+      }
 
       // Fold bit comparisons when we can.
       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
@@ -1478,12 +1626,12 @@ TargetLowering::SimplifySetCC(MVT VT, SDValue N0, SDValue N1,
                     dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
           if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
             // Perform the xform if the AND RHS is a single bit.
-            if (isPowerOf2_64(AndRHS->getValue())) {
+            if (isPowerOf2_64(AndRHS->getZExtValue())) {
               return DAG.getNode(ISD::SRL, VT, N0,
-                             DAG.getConstant(Log2_64(AndRHS->getValue()),
+                             DAG.getConstant(Log2_64(AndRHS->getZExtValue()),
                                              getShiftAmountTy()));
             }
-          } else if (Cond == ISD::SETEQ && C1 == AndRHS->getValue()) {
+          } else if (Cond == ISD::SETEQ && C1 == AndRHS->getZExtValue()) {
             // (X & 8) == 8  -->  (X & 8) >> 3
             // Perform the xform if C1 is a single bit.
             if (C1.isPowerOf2()) {
@@ -1566,7 +1714,8 @@ TargetLowering::SimplifySetCC(MVT VT, SDValue N0, SDValue N1,
           // Turn (X+C1) == C2 --> X == C2-C1
           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
             return DAG.getSetCC(VT, N0.getOperand(0),
-                              DAG.getConstant(RHSC->getValue()-LHSR->getValue(),
+                                DAG.getConstant(RHSC->getAPIntValue()-
+                                                LHSR->getAPIntValue(),
                                 N0.getValueType()), Cond);
           }
           
@@ -1711,13 +1860,13 @@ bool TargetLowering::isGAPlusOffset(SDNode *N, GlobalValue* &GA,
     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
       ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
       if (V) {
-        Offset += V->getSignExtended();
+        Offset += V->getSExtValue();
         return true;
       }
     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
       ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
       if (V) {
-        Offset += V->getSignExtended();
+        Offset += V->getSExtValue();
         return true;
       }
     }
@@ -1822,6 +1971,7 @@ const char *TargetLowering::LowerXConstraint(MVT ConstraintVT) const{
 /// vector.  If it is invalid, don't add anything to Ops.
 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
                                                   char ConstraintLetter,
+                                                  bool hasMemory,
                                                   std::vector<SDValue> &Ops,
                                                   SelectionDAG &DAG) const {
   switch (ConstraintLetter) {
@@ -1858,7 +2008,7 @@ void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
     if (GA) {   // Either &GV   or   &GV+C
       if (ConstraintLetter != 'n') {
         int64_t Offs = GA->getOffset();
-        if (C) Offs += C->getValue();
+        if (C) Offs += C->getZExtValue();
         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
                                                  Op.getValueType(), Offs));
         return;
@@ -1867,7 +2017,8 @@ void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
     if (C) {   // just C, no GV.
       // Simple constants are not allowed for 's'.
       if (ConstraintLetter != 's') {
-        Ops.push_back(DAG.getTargetConstant(C->getValue(), Op.getValueType()));
+        Ops.push_back(DAG.getTargetConstant(C->getAPIntValue(),
+                                            Op.getValueType()));
         return;
       }
     }
@@ -1925,6 +2076,21 @@ getRegForInlineAsmConstraint(const std::string &Constraint,
 //===----------------------------------------------------------------------===//
 // Constraint Selection.
 
+/// isMatchingInputConstraint - Return true of this is an input operand that is
+/// a matching constraint like "4".
+bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
+  assert(!ConstraintCode.empty() && "No known constraint!");
+  return isdigit(ConstraintCode[0]);
+}
+
+/// getMatchedOperand - If this is an input matching constraint, this method
+/// returns the output operand it matches.
+unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
+  assert(!ConstraintCode.empty() && "No known constraint!");
+  return atoi(ConstraintCode.c_str());
+}
+
+
 /// getConstraintGenerality - Return an integer indicating how general CT
 /// is.
 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
@@ -1963,7 +2129,7 @@ static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
 ///     'm' over 'r', for example.
 ///
 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
-                             const TargetLowering &TLI,
+                             bool hasMemory,  const TargetLowering &TLI,
                              SDValue Op, SelectionDAG *DAG) {
   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
   unsigned BestIdx = 0;
@@ -1983,7 +2149,7 @@ static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
       assert(OpInfo.Codes[i].size() == 1 &&
              "Unhandled multi-letter 'other' constraint");
       std::vector<SDValue> ResultOps;
-      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0],
+      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0], hasMemory,
                                        ResultOps, *DAG);
       if (!ResultOps.empty()) {
         BestType = CType;
@@ -2010,6 +2176,7 @@ static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
 /// OpInfo.ConstraintCode and OpInfo.ConstraintType.
 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
                                             SDValue Op, 
+                                            bool hasMemory,
                                             SelectionDAG *DAG) const {
   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
   
@@ -2018,7 +2185,7 @@ void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
     OpInfo.ConstraintCode = OpInfo.Codes[0];
     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
   } else {
-    ChooseConstraint(OpInfo, *this, Op, DAG);
+    ChooseConstraint(OpInfo, hasMemory, *this, Op, DAG);
   }
   
   // 'X' matches anything.
@@ -2076,180 +2243,105 @@ bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
   return true;
 }
 
-// Magic for divide replacement
-
-struct ms {
-  int64_t m;  // magic number
-  int64_t s;  // shift amount
-};
-
 struct mu {
-  uint64_t m; // magic number
-  int64_t a;  // add indicator
-  int64_t s;  // shift amount
+  APInt m;     // magic number
+  bool a;      // add indicator
+  unsigned s;  // shift amount
 };
 
-/// magic - calculate the magic numbers required to codegen an integer sdiv as
-/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
-/// or -1.
-static ms magic32(int32_t d) {
-  int32_t p;
-  uint32_t ad, anc, delta, q1, r1, q2, r2, t;
-  const uint32_t two31 = 0x80000000U;
-  struct ms mag;
-  
-  ad = abs(d);
-  t = two31 + ((uint32_t)d >> 31);
-  anc = t - 1 - t%ad;   // absolute value of nc
-  p = 31;               // initialize p
-  q1 = two31/anc;       // initialize q1 = 2p/abs(nc)
-  r1 = two31 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
-  q2 = two31/ad;        // initialize q2 = 2p/abs(d)
-  r2 = two31 - q2*ad;   // initialize r2 = rem(2p,abs(d))
-  do {
-    p = p + 1;
-    q1 = 2*q1;        // update q1 = 2p/abs(nc)
-    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
-    if (r1 >= anc) {  // must be unsigned comparison
-      q1 = q1 + 1;
-      r1 = r1 - anc;
-    }
-    q2 = 2*q2;        // update q2 = 2p/abs(d)
-    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
-    if (r2 >= ad) {   // must be unsigned comparison
-      q2 = q2 + 1;
-      r2 = r2 - ad;
-    }
-    delta = ad - r2;
-  } while (q1 < delta || (q1 == delta && r1 == 0));
-  
-  mag.m = (int32_t)(q2 + 1); // make sure to sign extend
-  if (d < 0) mag.m = -mag.m; // resulting magic number
-  mag.s = p - 32;            // resulting shift
-  return mag;
-}
-
 /// magicu - calculate the magic numbers required to codegen an integer udiv as
 /// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
-static mu magicu32(uint32_t d) {
-  int32_t p;
-  uint32_t nc, delta, q1, r1, q2, r2;
+static mu magicu(const APInt& d) {
+  unsigned p;
+  APInt nc, delta, q1, r1, q2, r2;
   struct mu magu;
   magu.a = 0;               // initialize "add" indicator
-  nc = - 1 - (-d)%d;
-  p = 31;                   // initialize p
-  q1 = 0x80000000/nc;       // initialize q1 = 2p/nc
-  r1 = 0x80000000 - q1*nc;  // initialize r1 = rem(2p,nc)
-  q2 = 0x7FFFFFFF/d;        // initialize q2 = (2p-1)/d
-  r2 = 0x7FFFFFFF - q2*d;   // initialize r2 = rem((2p-1),d)
+  APInt allOnes = APInt::getAllOnesValue(d.getBitWidth());
+  APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
+  APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
+
+  nc = allOnes - (-d).urem(d);
+  p = d.getBitWidth() - 1;  // initialize p
+  q1 = signedMin.udiv(nc);  // initialize q1 = 2p/nc
+  r1 = signedMin - q1*nc;   // initialize r1 = rem(2p,nc)
+  q2 = signedMax.udiv(d);   // initialize q2 = (2p-1)/d
+  r2 = signedMax - q2*d;    // initialize r2 = rem((2p-1),d)
   do {
     p = p + 1;
-    if (r1 >= nc - r1 ) {
-      q1 = 2*q1 + 1;  // update q1
-      r1 = 2*r1 - nc; // update r1
+    if (r1.uge(nc - r1)) {
+      q1 = q1 + q1 + 1;  // update q1
+      r1 = r1 + r1 - nc; // update r1
     }
     else {
-      q1 = 2*q1; // update q1
-      r1 = 2*r1; // update r1
+      q1 = q1+q1; // update q1
+      r1 = r1+r1; // update r1
     }
-    if (r2 + 1 >= d - r2) {
-      if (q2 >= 0x7FFFFFFF) magu.a = 1;
-      q2 = 2*q2 + 1;     // update q2
-      r2 = 2*r2 + 1 - d; // update r2
+    if ((r2 + 1).uge(d - r2)) {
+      if (q2.uge(signedMax)) magu.a = 1;
+      q2 = q2+q2 + 1;     // update q2
+      r2 = r2+r2 + 1 - d; // update r2
     }
     else {
-      if (q2 >= 0x80000000) magu.a = 1;
-      q2 = 2*q2;     // update q2
-      r2 = 2*r2 + 1; // update r2
+      if (q2.uge(signedMin)) magu.a = 1;
+      q2 = q2+q2;     // update q2
+      r2 = r2+r2 + 1; // update r2
     }
     delta = d - 1 - r2;
-  } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
+  } while (p < d.getBitWidth()*2 &&
+           (q1.ult(delta) || (q1 == delta && r1 == 0)));
   magu.m = q2 + 1; // resulting magic number
-  magu.s = p - 32;  // resulting shift
+  magu.s = p - d.getBitWidth();  // resulting shift
   return magu;
 }
 
+// Magic for divide replacement
+struct ms {
+  APInt m;  // magic number
+  unsigned s;  // shift amount
+};
+
 /// magic - calculate the magic numbers required to codegen an integer sdiv as
 /// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
 /// or -1.
-static ms magic64(int64_t d) {
-  int64_t p;
-  uint64_t ad, anc, delta, q1, r1, q2, r2, t;
-  const uint64_t two63 = 9223372036854775808ULL; // 2^63
+static ms magic(const APInt& d) {
+  unsigned p;
+  APInt ad, anc, delta, q1, r1, q2, r2, t;
+  APInt allOnes = APInt::getAllOnesValue(d.getBitWidth());
+  APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
+  APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
   struct ms mag;
   
-  ad = d >= 0 ? d : -d;
-  t = two63 + ((uint64_t)d >> 63);
-  anc = t - 1 - t%ad;   // absolute value of nc
-  p = 63;               // initialize p
-  q1 = two63/anc;       // initialize q1 = 2p/abs(nc)
-  r1 = two63 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
-  q2 = two63/ad;        // initialize q2 = 2p/abs(d)
-  r2 = two63 - q2*ad;   // initialize r2 = rem(2p,abs(d))
+  ad = d.abs();
+  t = signedMin + (d.lshr(d.getBitWidth() - 1));
+  anc = t - 1 - t.urem(ad);   // absolute value of nc
+  p = d.getBitWidth() - 1;    // initialize p
+  q1 = signedMin.udiv(anc);   // initialize q1 = 2p/abs(nc)
+  r1 = signedMin - q1*anc;    // initialize r1 = rem(2p,abs(nc))
+  q2 = signedMin.udiv(ad);    // initialize q2 = 2p/abs(d)
+  r2 = signedMin - q2*ad;     // initialize r2 = rem(2p,abs(d))
   do {
     p = p + 1;
-    q1 = 2*q1;        // update q1 = 2p/abs(nc)
-    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
-    if (r1 >= anc) {  // must be unsigned comparison
+    q1 = q1<<1;          // update q1 = 2p/abs(nc)
+    r1 = r1<<1;          // update r1 = rem(2p/abs(nc))
+    if (r1.uge(anc)) {  // must be unsigned comparison
       q1 = q1 + 1;
       r1 = r1 - anc;
     }
-    q2 = 2*q2;        // update q2 = 2p/abs(d)
-    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
-    if (r2 >= ad) {   // must be unsigned comparison
+    q2 = q2<<1;          // update q2 = 2p/abs(d)
+    r2 = r2<<1;          // update r2 = rem(2p/abs(d))
+    if (r2.uge(ad)) {   // must be unsigned comparison
       q2 = q2 + 1;
       r2 = r2 - ad;
     }
     delta = ad - r2;
-  } while (q1 < delta || (q1 == delta && r1 == 0));
+  } while (q1.ule(delta) || (q1 == delta && r1 == 0));
   
   mag.m = q2 + 1;
-  if (d < 0) mag.m = -mag.m; // resulting magic number
-  mag.s = p - 64;            // resulting shift
+  if (d.isNegative()) mag.m = -mag.m;   // resulting magic number
+  mag.s = p - d.getBitWidth();          // resulting shift
   return mag;
 }
 
-/// magicu - calculate the magic numbers required to codegen an integer udiv as
-/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
-static mu magicu64(uint64_t d)
-{
-  int64_t p;
-  uint64_t nc, delta, q1, r1, q2, r2;
-  struct mu magu;
-  magu.a = 0;               // initialize "add" indicator
-  nc = - 1 - (-d)%d;
-  p = 63;                   // initialize p
-  q1 = 0x8000000000000000ull/nc;       // initialize q1 = 2p/nc
-  r1 = 0x8000000000000000ull - q1*nc;  // initialize r1 = rem(2p,nc)
-  q2 = 0x7FFFFFFFFFFFFFFFull/d;        // initialize q2 = (2p-1)/d
-  r2 = 0x7FFFFFFFFFFFFFFFull - q2*d;   // initialize r2 = rem((2p-1),d)
-  do {
-    p = p + 1;
-    if (r1 >= nc - r1 ) {
-      q1 = 2*q1 + 1;  // update q1
-      r1 = 2*r1 - nc; // update r1
-    }
-    else {
-      q1 = 2*q1; // update q1
-      r1 = 2*r1; // update r1
-    }
-    if (r2 + 1 >= d - r2) {
-      if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1;
-      q2 = 2*q2 + 1;     // update q2
-      r2 = 2*r2 + 1 - d; // update r2
-    }
-    else {
-      if (q2 >= 0x8000000000000000ull) magu.a = 1;
-      q2 = 2*q2;     // update q2
-      r2 = 2*r2 + 1; // update r2
-    }
-    delta = d - 1 - r2;
-  } while (p < 128 && (q1 < delta || (q1 == delta && r1 == 0)));
-  magu.m = q2 + 1; // resulting magic number
-  magu.s = p - 64;  // resulting shift
-  return magu;
-}
-
 /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
 /// return a DAG expression to select that will generate the same value by
 /// multiplying by a magic number.  See:
@@ -2259,13 +2351,15 @@ SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
   MVT VT = N->getValueType(0);
   
   // Check to see if we can do this.
-  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
-    return SDValue();       // BuildSDIV only operates on i32 or i64
+  // FIXME: We should be more aggressive here.
+  if (!isTypeLegal(VT))
+    return SDValue();
   
-  int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSignExtended();
-  ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d);
+  APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
+  ms magics = magic(d);
   
   // Multiply the numerator (operand 0) by the magic value
+  // FIXME: We should support doing a MUL in a wider type
   SDValue Q;
   if (isOperationLegal(ISD::MULHS, VT))
     Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0),
@@ -2277,13 +2371,13 @@ SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
   else
     return SDValue();       // No mulhs or equvialent
   // If d > 0 and m < 0, add the numerator
-  if (d > 0 && magics.m < 0) { 
+  if (d.isStrictlyPositive() && magics.m.isNegative()) { 
     Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0));
     if (Created)
       Created->push_back(Q.getNode());
   }
   // If d < 0 and m > 0, subtract the numerator.
-  if (d < 0 && magics.m > 0) {
+  if (d.isNegative() && magics.m.isStrictlyPositive()) {
     Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0));
     if (Created)
       Created->push_back(Q.getNode());
@@ -2311,15 +2405,19 @@ SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
                                   std::vector<SDNode*>* Created) const {
   MVT VT = N->getValueType(0);
-  
+
   // Check to see if we can do this.
-  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
-    return SDValue();       // BuildUDIV only operates on i32 or i64
-  
-  uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getValue();
-  mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d);
-  
+  // FIXME: We should be more aggressive here.
+  if (!isTypeLegal(VT))
+    return SDValue();
+
+  // FIXME: We should use a narrower constant when the upper
+  // bits are known to be zero.
+  ConstantSDNode *N1C = cast<ConstantSDNode>(N->getOperand(1));
+  mu magics = magicu(N1C->getAPIntValue());
+
   // Multiply the numerator (operand 0) by the magic value
+  // FIXME: We should support doing a MUL in a wider type
   SDValue Q;
   if (isOperationLegal(ISD::MULHU, VT))
     Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0),
@@ -2334,6 +2432,8 @@ SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
     Created->push_back(Q.getNode());
 
   if (magics.a == 0) {
+    assert(magics.s < N1C->getAPIntValue().getBitWidth() &&
+           "We shouldn't generate an undefined shift!");
     return DAG.getNode(ISD::SRL, VT, Q, 
                        DAG.getConstant(magics.s, getShiftAmountTy()));
   } else {