When deleting a machine instruction, make sure to remove it from the
[oota-llvm.git] / lib / CodeGen / RegAllocLocal.cpp
index 188b3b341708753a8480abd0c6a36c8e7c6b6785..c435c34f49e0ef85368c75851a3f01c382c02aad 100644 (file)
 #include "llvm/CodeGen/SSARegMap.h"
 #include "llvm/CodeGen/MachineFrameInfo.h"
 #include "llvm/CodeGen/LiveVariables.h"
+#include "llvm/CodeGen/RegAllocRegistry.h"
 #include "llvm/Target/TargetInstrInfo.h"
 #include "llvm/Target/TargetMachine.h"
-#include "Support/CommandLine.h"
-#include "Support/Debug.h"
-#include "Support/Statistic.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/Statistic.h"
+#include <algorithm>
 #include <iostream>
 using namespace llvm;
 
 namespace {
-  Statistic<> NumStores("ra-local", "Number of stores added");
-  Statistic<> NumLoads ("ra-local", "Number of loads added");
-  Statistic<> NumFused ("ra-local", "Number of reloads fused into instructions");
-  class RA : public MachineFunctionPass {
+  static Statistic<> NumStores("ra-local", "Number of stores added");
+  static Statistic<> NumLoads ("ra-local", "Number of loads added");
+  static Statistic<> NumFolded("ra-local", "Number of loads/stores folded "
+                              "into instructions");
+
+  static RegisterRegAlloc
+    localRegAlloc("local", "  local register allocator",
+                  createLocalRegisterAllocator);
+
+
+  class VISIBILITY_HIDDEN RA : public MachineFunctionPass {
     const TargetMachine *TM;
     MachineFunction *MF;
     const MRegisterInfo *RegInfo;
     LiveVariables *LV;
+    bool *PhysRegsEverUsed;
 
     // StackSlotForVirtReg - Maps virtual regs to the frame index where these
     // values are spilled.
     std::map<unsigned, int> StackSlotForVirtReg;
 
     // Virt2PhysRegMap - This map contains entries for each virtual register
-    // that is currently available in a physical register.  This is "logically"
-    // a map from virtual register numbers to physical register numbers.
-    // Instead of using a map, however, which is slow, we use a vector.  The
-    // index is the VREG number - FirstVirtualRegister.  If the entry is zero,
-    // then it is logically "not in the map".
-    //
-    std::vector<unsigned> Virt2PhysRegMap;
+    // that is currently available in a physical register.
+    DenseMap<unsigned, VirtReg2IndexFunctor> Virt2PhysRegMap;
 
     unsigned &getVirt2PhysRegMapSlot(unsigned VirtReg) {
-      assert(MRegisterInfo::isVirtualRegister(VirtReg) &&"Illegal VREG #");
-      assert(VirtReg-MRegisterInfo::FirstVirtualRegister <Virt2PhysRegMap.size()
-             && "VirtReg not in map!");
-      return Virt2PhysRegMap[VirtReg-MRegisterInfo::FirstVirtualRegister];
+      return Virt2PhysRegMap[VirtReg];
     }
 
     // PhysRegsUsed - This array is effectively a map, containing entries for
@@ -99,8 +103,8 @@ namespace {
     }
 
     void MarkPhysRegRecentlyUsed(unsigned Reg) {
-      assert(!PhysRegsUseOrder.empty() && "No registers used!");
-      if (PhysRegsUseOrder.back() == Reg) return;  // Already most recently used
+      if(PhysRegsUseOrder.empty() ||
+         PhysRegsUseOrder.back() == Reg) return;  // Already most recently used
 
       for (unsigned i = PhysRegsUseOrder.size(); i != 0; --i)
         if (areRegsEqual(Reg, PhysRegsUseOrder[i-1])) {
@@ -159,7 +163,7 @@ namespace {
     /// the virtual register slot specified by VirtReg.  It then updates the RA
     /// data structures to indicate the fact that PhysReg is now available.
     ///
-    void spillVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
+    void spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
                       unsigned VirtReg, unsigned PhysReg);
 
     /// spillPhysReg - This method spills the specified physical register into
@@ -215,7 +219,7 @@ namespace {
     ///
     MachineInstr *reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
                                 unsigned OpNum);
+
 
     void reloadPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
                        unsigned PhysReg);
@@ -232,7 +236,8 @@ int RA::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) {
     return I->second;          // Already has space allocated?
 
   // Allocate a new stack object for this spill location...
-  int FrameIdx = MF->getFrameInfo()->CreateStackObject(RC);
+  int FrameIdx = MF->getFrameInfo()->CreateStackObject(RC->getSize(),
+                                                       RC->getAlignment());
 
   // Assign the slot...
   StackSlotForVirtReg.insert(I, std::make_pair(VirtReg, FrameIdx));
@@ -257,7 +262,7 @@ void RA::removePhysReg(unsigned PhysReg) {
 /// virtual register slot specified by VirtReg.  It then updates the RA data
 /// structures to indicate the fact that PhysReg is now available.
 ///
-void RA::spillVirtReg(MachineBasicBlock &MBB, MachineInstr *I,
+void RA::spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
                       unsigned VirtReg, unsigned PhysReg) {
   assert(VirtReg && "Spilling a physical register is illegal!"
          " Must not have appropriate kill for the register or use exists beyond"
@@ -362,39 +367,6 @@ unsigned RA::getFreeReg(const TargetRegisterClass *RC) {
 ///
 void RA::liberatePhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
                          unsigned PhysReg) {
-  // FIXME: This code checks to see if a register is available, but it really
-  // wants to know if a reg is available BEFORE the instruction executes.  If
-  // called after killed operands are freed, it runs the risk of reallocating a
-  // used operand...
-#if 0
-  if (isPhysRegAvailable(PhysReg)) return;  // Already available...
-
-  // Check to see if the register is directly used, not indirectly used through
-  // aliases.  If aliased registers are the ones actually used, we cannot be
-  // sure that we will be able to save the whole thing if we do a reg-reg copy.
-  if (PhysRegsUsed[PhysReg] != -1) {
-    // The virtual register held...
-    unsigned VirtReg = PhysRegsUsed[PhysReg]->second;
-
-    // Check to see if there is a compatible register available.  If so, we can
-    // move the value into the new register...
-    //
-    const TargetRegisterClass *RC = RegInfo->getRegClass(PhysReg);
-    if (unsigned NewReg = getFreeReg(RC)) {
-      // Emit the code to copy the value...
-      RegInfo->copyRegToReg(MBB, I, NewReg, PhysReg, RC);
-
-      // Update our internal state to indicate that PhysReg is available and Reg
-      // isn't.
-      getVirt2PhysRegMapSlot[VirtReg] = 0;
-      removePhysReg(PhysReg);  // Free the physreg
-
-      // Move reference over to new register...
-      assignVirtToPhysReg(VirtReg, NewReg);
-      return;
-    }
-  }
-#endif
   spillPhysReg(MBB, I, PhysReg);
 }
 
@@ -430,7 +402,7 @@ unsigned RA::getReg(MachineBasicBlock &MBB, MachineInstr *I,
              "PhysReg in PhysRegsUseOrder, but is not allocated?");
       if (PhysRegsUsed[R]) {
         // If the current register is compatible, use it.
-        if (RegInfo->getRegClass(R) == RC) {
+        if (RC->contains(R)) {
           PhysReg = R;
           break;
         } else {
@@ -438,7 +410,7 @@ unsigned RA::getReg(MachineBasicBlock &MBB, MachineInstr *I,
           // compatible, use it.
           for (const unsigned *AliasSet = RegInfo->getAliasSet(R);
                *AliasSet; ++AliasSet) {
-            if (RegInfo->getRegClass(*AliasSet) == RC) {
+            if (RC->contains(*AliasSet)) {
               PhysReg = *AliasSet;    // Take an aliased register
               break;
             }
@@ -479,7 +451,7 @@ MachineInstr *RA::reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
   // and return.
   if (unsigned PR = getVirt2PhysRegMapSlot(VirtReg)) {
     MarkPhysRegRecentlyUsed(PR);          // Already have this value available!
-    MI->SetMachineOperandReg(OpNum, PR);  // Assign the input register
+    MI->getOperand(OpNum).setReg(PR);  // Assign the input register
     return MI;
   }
 
@@ -493,13 +465,12 @@ MachineInstr *RA::reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
     assignVirtToPhysReg(VirtReg, PhysReg);
   } else {         // No registers available.
     // If we can fold this spill into this instruction, do so now.
-    MachineBasicBlock::iterator MII = MI;
-    if (RegInfo->foldMemoryOperand(MII, OpNum, FrameIndex)) {
-      ++NumFused;
+    if (MachineInstr* FMI = RegInfo->foldMemoryOperand(MI, OpNum, FrameIndex)){
+      ++NumFolded;
       // Since we changed the address of MI, make sure to update live variables
       // to know that the new instruction has the properties of the old one.
-      LV->instructionChanged(MI, MII);
-      return MII;
+      LV->instructionChanged(MI, FMI);
+      return MBB.insert(MBB.erase(MI), FMI);
     }
 
     // It looks like we can't fold this virtual register load into this
@@ -517,7 +488,8 @@ MachineInstr *RA::reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
   RegInfo->loadRegFromStackSlot(MBB, MI, PhysReg, FrameIndex, RC);
   ++NumLoads;    // Update statistics
 
-  MI->SetMachineOperandReg(OpNum, PhysReg);  // Assign the input register
+  PhysRegsEverUsed[PhysReg] = true;
+  MI->getOperand(OpNum).setReg(PhysReg);  // Assign the input register
   return MI;
 }
 
@@ -525,9 +497,31 @@ MachineInstr *RA::reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
 
 void RA::AllocateBasicBlock(MachineBasicBlock &MBB) {
   // loop over each instruction
-  MachineBasicBlock::iterator MI = MBB.begin();
-  for (; MI != MBB.end(); ++MI) {
-    const TargetInstrDescriptor &TID = TM->getInstrInfo().get(MI->getOpcode());
+  MachineBasicBlock::iterator MII = MBB.begin();
+  const TargetInstrInfo &TII = *TM->getInstrInfo();
+  
+  // If this is the first basic block in the machine function, add live-in
+  // registers as active.
+  if (&MBB == &*MF->begin()) {
+    for (MachineFunction::livein_iterator I = MF->livein_begin(),
+         E = MF->livein_end(); I != E; ++I) {
+      unsigned Reg = I->first;
+      PhysRegsEverUsed[Reg] = true;
+      PhysRegsUsed[Reg] = 0;            // It is free and reserved now
+      PhysRegsUseOrder.push_back(Reg);
+      for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
+           *AliasSet; ++AliasSet) {
+        PhysRegsUseOrder.push_back(*AliasSet);
+        PhysRegsUsed[*AliasSet] = 0;  // It is free and reserved now
+        PhysRegsEverUsed[*AliasSet] = true;
+      }
+    }    
+  }
+  
+  // Otherwise, sequentially allocate each instruction in the MBB.
+  while (MII != MBB.end()) {
+    MachineInstr *MI = MII++;
+    const TargetInstrDescriptor &TID = TII.get(MI->getOpcode());
     DEBUG(std::cerr << "\nStarting RegAlloc of: " << *MI;
           std::cerr << "  Regs have values: ";
           for (unsigned i = 0; i != RegInfo->getNumRegs(); ++i)
@@ -538,9 +532,11 @@ void RA::AllocateBasicBlock(MachineBasicBlock &MBB) {
 
     // Loop over the implicit uses, making sure that they are at the head of the
     // use order list, so they don't get reallocated.
-    for (const unsigned *ImplicitUses = TID.ImplicitUses;
-         *ImplicitUses; ++ImplicitUses)
-      MarkPhysRegRecentlyUsed(*ImplicitUses);
+    if (TID.ImplicitUses) {
+      for (const unsigned *ImplicitUses = TID.ImplicitUses;
+           *ImplicitUses; ++ImplicitUses)
+        MarkPhysRegRecentlyUsed(*ImplicitUses);
+    }
 
     // Get the used operands into registers.  This has the potential to spill
     // incoming values if we are out of registers.  Note that we completely
@@ -548,11 +544,13 @@ void RA::AllocateBasicBlock(MachineBasicBlock &MBB) {
     // physical register is referenced by the instruction, that it is guaranteed
     // to be live-in, or the input is badly hosed.
     //
-    for (unsigned i = 0; i != MI->getNumOperands(); ++i)
-      if (MI->getOperand(i).isUse() &&
-          !MI->getOperand(i).isDef() && MI->getOperand(i).isRegister() &&
-          MRegisterInfo::isVirtualRegister(MI->getOperand(i).getReg()))
+    for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
+      MachineOperand& MO = MI->getOperand(i);
+      // here we are looking for only used operands (never def&use)
+      if (!MO.isDef() && MO.isRegister() && MO.getReg() &&
+          MRegisterInfo::isVirtualRegister(MO.getReg()))
         MI = reloadVirtReg(MBB, MI, i);
+    }
 
     // If this instruction is the last user of anything in registers, kill the
     // value, freeing the register being used, so it doesn't need to be
@@ -560,7 +558,7 @@ void RA::AllocateBasicBlock(MachineBasicBlock &MBB) {
     //
     for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
            KE = LV->killed_end(MI); KI != KE; ++KI) {
-      unsigned VirtReg = KI->second;
+      unsigned VirtReg = *KI;
       unsigned PhysReg = VirtReg;
       if (MRegisterInfo::isVirtualRegister(VirtReg)) {
         // If the virtual register was never materialized into a register, it
@@ -579,10 +577,12 @@ void RA::AllocateBasicBlock(MachineBasicBlock &MBB) {
 
     // Loop over all of the operands of the instruction, spilling registers that
     // are defined, and marking explicit destinations in the PhysRegsUsed map.
-    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
-      if (MI->getOperand(i).isDef() && MI->getOperand(i).isRegister() &&
-          MRegisterInfo::isPhysicalRegister(MI->getOperand(i).getReg())) {
-        unsigned Reg = MI->getOperand(i).getReg();
+    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+      MachineOperand& MO = MI->getOperand(i);
+      if (MO.isDef() && MO.isRegister() && MO.getReg() &&
+          MRegisterInfo::isPhysicalRegister(MO.getReg())) {
+        unsigned Reg = MO.getReg();
+        PhysRegsEverUsed[Reg] = true;
         spillPhysReg(MBB, MI, Reg, true); // Spill any existing value in the reg
         PhysRegsUsed[Reg] = 0;            // It is free and reserved now
         PhysRegsUseOrder.push_back(Reg);
@@ -590,47 +590,57 @@ void RA::AllocateBasicBlock(MachineBasicBlock &MBB) {
              *AliasSet; ++AliasSet) {
           PhysRegsUseOrder.push_back(*AliasSet);
           PhysRegsUsed[*AliasSet] = 0;  // It is free and reserved now
+          PhysRegsEverUsed[*AliasSet] = true;
         }
       }
+    }
 
     // Loop over the implicit defs, spilling them as well.
-    for (const unsigned *ImplicitDefs = TID.ImplicitDefs;
-         *ImplicitDefs; ++ImplicitDefs) {
-      unsigned Reg = *ImplicitDefs;
-      spillPhysReg(MBB, MI, Reg, true);
-      PhysRegsUseOrder.push_back(Reg);
-      PhysRegsUsed[Reg] = 0;            // It is free and reserved now
-      for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
-           *AliasSet; ++AliasSet) {
-        PhysRegsUseOrder.push_back(*AliasSet);
-        PhysRegsUsed[*AliasSet] = 0;  // It is free and reserved now
+    if (TID.ImplicitDefs) {
+      for (const unsigned *ImplicitDefs = TID.ImplicitDefs;
+           *ImplicitDefs; ++ImplicitDefs) {
+        unsigned Reg = *ImplicitDefs;
+        spillPhysReg(MBB, MI, Reg, true);
+        PhysRegsUseOrder.push_back(Reg);
+        PhysRegsUsed[Reg] = 0;            // It is free and reserved now
+        PhysRegsEverUsed[Reg] = true;
+
+        for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
+             *AliasSet; ++AliasSet) {
+          PhysRegsUseOrder.push_back(*AliasSet);
+          PhysRegsUsed[*AliasSet] = 0;  // It is free and reserved now
+          PhysRegsEverUsed[*AliasSet] = true;
+        }
       }
     }
 
     // Okay, we have allocated all of the source operands and spilled any values
     // that would be destroyed by defs of this instruction.  Loop over the
-    // implicit defs and assign them to a register, spilling incoming values if
+    // explicit defs and assign them to a register, spilling incoming values if
     // we need to scavenge a register.
     //
-    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
-      if (MI->getOperand(i).isDef() && MI->getOperand(i).isRegister() &&
-          MRegisterInfo::isVirtualRegister(MI->getOperand(i).getReg())) {
-        unsigned DestVirtReg = MI->getOperand(i).getReg();
+    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+      MachineOperand& MO = MI->getOperand(i);
+      if (MO.isDef() && MO.isRegister() && MO.getReg() &&
+          MRegisterInfo::isVirtualRegister(MO.getReg())) {
+        unsigned DestVirtReg = MO.getReg();
         unsigned DestPhysReg;
 
         // If DestVirtReg already has a value, use it.
         if (!(DestPhysReg = getVirt2PhysRegMapSlot(DestVirtReg)))
           DestPhysReg = getReg(MBB, MI, DestVirtReg);
+        PhysRegsEverUsed[DestPhysReg] = true;
         markVirtRegModified(DestVirtReg);
-        MI->SetMachineOperandReg(i, DestPhysReg);  // Assign the output register
+        MI->getOperand(i).setReg(DestPhysReg);  // Assign the output register
       }
+    }
 
     // If this instruction defines any registers that are immediately dead,
     // kill them now.
     //
     for (LiveVariables::killed_iterator KI = LV->dead_begin(MI),
            KE = LV->dead_end(MI); KI != KE; ++KI) {
-      unsigned VirtReg = KI->second;
+      unsigned VirtReg = *KI;
       unsigned PhysReg = VirtReg;
       if (MRegisterInfo::isVirtualRegister(VirtReg)) {
         unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg);
@@ -646,13 +656,17 @@ void RA::AllocateBasicBlock(MachineBasicBlock &MBB) {
         removePhysReg(PhysReg);
       }
     }
+    
+    // Finally, if this is a noop copy instruction, zap it.
+    unsigned SrcReg, DstReg;
+    if (TII.isMoveInstr(*MI, SrcReg, DstReg) && SrcReg == DstReg) {
+      LV->removeVirtualRegistersKilled(MI);
+      LV->removeVirtualRegistersDead(MI);
+      MBB.erase(MI);
+    }
   }
 
-  // Rewind the iterator to point to the first flow control instruction...
-  const TargetInstrInfo &TII = TM->getInstrInfo();
-  MI = MBB.end();
-  while (MI != MBB.begin() && TII.isTerminatorInstr((--MI)->getOpcode()));
-  ++MI;
+  MachineBasicBlock::iterator MI = MBB.getFirstTerminator();
 
   // Spill all physical registers holding virtual registers now.
   for (unsigned i = 0, e = RegInfo->getNumRegs(); i != e; ++i)
@@ -662,9 +676,11 @@ void RA::AllocateBasicBlock(MachineBasicBlock &MBB) {
       else
         removePhysReg(i);
 
-#ifndef NDEBUG
+#if 0
+  // This checking code is very expensive.
   bool AllOk = true;
-  for (unsigned i = 0, e = Virt2PhysRegMap.size(); i != e; ++i)
+  for (unsigned i = MRegisterInfo::FirstVirtualRegister,
+           e = MF->getSSARegMap()->getLastVirtReg(); i <= e; ++i)
     if (unsigned PR = Virt2PhysRegMap[i]) {
       std::cerr << "Register still mapped: " << i << " -> " << PR << "\n";
       AllOk = false;
@@ -688,11 +704,15 @@ bool RA::runOnMachineFunction(MachineFunction &Fn) {
   RegInfo = TM->getRegisterInfo();
   LV = &getAnalysis<LiveVariables>();
 
+  PhysRegsEverUsed = new bool[RegInfo->getNumRegs()];
+  std::fill(PhysRegsEverUsed, PhysRegsEverUsed+RegInfo->getNumRegs(), false);
+  Fn.setUsedPhysRegs(PhysRegsEverUsed);
+
   PhysRegsUsed.assign(RegInfo->getNumRegs(), -1);
 
   // initialize the virtual->physical register map to have a 'null'
   // mapping for all virtual registers
-  Virt2PhysRegMap.assign(MF->getSSARegMap()->getNumVirtualRegs(), 0);
+  Virt2PhysRegMap.grow(MF->getSSARegMap()->getLastVirtReg());
 
   // Loop over all of the basic blocks, eliminating virtual register references
   for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();