Disengage DEBUG_LOC from non-PPC targets.
[oota-llvm.git] / lib / CodeGen / SelectionDAG / ScheduleDAG.cpp
index af751edcbf514c2fe8d0268d95bf2f4b69638b03..c39f0cd5614f26f5538da5d4fda9ac1dc8bd2bcf 100644 (file)
@@ -2,13 +2,14 @@
 //
 //                     The LLVM Compiler Infrastructure
 //
-// This file was developed by Chris Lattner and is distributed under the
+// This file was developed by James M. Laskey and is distributed under the
 // University of Illinois Open Source License. See LICENSE.TXT for details.
 //
 //===----------------------------------------------------------------------===//
 //
-// This implements a simple code linearizer for DAGs.  This is not a very good
-// way to emit code, but gets working code quickly.
+// This implements a simple two pass scheduler.  The first pass attempts to push
+// backward any lengthy instructions and critical paths.  The second pass packs
+// instructions into semi-optimal time slots.
 //
 //===----------------------------------------------------------------------===//
 
 #include "llvm/CodeGen/SSARegMap.h"
 #include "llvm/Target/TargetMachine.h"
 #include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetInstrItineraries.h"
 #include "llvm/Target/TargetLowering.h"
 #include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include <iostream>
+#include <algorithm>
 using namespace llvm;
 
-#ifndef _NDEBUG
+namespace {
+  // Style of scheduling to use.
+  enum ScheduleChoices {
+    noScheduling,
+    simpleScheduling,
+    simpleNoItinScheduling
+  };
+} // namespace
+
+cl::opt<ScheduleChoices> ScheduleStyle("sched",
+  cl::desc("Choose scheduling style"),
+  cl::init(noScheduling),
+  cl::values(
+    clEnumValN(noScheduling, "none",
+              "Trivial emission with no analysis"),
+    clEnumValN(simpleScheduling, "simple",
+              "Minimize critical path and maximize processor utilization"),
+    clEnumValN(simpleNoItinScheduling, "simple-noitin",
+              "Same as simple except using generic latency"),
+   clEnumValEnd));
+
+
+#ifndef NDEBUG
 static cl::opt<bool>
 ViewDAGs("view-sched-dags", cl::Hidden,
          cl::desc("Pop up a window to show sched dags as they are processed"));
 #else
-static const bool ViewDAGS = 0;
+static const bool ViewDAGs = 0;
 #endif
 
 namespace {
-  class SimpleSched {
-    SelectionDAG &DAG;
-    MachineBasicBlock *BB;
-    const TargetMachine &TM;
-    const TargetInstrInfo &TII;
-    const MRegisterInfo &MRI;
-    SSARegMap *RegMap;
-    MachineConstantPool *ConstPool;
-    
-    std::map<SDNode *, unsigned> EmittedOps;
-  public:
-    SimpleSched(SelectionDAG &D, MachineBasicBlock *bb)
-      : DAG(D), BB(bb), TM(D.getTarget()), TII(*TM.getInstrInfo()),
-        MRI(*TM.getRegisterInfo()), RegMap(BB->getParent()->getSSARegMap()),
-        ConstPool(BB->getParent()->getConstantPool()) {
-      assert(&TII && "Target doesn't provide instr info?");
-      assert(&MRI && "Target doesn't provide register info?");
-    }
-    
-    MachineBasicBlock *Run() {
-      Emit(DAG.getRoot());
-      return BB;
-    }
-    
-  private:
-    unsigned Emit(SDOperand Op);
-  };
+//===----------------------------------------------------------------------===//
+///
+/// BitsIterator - Provides iteration through individual bits in a bit vector.
+///
+template<class T>
+class BitsIterator {
+private:
+  T Bits;                               // Bits left to iterate through
+
+public:
+  /// Ctor.
+  BitsIterator(T Initial) : Bits(Initial) {}
+  
+  /// Next - Returns the next bit set or zero if exhausted.
+  inline T Next() {
+    // Get the rightmost bit set
+    T Result = Bits & -Bits;
+    // Remove from rest
+    Bits &= ~Result;
+    // Return single bit or zero
+    return Result;
+  }
+};
+  
+//===----------------------------------------------------------------------===//
+
+
+//===----------------------------------------------------------------------===//
+///
+/// ResourceTally - Manages the use of resources over time intervals.  Each
+/// item (slot) in the tally vector represents the resources used at a given
+/// moment.  A bit set to 1 indicates that a resource is in use, otherwise
+/// available.  An assumption is made that the tally is large enough to schedule 
+/// all current instructions (asserts otherwise.)
+///
+template<class T>
+class ResourceTally {
+private:
+  std::vector<T> Tally;                 // Resources used per slot
+  typedef typename std::vector<T>::iterator Iter;
+                                        // Tally iterator 
+  
+  /// SlotsAvailable - Returns true if all units are available.
+       ///
+  bool SlotsAvailable(Iter Begin, unsigned N, unsigned ResourceSet,
+                                              unsigned &Resource) {
+    assert(N && "Must check availability with N != 0");
+    // Determine end of interval
+    Iter End = Begin + N;
+    assert(End <= Tally.end() && "Tally is not large enough for schedule");
+    
+    // Iterate thru each resource
+    BitsIterator<T> Resources(ResourceSet & ~*Begin);
+    while (unsigned Res = Resources.Next()) {
+      // Check if resource is available for next N slots
+      Iter Interval = End;
+      do {
+        Interval--;
+        if (*Interval & Res) break;
+      } while (Interval != Begin);
+      
+      // If available for N
+      if (Interval == Begin) {
+        // Success
+        Resource = Res;
+        return true;
+      }
+    }
+    
+    // No luck
+    Resource = 0;
+    return false;
+  }
+       
+       /// RetrySlot - Finds a good candidate slot to retry search.
+  Iter RetrySlot(Iter Begin, unsigned N, unsigned ResourceSet) {
+    assert(N && "Must check availability with N != 0");
+    // Determine end of interval
+    Iter End = Begin + N;
+    assert(End <= Tally.end() && "Tally is not large enough for schedule");
+               
+               while (Begin != End--) {
+                       // Clear units in use
+                       ResourceSet &= ~*End;
+                       // If no units left then we should go no further 
+                       if (!ResourceSet) return End + 1;
+               }
+               // Made it all the way through
+               return Begin;
+       }
+  
+  /// FindAndReserveStages - Return true if the stages can be completed. If
+  /// so mark as busy.
+  bool FindAndReserveStages(Iter Begin,
+                            InstrStage *Stage, InstrStage *StageEnd) {
+    // If at last stage then we're done
+    if (Stage == StageEnd) return true;
+    // Get number of cycles for current stage
+    unsigned N = Stage->Cycles;
+    // Check to see if N slots are available, if not fail
+    unsigned Resource;
+    if (!SlotsAvailable(Begin, N, Stage->Units, Resource)) return false;
+    // Check to see if remaining stages are available, if not fail
+    if (!FindAndReserveStages(Begin + N, Stage + 1, StageEnd)) return false;
+    // Reserve resource
+    Reserve(Begin, N, Resource);
+    // Success
+    return true;
+  }
+
+  /// Reserve - Mark busy (set) the specified N slots.
+  void Reserve(Iter Begin, unsigned N, unsigned Resource) {
+    // Determine end of interval
+    Iter End = Begin + N;
+    assert(End <= Tally.end() && "Tally is not large enough for schedule");
+    // Set resource bit in each slot
+    for (; Begin < End; Begin++)
+      *Begin |= Resource;
+  }
+
+  /// FindSlots - Starting from Begin, locate consecutive slots where all stages
+  /// can be completed.  Returns the address of first slot.
+  Iter FindSlots(Iter Begin, InstrStage *StageBegin, InstrStage *StageEnd) {
+    // Track position      
+    Iter Cursor = Begin;
+    
+    // Try all possible slots forward
+    while (true) {
+      // Try at cursor, if successful return position.
+      if (FindAndReserveStages(Cursor, StageBegin, StageEnd)) return Cursor;
+      // Locate a better position
+                       Cursor = RetrySlot(Cursor + 1, StageBegin->Cycles, StageBegin->Units);
+    }
+  }
+  
+public:
+  /// Initialize - Resize and zero the tally to the specified number of time
+  /// slots.
+  inline void Initialize(unsigned N) {
+    Tally.assign(N, 0);   // Initialize tally to all zeros.
+  }
+
+  // FindAndReserve - Locate an ideal slot for the specified stages and mark
+  // as busy.
+  unsigned FindAndReserve(unsigned Slot, InstrStage *StageBegin,
+                                         InstrStage *StageEnd) {
+               // Where to begin 
+               Iter Begin = Tally.begin() + Slot;
+               // Find a free slot
+               Iter Where = FindSlots(Begin, StageBegin, StageEnd);
+               // Distance is slot number
+               unsigned Final = Where - Tally.begin();
+    return Final;
+  }
+
+};
+//===----------------------------------------------------------------------===//
+
+// Forward
+class NodeInfo;
+typedef NodeInfo *NodeInfoPtr;
+typedef std::vector<NodeInfoPtr>           NIVector;
+typedef std::vector<NodeInfoPtr>::iterator NIIterator;
+
+//===----------------------------------------------------------------------===//
+///
+/// Node group -  This struct is used to manage flagged node groups.
+///
+class NodeGroup {
+private:
+  NIVector      Members;                // Group member nodes
+  NodeInfo      *Dominator;             // Node with highest latency
+  unsigned      Latency;                // Total latency of the group
+  int           Pending;                // Number of visits pending before
+                                        //    adding to order  
+
+public:
+  // Ctor.
+  NodeGroup() : Dominator(NULL), Pending(0) {}
+  
+  // Accessors
+  inline void setDominator(NodeInfo *D) { Dominator = D; }
+  inline NodeInfo *getDominator() { return Dominator; }
+  inline void setLatency(unsigned L) { Latency = L; }
+  inline unsigned getLatency() { return Latency; }
+  inline int getPending() const { return Pending; }
+  inline void setPending(int P)  { Pending = P; }
+  inline int addPending(int I)  { return Pending += I; }
+  
+  // Pass thru
+  inline bool group_empty() { return Members.empty(); }
+  inline NIIterator group_begin() { return Members.begin(); }
+  inline NIIterator group_end() { return Members.end(); }
+  inline void group_push_back(const NodeInfoPtr &NI) { Members.push_back(NI); }
+  inline NIIterator group_insert(NIIterator Pos, const NodeInfoPtr &NI) {
+    return Members.insert(Pos, NI);
+  }
+  inline void group_insert(NIIterator Pos, NIIterator First, NIIterator Last) {
+    Members.insert(Pos, First, Last);
+  }
+
+  static void Add(NodeInfo *D, NodeInfo *U);
+  static unsigned CountInternalUses(NodeInfo *D, NodeInfo *U);
+};
+//===----------------------------------------------------------------------===//
+
+
+//===----------------------------------------------------------------------===//
+///
+/// NodeInfo - This struct tracks information used to schedule the a node.
+///
+class NodeInfo {
+private:
+  int           Pending;                // Number of visits pending before
+                                        //    adding to order
+public:
+  SDNode        *Node;                  // DAG node
+  InstrStage    *StageBegin;            // First stage in itinerary
+  InstrStage    *StageEnd;              // Last+1 stage in itinerary
+  unsigned      Latency;                // Total cycles to complete instruction
+  bool          IsCall : 1;             // Is function call
+  bool          IsLoad : 1;             // Is memory load
+  bool          IsStore : 1;            // Is memory store
+  unsigned      Slot;                   // Node's time slot
+  NodeGroup     *Group;                 // Grouping information
+  unsigned      VRBase;                 // Virtual register base
+#ifndef NDEBUG
+  unsigned      Preorder;               // Index before scheduling
+#endif
+
+  // Ctor.
+  NodeInfo(SDNode *N = NULL)
+  : Pending(0)
+  , Node(N)
+  , StageBegin(NULL)
+  , StageEnd(NULL)
+  , Latency(0)
+  , IsCall(false)
+  , Slot(0)
+  , Group(NULL)
+  , VRBase(0)
+#ifndef NDEBUG
+  , Preorder(0)
+#endif
+  {}
+  
+  // Accessors
+  inline bool isInGroup() const {
+    assert(!Group || !Group->group_empty() && "Group with no members");
+    return Group != NULL;
+  }
+  inline bool isGroupDominator() const {
+     return isInGroup() && Group->getDominator() == this;
+  }
+  inline int getPending() const {
+    return Group ? Group->getPending() : Pending;
+  }
+  inline void setPending(int P) {
+    if (Group) Group->setPending(P);
+    else       Pending = P;
+  }
+  inline int addPending(int I) {
+    if (Group) return Group->addPending(I);
+    else       return Pending += I;
+  }
+};
+//===----------------------------------------------------------------------===//
+
+
+//===----------------------------------------------------------------------===//
+///
+/// NodeGroupIterator - Iterates over all the nodes indicated by the node info.
+/// If the node is in a group then iterate over the members of the group,
+/// otherwise just the node info.
+///
+class NodeGroupIterator {
+private:
+  NodeInfo   *NI;                       // Node info
+  NIIterator NGI;                       // Node group iterator
+  NIIterator NGE;                       // Node group iterator end
+  
+public:
+  // Ctor.
+  NodeGroupIterator(NodeInfo *N) : NI(N) {
+    // If the node is in a group then set up the group iterator.  Otherwise
+    // the group iterators will trip first time out.
+    if (N->isInGroup()) {
+      // get Group
+      NodeGroup *Group = NI->Group;
+      NGI = Group->group_begin();
+      NGE = Group->group_end();
+      // Prevent this node from being used (will be in members list
+      NI = NULL;
+    }
+  }
+  
+  /// next - Return the next node info, otherwise NULL.
+  ///
+  NodeInfo *next() {
+    // If members list
+    if (NGI != NGE) return *NGI++;
+    // Use node as the result (may be NULL)
+    NodeInfo *Result = NI;
+    // Only use once
+    NI = NULL;
+    // Return node or NULL
+    return Result;
+  }
+};
+//===----------------------------------------------------------------------===//
+
+
+//===----------------------------------------------------------------------===//
+///
+/// NodeGroupOpIterator - Iterates over all the operands of a node.  If the node
+/// is a member of a group, this iterates over all the operands of all the
+/// members of the group.
+///
+class NodeGroupOpIterator {
+private:
+  NodeInfo            *NI;              // Node containing operands
+  NodeGroupIterator   GI;               // Node group iterator
+  SDNode::op_iterator OI;               // Operand iterator
+  SDNode::op_iterator OE;               // Operand iterator end
+  
+  /// CheckNode - Test if node has more operands.  If not get the next node
+  /// skipping over nodes that have no operands.
+  void CheckNode() {
+    // Only if operands are exhausted first
+    while (OI == OE) {
+      // Get next node info
+      NodeInfo *NI = GI.next();
+      // Exit if nodes are exhausted
+      if (!NI) return;
+      // Get node itself
+      SDNode *Node = NI->Node;
+      // Set up the operand iterators
+      OI = Node->op_begin();
+      OE = Node->op_end();
+    }
+  }
+  
+public:
+  // Ctor.
+  NodeGroupOpIterator(NodeInfo *N)
+    : NI(N), GI(N), OI(SDNode::op_iterator()), OE(SDNode::op_iterator()) {}
+  
+  /// isEnd - Returns true when not more operands are available.
+  ///
+  inline bool isEnd() { CheckNode(); return OI == OE; }
+  
+  /// next - Returns the next available operand.
+  ///
+  inline SDOperand next() {
+    assert(OI != OE && "Not checking for end of NodeGroupOpIterator correctly");
+    return *OI++;
+  }
+};
+//===----------------------------------------------------------------------===//
+
+
+//===----------------------------------------------------------------------===//
+///
+/// SimpleSched - Simple two pass scheduler.
+///
+class SimpleSched {
+private:
+  MachineBasicBlock *BB;                // Current basic block
+  SelectionDAG &DAG;                    // DAG of the current basic block
+  const TargetMachine &TM;              // Target processor
+  const TargetInstrInfo &TII;           // Target instruction information
+  const MRegisterInfo &MRI;             // Target processor register information
+  SSARegMap *RegMap;                    // Virtual/real register map
+  MachineConstantPool *ConstPool;       // Target constant pool
+  unsigned NodeCount;                   // Number of nodes in DAG
+  bool HasGroups;                       // True if there are any groups
+  NodeInfo *Info;                       // Info for nodes being scheduled
+  std::map<SDNode *, NodeInfo *> Map;   // Map nodes to info
+  NIVector Ordering;                    // Emit ordering of nodes
+  ResourceTally<unsigned> Tally;        // Resource usage tally
+  unsigned NSlots;                      // Total latency
+  static const unsigned NotFound = ~0U; // Search marker
+  
+public:
+
+  // Ctor.
+  SimpleSched(SelectionDAG &D, MachineBasicBlock *bb)
+    : BB(bb), DAG(D), TM(D.getTarget()), TII(*TM.getInstrInfo()),
+      MRI(*TM.getRegisterInfo()), RegMap(BB->getParent()->getSSARegMap()),
+      ConstPool(BB->getParent()->getConstantPool()),
+      NodeCount(0), HasGroups(false), Info(NULL), Map(), Tally(), NSlots(0) {
+    assert(&TII && "Target doesn't provide instr info?");
+    assert(&MRI && "Target doesn't provide register info?");
+  }
+  
+  // Run - perform scheduling.
+  MachineBasicBlock *Run() {
+    Schedule();
+    return BB;
+  }
+  
+private:
+  /// getNI - Returns the node info for the specified node.
+  ///
+  inline NodeInfo *getNI(SDNode *Node) { return Map[Node]; }
+  
+  /// getVR - Returns the virtual register number of the node.
+  ///
+  inline unsigned getVR(SDOperand Op) {
+    NodeInfo *NI = getNI(Op.Val);
+    assert(NI->VRBase != 0 && "Node emitted out of order - late");
+    return NI->VRBase + Op.ResNo;
+  }
+
+  static bool isFlagDefiner(SDNode *A);
+  static bool isFlagUser(SDNode *A);
+  static bool isDefiner(NodeInfo *A, NodeInfo *B);
+  static bool isPassiveNode(SDNode *Node);
+  void IncludeNode(NodeInfo *NI);
+  void VisitAll();
+  void Schedule();
+  void IdentifyGroups();
+  void GatherSchedulingInfo();
+  void FakeGroupDominators(); 
+  void PrepareNodeInfo();
+  bool isStrongDependency(NodeInfo *A, NodeInfo *B);
+  bool isWeakDependency(NodeInfo *A, NodeInfo *B);
+  void ScheduleBackward();
+  void ScheduleForward();
+  void EmitAll();
+  void EmitNode(NodeInfo *NI);
+  static unsigned CountResults(SDNode *Node);
+  static unsigned CountOperands(SDNode *Node);
+  unsigned CreateVirtualRegisters(MachineInstr *MI,
+                                  unsigned NumResults,
+                                  const TargetInstrDescriptor &II);
+
+  void printChanges(unsigned Index);
+  void printSI(std::ostream &O, NodeInfo *NI) const;
+  void print(std::ostream &O) const;
+  inline void dump(const char *tag) const { std::cerr << tag; dump(); }
+  void dump() const;
+};
+
+
+//===----------------------------------------------------------------------===//
+/// Special case itineraries.
+///
+enum {
+  CallLatency = 40,          // To push calls back in time
+
+  RSInteger   = 0xC0000000,  // Two integer units
+  RSFloat     = 0x30000000,  // Two float units
+  RSLoadStore = 0x0C000000,  // Two load store units
+  RSBranch    = 0x02000000   // One branch unit
+};
+static InstrStage CallStage  = { CallLatency, RSBranch };
+static InstrStage LoadStage  = { 5, RSLoadStore };
+static InstrStage StoreStage = { 2, RSLoadStore };
+static InstrStage IntStage   = { 2, RSInteger };
+static InstrStage FloatStage = { 3, RSFloat };
+//===----------------------------------------------------------------------===//
+
+
+//===----------------------------------------------------------------------===//
+
+} // namespace
+
+//===----------------------------------------------------------------------===//
+
+
+//===----------------------------------------------------------------------===//
+/// Add - Adds a definer and user pair to a node group.
+///
+void NodeGroup::Add(NodeInfo *D, NodeInfo *U) {
+  // Get current groups
+  NodeGroup *DGroup = D->Group;
+  NodeGroup *UGroup = U->Group;
+  // If both are members of groups
+  if (DGroup && UGroup) {
+    // There may have been another edge connecting 
+    if (DGroup == UGroup) return;
+    // Add the pending users count
+    DGroup->addPending(UGroup->getPending());
+    // For each member of the users group
+    NodeGroupIterator UNGI(U);
+    while (NodeInfo *UNI = UNGI.next() ) {
+      // Change the group
+      UNI->Group = DGroup;
+      // For each member of the definers group
+      NodeGroupIterator DNGI(D);
+      while (NodeInfo *DNI = DNGI.next() ) {
+        // Remove internal edges
+        DGroup->addPending(-CountInternalUses(DNI, UNI));
+      }
+    }
+    // Merge the two lists
+    DGroup->group_insert(DGroup->group_end(),
+                         UGroup->group_begin(), UGroup->group_end());
+  } else if (DGroup) {
+    // Make user member of definers group
+    U->Group = DGroup;
+    // Add users uses to definers group pending
+    DGroup->addPending(U->Node->use_size());
+    // For each member of the definers group
+    NodeGroupIterator DNGI(D);
+    while (NodeInfo *DNI = DNGI.next() ) {
+      // Remove internal edges
+      DGroup->addPending(-CountInternalUses(DNI, U));
+    }
+    DGroup->group_push_back(U);
+  } else if (UGroup) {
+    // Make definer member of users group
+    D->Group = UGroup;
+    // Add definers uses to users group pending
+    UGroup->addPending(D->Node->use_size());
+    // For each member of the users group
+    NodeGroupIterator UNGI(U);
+    while (NodeInfo *UNI = UNGI.next() ) {
+      // Remove internal edges
+      UGroup->addPending(-CountInternalUses(D, UNI));
+    }
+    UGroup->group_insert(UGroup->group_begin(), D);
+  } else {
+    D->Group = U->Group = DGroup = new NodeGroup();
+    DGroup->addPending(D->Node->use_size() + U->Node->use_size() -
+                       CountInternalUses(D, U));
+    DGroup->group_push_back(D);
+    DGroup->group_push_back(U);
+  }
+}
+
+/// CountInternalUses - Returns the number of edges between the two nodes.
+///
+unsigned NodeGroup::CountInternalUses(NodeInfo *D, NodeInfo *U) {
+  unsigned N = 0;
+  for (unsigned M = U->Node->getNumOperands(); 0 < M--;) {
+    SDOperand Op = U->Node->getOperand(M);
+    if (Op.Val == D->Node) N++;
+  }
+
+  return N;
+}
+//===----------------------------------------------------------------------===//
+
+
+//===----------------------------------------------------------------------===//
+/// isFlagDefiner - Returns true if the node defines a flag result.
+bool SimpleSched::isFlagDefiner(SDNode *A) {
+  unsigned N = A->getNumValues();
+  return N && A->getValueType(N - 1) == MVT::Flag;
+}
+
+/// isFlagUser - Returns true if the node uses a flag result.
+///
+bool SimpleSched::isFlagUser(SDNode *A) {
+  unsigned N = A->getNumOperands();
+  return N && A->getOperand(N - 1).getValueType() == MVT::Flag;
+}
+
+/// isDefiner - Return true if node A is a definer for B.
+///
+bool SimpleSched::isDefiner(NodeInfo *A, NodeInfo *B) {
+  // While there are A nodes
+  NodeGroupIterator NII(A);
+  while (NodeInfo *NI = NII.next()) {
+    // Extract node
+    SDNode *Node = NI->Node;
+    // While there operands in nodes of B
+    NodeGroupOpIterator NGOI(B);
+    while (!NGOI.isEnd()) {
+      SDOperand Op = NGOI.next();
+      // If node from A defines a node in B
+      if (Node == Op.Val) return true;
+    }
+  }
+  return false;
 }
 
-unsigned SimpleSched::Emit(SDOperand Op) {
-  // Check to see if we have already emitted this.  If so, return the value
-  // already emitted.  Note that if a node has a single use it cannot be
-  // revisited, so don't bother putting it in the map.
-  unsigned *OpSlot;
-  if (Op.Val->hasOneUse()) {
-    OpSlot = 0;  // No reuse possible.
+/// isPassiveNode - Return true if the node is a non-scheduled leaf.
+///
+bool SimpleSched::isPassiveNode(SDNode *Node) {
+  if (isa<ConstantSDNode>(Node))       return true;
+  if (isa<RegisterSDNode>(Node))       return true;
+  if (isa<GlobalAddressSDNode>(Node))  return true;
+  if (isa<BasicBlockSDNode>(Node))     return true;
+  if (isa<FrameIndexSDNode>(Node))     return true;
+  if (isa<ConstantPoolSDNode>(Node))   return true;
+  if (isa<ExternalSymbolSDNode>(Node)) return true;
+  return false;
+}
+
+/// IncludeNode - Add node to NodeInfo vector.
+///
+void SimpleSched::IncludeNode(NodeInfo *NI) {
+  // Get node
+  SDNode *Node = NI->Node;
+  // Ignore entry node
+  if (Node->getOpcode() == ISD::EntryToken) return;
+  // Check current count for node
+  int Count = NI->getPending();
+  // If the node is already in list
+  if (Count < 0) return;
+  // Decrement count to indicate a visit
+  Count--;
+  // If count has gone to zero then add node to list
+  if (!Count) {
+    // Add node
+    if (NI->isInGroup()) {
+      Ordering.push_back(NI->Group->getDominator());
+    } else {
+      Ordering.push_back(NI);
+    }
+    // indicate node has been added
+    Count--;
+  }
+  // Mark as visited with new count 
+  NI->setPending(Count);
+}
+
+/// VisitAll - Visit each node breadth-wise to produce an initial ordering.
+/// Note that the ordering in the Nodes vector is reversed.
+void SimpleSched::VisitAll() {
+  // Add first element to list
+  NodeInfo *NI = getNI(DAG.getRoot().Val);
+  if (NI->isInGroup()) {
+    Ordering.push_back(NI->Group->getDominator());
   } else {
-    std::map<SDNode *, unsigned>::iterator OpI = EmittedOps.lower_bound(Op.Val);
-    if (OpI != EmittedOps.end() && OpI->first == Op.Val)
-      return OpI->second + Op.ResNo;
-    OpSlot = &EmittedOps.insert(OpI, std::make_pair(Op.Val, 0))->second;
+    Ordering.push_back(NI);
+  }
+
+  // Iterate through all nodes that have been added
+  for (unsigned i = 0; i < Ordering.size(); i++) { // note: size() varies
+    // Visit all operands
+    NodeGroupOpIterator NGI(Ordering[i]);
+    while (!NGI.isEnd()) {
+      // Get next operand
+      SDOperand Op = NGI.next();
+      // Get node
+      SDNode *Node = Op.Val;
+      // Ignore passive nodes
+      if (isPassiveNode(Node)) continue;
+      // Check out node
+      IncludeNode(getNI(Node));
+    }
   }
+
+  // Add entry node last (IncludeNode filters entry nodes)
+  if (DAG.getEntryNode().Val != DAG.getRoot().Val)
+    Ordering.push_back(getNI(DAG.getEntryNode().Val));
+    
+  // Reverse the order
+  std::reverse(Ordering.begin(), Ordering.end());
+}
+
+/// IdentifyGroups - Put flagged nodes into groups.
+///
+void SimpleSched::IdentifyGroups() {
+  for (unsigned i = 0, N = NodeCount; i < N; i++) {
+    NodeInfo* NI = &Info[i];
+    SDNode *Node = NI->Node;
+
+    // For each operand (in reverse to only look at flags)
+    for (unsigned N = Node->getNumOperands(); 0 < N--;) {
+      // Get operand
+      SDOperand Op = Node->getOperand(N);
+      // No more flags to walk
+      if (Op.getValueType() != MVT::Flag) break;
+      // Add to node group
+      NodeGroup::Add(getNI(Op.Val), NI);
+      // Let evryone else know
+      HasGroups = true;
+    }
+  }
+}
+
+/// GatherSchedulingInfo - Get latency and resource information about each node.
+///
+void SimpleSched::GatherSchedulingInfo() {
+  // Get instruction itineraries for the target
+  const InstrItineraryData InstrItins = TM.getInstrItineraryData();
+  
+  // For each node
+  for (unsigned i = 0, N = NodeCount; i < N; i++) {
+    // Get node info
+    NodeInfo* NI = &Info[i];
+    SDNode *Node = NI->Node;
+    
+    // If there are itineraries and it is a machine instruction
+    if (InstrItins.isEmpty() || ScheduleStyle == simpleNoItinScheduling) {
+      // If machine opcode
+      if (Node->isTargetOpcode()) {
+        // Get return type to guess which processing unit 
+        MVT::ValueType VT = Node->getValueType(0);
+        // Get machine opcode
+        MachineOpCode TOpc = Node->getTargetOpcode();
+        NI->IsCall = TII.isCall(TOpc);
+        NI->IsLoad = TII.isLoad(TOpc);
+        NI->IsStore = TII.isStore(TOpc);
+
+        if (TII.isLoad(TOpc))              NI->StageBegin = &LoadStage;
+        else if (TII.isStore(TOpc))        NI->StageBegin = &StoreStage;
+        else if (MVT::isInteger(VT))       NI->StageBegin = &IntStage;
+        else if (MVT::isFloatingPoint(VT)) NI->StageBegin = &FloatStage;
+        if (NI->StageBegin) NI->StageEnd = NI->StageBegin + 1;
+      }
+    } else if (Node->isTargetOpcode()) {
+      // get machine opcode
+      MachineOpCode TOpc = Node->getTargetOpcode();
+      // Check to see if it is a call
+      NI->IsCall = TII.isCall(TOpc);
+      // Get itinerary stages for instruction
+      unsigned II = TII.getSchedClass(TOpc);
+      NI->StageBegin = InstrItins.begin(II);
+      NI->StageEnd = InstrItins.end(II);
+    }
+    
+    // One slot for the instruction itself
+    NI->Latency = 1;
+    
+    // Add long latency for a call to push it back in time
+    if (NI->IsCall) NI->Latency += CallLatency;
+    
+    // Sum up all the latencies
+    for (InstrStage *Stage = NI->StageBegin, *E = NI->StageEnd;
+        Stage != E; Stage++) {
+      NI->Latency += Stage->Cycles;
+    }
+    
+    // Sum up all the latencies for max tally size
+    NSlots += NI->Latency;
+  }
+  
+  // Unify metrics if in a group
+  if (HasGroups) {
+    for (unsigned i = 0, N = NodeCount; i < N; i++) {
+      NodeInfo* NI = &Info[i];
+      
+      if (NI->isInGroup()) {
+        NodeGroup *Group = NI->Group;
+        
+        if (!Group->getDominator()) {
+          NIIterator NGI = Group->group_begin(), NGE = Group->group_end();
+          NodeInfo *Dominator = *NGI;
+          unsigned Latency = 0;
+          
+          for (NGI++; NGI != NGE; NGI++) {
+            NodeInfo* NGNI = *NGI;
+            Latency += NGNI->Latency;
+            if (Dominator->Latency < NGNI->Latency) Dominator = NGNI;
+          }
+          
+          Dominator->Latency = Latency;
+          Group->setDominator(Dominator);
+        }
+      }
+    }
+  }
+}
+
+/// FakeGroupDominators - Set dominators for non-scheduling.
+/// 
+void SimpleSched::FakeGroupDominators() {
+  for (unsigned i = 0, N = NodeCount; i < N; i++) {
+    NodeInfo* NI = &Info[i];
+    
+    if (NI->isInGroup()) {
+      NodeGroup *Group = NI->Group;
+      
+      if (!Group->getDominator()) {
+        Group->setDominator(NI);
+      }
+    }
+  }
+}
+
+/// PrepareNodeInfo - Set up the basic minimum node info for scheduling.
+/// 
+void SimpleSched::PrepareNodeInfo() {
+  // Allocate node information
+  Info = new NodeInfo[NodeCount];
+
+  unsigned i = 0;
+  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
+       E = DAG.allnodes_end(); I != E; ++I, ++i) {
+    // Fast reference to node schedule info
+    NodeInfo* NI = &Info[i];
+    // Set up map
+    Map[I] = NI;
+    // Set node
+    NI->Node = I;
+    // Set pending visit count
+    NI->setPending(I->use_size());
+  }
+}
+
+/// isStrongDependency - Return true if node A has results used by node B. 
+/// I.E., B must wait for latency of A.
+bool SimpleSched::isStrongDependency(NodeInfo *A, NodeInfo *B) {
+  // If A defines for B then it's a strong dependency or
+  // if a load follows a store (may be dependent but why take a chance.)
+  return isDefiner(A, B) || (A->IsStore && B->IsLoad);
+}
+
+/// isWeakDependency Return true if node A produces a result that will
+/// conflict with operands of B.  It is assumed that we have called
+/// isStrongDependency prior.
+bool SimpleSched::isWeakDependency(NodeInfo *A, NodeInfo *B) {
+  // TODO check for conflicting real registers and aliases
+#if 0 // FIXME - Since we are in SSA form and not checking register aliasing
+  return A->Node->getOpcode() == ISD::EntryToken || isStrongDependency(B, A);
+#else
+  return A->Node->getOpcode() == ISD::EntryToken;
+#endif
+}
+
+/// ScheduleBackward - Schedule instructions so that any long latency
+/// instructions and the critical path get pushed back in time. Time is run in
+/// reverse to allow code reuse of the Tally and eliminate the overhead of
+/// biasing every slot indices against NSlots.
+void SimpleSched::ScheduleBackward() {
+  // Size and clear the resource tally
+  Tally.Initialize(NSlots);
+  // Get number of nodes to schedule
+  unsigned N = Ordering.size();
+  
+  // For each node being scheduled
+  for (unsigned i = N; 0 < i--;) {
+    NodeInfo *NI = Ordering[i];
+    // Track insertion
+    unsigned Slot = NotFound;
+    
+    // Compare against those previously scheduled nodes
+    unsigned j = i + 1;
+    for (; j < N; j++) {
+      // Get following instruction
+      NodeInfo *Other = Ordering[j];
+      
+      // Check dependency against previously inserted nodes
+      if (isStrongDependency(NI, Other)) {
+        Slot = Other->Slot + Other->Latency;
+        break;
+      } else if (isWeakDependency(NI, Other)) {
+        Slot = Other->Slot;
+        break;
+      }
+    }
+    
+    // If independent of others (or first entry)
+    if (Slot == NotFound) Slot = 0;
+    
+#if 0 // FIXME - measure later
+    // Find a slot where the needed resources are available
+    if (NI->StageBegin != NI->StageEnd)
+      Slot = Tally.FindAndReserve(Slot, NI->StageBegin, NI->StageEnd);
+#endif
+      
+    // Set node slot
+    NI->Slot = Slot;
+    
+    // Insert sort based on slot
+    j = i + 1;
+    for (; j < N; j++) {
+      // Get following instruction
+      NodeInfo *Other = Ordering[j];
+      // Should we look further (remember slots are in reverse time)
+      if (Slot >= Other->Slot) break;
+      // Shuffle other into ordering
+      Ordering[j - 1] = Other;
+    }
+    // Insert node in proper slot
+    if (j != i + 1) Ordering[j - 1] = NI;
+  }
+}
+
+/// ScheduleForward - Schedule instructions to maximize packing.
+///
+void SimpleSched::ScheduleForward() {
+  // Size and clear the resource tally
+  Tally.Initialize(NSlots);
+  // Get number of nodes to schedule
+  unsigned N = Ordering.size();
+  
+  // For each node being scheduled
+  for (unsigned i = 0; i < N; i++) {
+    NodeInfo *NI = Ordering[i];
+    // Track insertion
+    unsigned Slot = NotFound;
+    
+    // Compare against those previously scheduled nodes
+    unsigned j = i;
+    for (; 0 < j--;) {
+      // Get following instruction
+      NodeInfo *Other = Ordering[j];
+      
+      // Check dependency against previously inserted nodes
+      if (isStrongDependency(Other, NI)) {
+        Slot = Other->Slot + Other->Latency;
+        break;
+      } else if (Other->IsCall || isWeakDependency(Other, NI)) {
+        Slot = Other->Slot;
+        break;
+      }
+    }
+    
+    // If independent of others (or first entry)
+    if (Slot == NotFound) Slot = 0;
+    
+    // Find a slot where the needed resources are available
+    if (NI->StageBegin != NI->StageEnd)
+      Slot = Tally.FindAndReserve(Slot, NI->StageBegin, NI->StageEnd);
+      
+    // Set node slot
+    NI->Slot = Slot;
+    
+    // Insert sort based on slot
+    j = i;
+    for (; 0 < j--;) {
+      // Get prior instruction
+      NodeInfo *Other = Ordering[j];
+      // Should we look further
+      if (Slot >= Other->Slot) break;
+      // Shuffle other into ordering
+      Ordering[j + 1] = Other;
+    }
+    // Insert node in proper slot
+    if (j != i) Ordering[j + 1] = NI;
+  }
+}
+
+/// EmitAll - Emit all nodes in schedule sorted order.
+///
+void SimpleSched::EmitAll() {
+  // For each node in the ordering
+  for (unsigned i = 0, N = Ordering.size(); i < N; i++) {
+    // Get the scheduling info
+    NodeInfo *NI = Ordering[i];
+    if (NI->isInGroup()) {
+      NodeGroupIterator NGI(Ordering[i]);
+      while (NodeInfo *NI = NGI.next()) EmitNode(NI);
+    } else {
+      EmitNode(NI);
+    }
+  }
+}
+
+/// CountResults - The results of target nodes have register or immediate
+/// operands first, then an optional chain, and optional flag operands (which do
+/// not go into the machine instrs.)
+unsigned SimpleSched::CountResults(SDNode *Node) {
+  unsigned N = Node->getNumValues();
+  while (N && Node->getValueType(N - 1) == MVT::Flag)
+    --N;
+  if (N && Node->getValueType(N - 1) == MVT::Other)
+    --N;    // Skip over chain result.
+  return N;
+}
+
+/// CountOperands  The inputs to target nodes have any actual inputs first,
+/// followed by an optional chain operand, then flag operands.  Compute the
+/// number of actual operands that  will go into the machine instr.
+unsigned SimpleSched::CountOperands(SDNode *Node) {
+  unsigned N = Node->getNumOperands();
+  while (N && Node->getOperand(N - 1).getValueType() == MVT::Flag)
+    --N;
+  if (N && Node->getOperand(N - 1).getValueType() == MVT::Other)
+    --N; // Ignore chain if it exists.
+  return N;
+}
+
+/// CreateVirtualRegisters - Add result register values for things that are
+/// defined by this instruction.
+unsigned SimpleSched::CreateVirtualRegisters(MachineInstr *MI,
+                                             unsigned NumResults,
+                                             const TargetInstrDescriptor &II) {
+  // Create the result registers for this node and add the result regs to
+  // the machine instruction.
+  const TargetOperandInfo *OpInfo = II.OpInfo;
+  unsigned ResultReg = RegMap->createVirtualRegister(OpInfo[0].RegClass);
+  MI->addRegOperand(ResultReg, MachineOperand::Def);
+  for (unsigned i = 1; i != NumResults; ++i) {
+    assert(OpInfo[i].RegClass && "Isn't a register operand!");
+    MI->addRegOperand(RegMap->createVirtualRegister(OpInfo[i].RegClass),
+                      MachineOperand::Def);
+  }
+  return ResultReg;
+}
+
+/// EmitNode - Generate machine code for an node and needed dependencies.
+///
+void SimpleSched::EmitNode(NodeInfo *NI) {
+  unsigned VRBase = 0;                 // First virtual register for node
+  SDNode *Node = NI->Node;
   
-  unsigned ResultReg = 0;
-  if (Op.isTargetOpcode()) {
-    unsigned Opc = Op.getTargetOpcode();
+  // If machine instruction
+  if (Node->isTargetOpcode()) {
+    unsigned Opc = Node->getTargetOpcode();
     const TargetInstrDescriptor &II = TII.get(Opc);
 
-    // The results of target nodes have register or immediate operands first,
-    // then an optional chain, and optional flag operands (which do not go into
-    // the machine instrs).
-    unsigned NumResults = Op.Val->getNumValues();
-    while (NumResults && Op.Val->getValueType(NumResults-1) == MVT::Flag)
-      --NumResults;
-    if (NumResults && Op.Val->getValueType(NumResults-1) == MVT::Other)
-      --NumResults;    // Skip over chain result.
-
-    // The inputs to target nodes have any actual inputs first, followed by an
-    // optional chain operand, then flag operands.  Compute the number of actual
-    // operands that  will go into the machine instr.
-    unsigned NodeOperands = Op.getNumOperands();
-    while (NodeOperands &&
-           Op.getOperand(NodeOperands-1).getValueType() == MVT::Flag)
-      --NodeOperands;
-    
-    if (NodeOperands &&    // Ignore chain if it exists.
-        Op.getOperand(NodeOperands-1).getValueType() == MVT::Other)
-      --NodeOperands;
-   
-    unsigned NumMIOperands = NodeOperands+NumResults;
-#ifndef _NDEBUG
+    unsigned NumResults = CountResults(Node);
+    unsigned NodeOperands = CountOperands(Node);
+    unsigned NumMIOperands = NodeOperands + NumResults;
+#ifndef NDEBUG
     assert((unsigned(II.numOperands) == NumMIOperands || II.numOperands == -1)&&
            "#operands for dag node doesn't match .td file!"); 
 #endif
@@ -113,76 +1073,85 @@ unsigned SimpleSched::Emit(SDOperand Op) {
     
     // Add result register values for things that are defined by this
     // instruction.
-    if (NumResults) {
-      // Create the result registers for this node and add the result regs to
-      // the machine instruction.
-      const TargetOperandInfo *OpInfo = II.OpInfo;
-      ResultReg = RegMap->createVirtualRegister(OpInfo[0].RegClass);
-      MI->addRegOperand(ResultReg, MachineOperand::Def);
-      for (unsigned i = 1; i != NumResults; ++i) {
-        assert(OpInfo[i].RegClass && "Isn't a register operand!");
-        MI->addRegOperand(RegMap->createVirtualRegister(OpInfo[0].RegClass),
-                          MachineOperand::Def);
+    
+    // If the node is only used by a CopyToReg and the dest reg is a vreg, use
+    // the CopyToReg'd destination register instead of creating a new vreg.
+    if (NumResults == 1) {
+      for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end();
+           UI != E; ++UI) {
+        SDNode *Use = *UI;
+        if (Use->getOpcode() == ISD::CopyToReg && 
+            Use->getOperand(2).Val == Node) {
+          unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
+          if (MRegisterInfo::isVirtualRegister(Reg)) {
+            VRBase = Reg;
+            MI->addRegOperand(Reg, MachineOperand::Def);
+            break;
+          }
+        }
       }
     }
     
-    // If there is a token chain operand, emit it first, as a hack to get avoid
-    // really bad cases.
-    if (Op.getNumOperands() > NodeOperands &&
-        Op.getOperand(NodeOperands).getValueType() == MVT::Other)
-      Emit(Op.getOperand(NodeOperands));
+    // Otherwise, create new virtual registers.
+    if (NumResults && VRBase == 0)
+      VRBase = CreateVirtualRegisters(MI, NumResults, II);
     
     // Emit all of the actual operands of this instruction, adding them to the
     // instruction as appropriate.
     for (unsigned i = 0; i != NodeOperands; ++i) {
-      if (Op.getOperand(i).isTargetOpcode()) {
+      if (Node->getOperand(i).isTargetOpcode()) {
         // Note that this case is redundant with the final else block, but we
         // include it because it is the most common and it makes the logic
         // simpler here.
-        assert(Op.getOperand(i).getValueType() != MVT::Other &&
-               Op.getOperand(i).getValueType() != MVT::Flag &&
+        assert(Node->getOperand(i).getValueType() != MVT::Other &&
+               Node->getOperand(i).getValueType() != MVT::Flag &&
                "Chain and flag operands should occur at end of operand list!");
+
+        // Get/emit the operand.
+        unsigned VReg = getVR(Node->getOperand(i));
+        MI->addRegOperand(VReg, MachineOperand::Use);
         
-        MI->addRegOperand(Emit(Op.getOperand(i)), MachineOperand::Use);
+        // Verify that it is right.
+        assert(MRegisterInfo::isVirtualRegister(VReg) && "Not a vreg?");
+        assert(II.OpInfo[i+NumResults].RegClass &&
+               "Don't have operand info for this instruction!");
+        assert(RegMap->getRegClass(VReg) == II.OpInfo[i+NumResults].RegClass &&
+               "Register class of operand and regclass of use don't agree!");
       } else if (ConstantSDNode *C =
-                                   dyn_cast<ConstantSDNode>(Op.getOperand(i))) {
+                 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
         MI->addZeroExtImm64Operand(C->getValue());
-      } else if (RegisterSDNode*R =dyn_cast<RegisterSDNode>(Op.getOperand(i))) {
+      } else if (RegisterSDNode*R =
+                 dyn_cast<RegisterSDNode>(Node->getOperand(i))) {
         MI->addRegOperand(R->getReg(), MachineOperand::Use);
       } else if (GlobalAddressSDNode *TGA =
-                       dyn_cast<GlobalAddressSDNode>(Op.getOperand(i))) {
-        MI->addGlobalAddressOperand(TGA->getGlobal(), false, 0);
+                       dyn_cast<GlobalAddressSDNode>(Node->getOperand(i))) {
+        MI->addGlobalAddressOperand(TGA->getGlobal(), false, TGA->getOffset());
       } else if (BasicBlockSDNode *BB =
-                       dyn_cast<BasicBlockSDNode>(Op.getOperand(i))) {
+                       dyn_cast<BasicBlockSDNode>(Node->getOperand(i))) {
         MI->addMachineBasicBlockOperand(BB->getBasicBlock());
       } else if (FrameIndexSDNode *FI =
-                       dyn_cast<FrameIndexSDNode>(Op.getOperand(i))) {
+                       dyn_cast<FrameIndexSDNode>(Node->getOperand(i))) {
         MI->addFrameIndexOperand(FI->getIndex());
       } else if (ConstantPoolSDNode *CP = 
-                    dyn_cast<ConstantPoolSDNode>(Op.getOperand(i))) {
+                    dyn_cast<ConstantPoolSDNode>(Node->getOperand(i))) {
         unsigned Idx = ConstPool->getConstantPoolIndex(CP->get());
         MI->addConstantPoolIndexOperand(Idx);
       } else if (ExternalSymbolSDNode *ES = 
-                 dyn_cast<ExternalSymbolSDNode>(Op.getOperand(i))) {
+                 dyn_cast<ExternalSymbolSDNode>(Node->getOperand(i))) {
         MI->addExternalSymbolOperand(ES->getSymbol(), false);
       } else {
-        assert(Op.getOperand(i).getValueType() != MVT::Other &&
-               Op.getOperand(i).getValueType() != MVT::Flag &&
+        assert(Node->getOperand(i).getValueType() != MVT::Other &&
+               Node->getOperand(i).getValueType() != MVT::Flag &&
                "Chain and flag operands should occur at end of operand list!");
-        MI->addRegOperand(Emit(Op.getOperand(i)), MachineOperand::Use);
-      }
-    }
-
-    // Finally, if this node has any flag operands, we *must* emit them last, to
-    // avoid emitting operations that might clobber the flags.
-    if (Op.getNumOperands() > NodeOperands) {
-      unsigned i = NodeOperands;
-      if (Op.getOperand(i).getValueType() == MVT::Other)
-        ++i;  // the chain is already selected.
-      for (; i != Op.getNumOperands(); ++i) {
-        assert(Op.getOperand(i).getValueType() == MVT::Flag &&
-               "Must be flag operands!");
-        Emit(Op.getOperand(i));
+        unsigned VReg = getVR(Node->getOperand(i));
+        MI->addRegOperand(VReg, MachineOperand::Use);
+        
+        // Verify that it is right.
+        assert(MRegisterInfo::isVirtualRegister(VReg) && "Not a vreg?");
+        assert(II.OpInfo[i+NumResults].RegClass &&
+               "Don't have operand info for this instruction!");
+        assert(RegMap->getRegClass(VReg) == II.OpInfo[i+NumResults].RegClass &&
+               "Register class of operand and regclass of use don't agree!");
       }
     }
     
@@ -195,58 +1164,208 @@ unsigned SimpleSched::Emit(SDOperand Op) {
       BB = DAG.getTargetLoweringInfo().InsertAtEndOfBasicBlock(MI, BB);
     }
   } else {
-    switch (Op.getOpcode()) {
+    switch (Node->getOpcode()) {
     default:
-      Op.Val->dump(); 
+      Node->dump(); 
       assert(0 && "This target-independent node should have been selected!");
-    case ISD::EntryToken: break;
+    case ISD::EntryToken: // fall thru
     case ISD::TokenFactor:
-      for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i)
-        Emit(Op.getOperand(i));
       break;
     case ISD::CopyToReg: {
-      Emit(Op.getOperand(0));   // Emit the chain.
-      unsigned Val = Emit(Op.getOperand(2));
-      MRI.copyRegToReg(*BB, BB->end(),
-                       cast<RegisterSDNode>(Op.getOperand(1))->getReg(), Val,
-                       RegMap->getRegClass(Val));
+      unsigned InReg = getVR(Node->getOperand(2));
+      unsigned DestReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
+      if (InReg != DestReg)   // Coallesced away the copy?
+        MRI.copyRegToReg(*BB, BB->end(), DestReg, InReg,
+                         RegMap->getRegClass(InReg));
       break;
     }
     case ISD::CopyFromReg: {
-      Emit(Op.getOperand(0));   // Emit the chain.
-      unsigned SrcReg = cast<RegisterSDNode>(Op.getOperand(1))->getReg();
-      
+      unsigned SrcReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
+      if (MRegisterInfo::isVirtualRegister(SrcReg)) {
+        VRBase = SrcReg;  // Just use the input register directly!
+        break;
+      }
+
+      // If the node is only used by a CopyToReg and the dest reg is a vreg, use
+      // the CopyToReg'd destination register instead of creating a new vreg.
+      for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end();
+           UI != E; ++UI) {
+        SDNode *Use = *UI;
+        if (Use->getOpcode() == ISD::CopyToReg && 
+            Use->getOperand(2).Val == Node) {
+          unsigned DestReg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
+          if (MRegisterInfo::isVirtualRegister(DestReg)) {
+            VRBase = DestReg;
+            break;
+          }
+        }
+      }
+
       // Figure out the register class to create for the destreg.
       const TargetRegisterClass *TRC = 0;
-      if (MRegisterInfo::isVirtualRegister(SrcReg)) {
-        TRC = RegMap->getRegClass(SrcReg);
+      if (VRBase) {
+        TRC = RegMap->getRegClass(VRBase);
       } else {
-        // FIXME: we don't know what register class to generate this for.  Do
-        // a brute force search and pick the first match. :(
+
+        // Pick the register class of the right type that contains this physreg.
         for (MRegisterInfo::regclass_iterator I = MRI.regclass_begin(),
-               E = MRI.regclass_end(); I != E; ++I)
-          if ((*I)->contains(SrcReg)) {
+             E = MRI.regclass_end(); I != E; ++I)
+          if ((*I)->hasType(Node->getValueType(0)) &&
+              (*I)->contains(SrcReg)) {
             TRC = *I;
             break;
           }
         assert(TRC && "Couldn't find register class for reg copy!");
-      }
       
-      // Create the reg, emit the copy.
-      ResultReg = RegMap->createVirtualRegister(TRC);
-      MRI.copyRegToReg(*BB, BB->end(), ResultReg, SrcReg, TRC);
+        // Create the reg, emit the copy.
+        VRBase = RegMap->createVirtualRegister(TRC);
+      }
+      MRI.copyRegToReg(*BB, BB->end(), VRBase, SrcReg, TRC);
       break;
     }
     }
   }
+
+  assert(NI->VRBase == 0 && "Node emitted out of order - early");
+  NI->VRBase = VRBase;
+}
+
+/// Schedule - Order nodes according to selected style.
+///
+void SimpleSched::Schedule() {
+  // Number the nodes
+  NodeCount = std::distance(DAG.allnodes_begin(), DAG.allnodes_end());
+  // Test to see if scheduling should occur
+  bool ShouldSchedule = NodeCount > 3 && ScheduleStyle != noScheduling;
+  // Set up minimum info for scheduling
+  PrepareNodeInfo();
+  // Construct node groups for flagged nodes
+  IdentifyGroups();
+
+  // Don't waste time if is only entry and return
+  if (ShouldSchedule) {
+    // Get latency and resource requirements
+    GatherSchedulingInfo();
+  } else if (HasGroups) {
+    // Make sure all the groups have dominators
+    FakeGroupDominators();
+  }
+
+  // Breadth first walk of DAG
+  VisitAll();
+
+#ifndef NDEBUG
+  static unsigned Count = 0;
+  Count++;
+  for (unsigned i = 0, N = Ordering.size(); i < N; i++) {
+    NodeInfo *NI = Ordering[i];
+    NI->Preorder = i;
+  }
+#endif  
   
-  if (OpSlot) *OpSlot = ResultReg;
-  return ResultReg+Op.ResNo;
+  // Don't waste time if is only entry and return
+  if (ShouldSchedule) {
+    // Push back long instructions and critical path
+    ScheduleBackward();
+    
+    // Pack instructions to maximize resource utilization
+    ScheduleForward();
+  }
+  
+  DEBUG(printChanges(Count));
+  
+  // Emit in scheduled order
+  EmitAll();
+}
+
+/// printChanges - Hilight changes in order caused by scheduling.
+///
+void SimpleSched::printChanges(unsigned Index) {
+#ifndef NDEBUG
+  // Get the ordered node count
+  unsigned N = Ordering.size();
+  // Determine if any changes
+  unsigned i = 0;
+  for (; i < N; i++) {
+    NodeInfo *NI = Ordering[i];
+    if (NI->Preorder != i) break;
+  }
+  
+  if (i < N) {
+    std::cerr << Index << ". New Ordering\n";
+    
+    for (i = 0; i < N; i++) {
+      NodeInfo *NI = Ordering[i];
+      std::cerr << "  " << NI->Preorder << ". ";
+      printSI(std::cerr, NI);
+      std::cerr << "\n";
+      if (NI->isGroupDominator()) {
+        NodeGroup *Group = NI->Group;
+        for (NIIterator NII = Group->group_begin(), E = Group->group_end();
+             NII != E; NII++) {
+          std::cerr << "          ";
+          printSI(std::cerr, *NII);
+          std::cerr << "\n";
+        }
+      }
+    }
+  } else {
+    std::cerr << Index << ". No Changes\n";
+  }
+#endif
 }
 
+/// printSI - Print schedule info.
+///
+void SimpleSched::printSI(std::ostream &O, NodeInfo *NI) const {
+#ifndef NDEBUG
+  SDNode *Node = NI->Node;
+  O << " "
+    << std::hex << Node << std::dec
+    << ", Lat=" << NI->Latency
+    << ", Slot=" << NI->Slot
+    << ", ARITY=(" << Node->getNumOperands() << ","
+                   << Node->getNumValues() << ")"
+    << " " << Node->getOperationName(&DAG);
+  if (isFlagDefiner(Node)) O << "<#";
+  if (isFlagUser(Node)) O << ">#";
+#endif
+}
 
-/// Pick a safe ordering and emit instructions for each target node in the
-/// graph.
+/// print - Print ordering to specified output stream.
+///
+void SimpleSched::print(std::ostream &O) const {
+#ifndef NDEBUG
+  using namespace std;
+  O << "Ordering\n";
+  for (unsigned i = 0, N = Ordering.size(); i < N; i++) {
+    NodeInfo *NI = Ordering[i];
+    printSI(O, NI);
+    O << "\n";
+    if (NI->isGroupDominator()) {
+      NodeGroup *Group = NI->Group;
+      for (NIIterator NII = Group->group_begin(), E = Group->group_end();
+           NII != E; NII++) {
+        O << "    ";
+        printSI(O, *NII);
+        O << "\n";
+      }
+    }
+  }
+#endif
+}
+
+/// dump - Print ordering to std::cerr.
+///
+void SimpleSched::dump() const {
+  print(std::cerr);
+}
+//===----------------------------------------------------------------------===//
+
+
+//===----------------------------------------------------------------------===//
+/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
+/// target node in the graph.
 void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &SD) {
   if (ViewDAGs) SD.viewGraph();
   BB = SimpleSched(SD, BB).Run();