Revert r53367, which was breaking things.
[oota-llvm.git] / lib / CodeGen / RegAllocLocal.cpp
index f84f7e82ef07f94f730036b883b53568ae2a243f..3e1038daa9c9487af7f88c19e6270408db5d69bc 100644 (file)
@@ -2,8 +2,8 @@
 //
 //                     The LLVM Compiler Infrastructure
 //
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
 //
 //===----------------------------------------------------------------------===//
 //
 //===----------------------------------------------------------------------===//
 
 #define DEBUG_TYPE "regalloc"
-#include "llvm/CodeGen/Passes.h"
+#include "llvm/BasicBlock.h"
 #include "llvm/CodeGen/MachineFunctionPass.h"
 #include "llvm/CodeGen/MachineInstr.h"
-#include "llvm/CodeGen/SSARegMap.h"
 #include "llvm/CodeGen/MachineFrameInfo.h"
-#include "llvm/CodeGen/LiveVariables.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/RegAllocRegistry.h"
 #include "llvm/Target/TargetInstrInfo.h"
 #include "llvm/Target/TargetMachine.h"
 #include "llvm/Support/CommandLine.h"
 #include "llvm/Support/Debug.h"
-#include "llvm/ADT/DenseMap.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/ADT/IndexedMap.h"
+#include "llvm/ADT/SmallVector.h"
 #include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/STLExtras.h"
 #include <algorithm>
-#include <iostream>
+#include <map>
 using namespace llvm;
 
+STATISTIC(NumStores, "Number of stores added");
+STATISTIC(NumLoads , "Number of loads added");
+
+static RegisterRegAlloc
+  localRegAlloc("local", "  local register allocator",
+                createLocalRegisterAllocator);
+
 namespace {
-  Statistic<> NumStores("ra-local", "Number of stores added");
-  Statistic<> NumLoads ("ra-local", "Number of loads added");
-  Statistic<> NumFolded("ra-local", "Number of loads/stores folded into "
-                        "instructions");
-  class RA : public MachineFunctionPass {
+  class VISIBILITY_HIDDEN RALocal : public MachineFunctionPass {
+  public:
+    static char ID;
+    RALocal() : MachineFunctionPass((intptr_t)&ID) {}
+  private:
     const TargetMachine *TM;
     MachineFunction *MF;
-    const MRegisterInfo *RegInfo;
-    LiveVariables *LV;
-    bool *PhysRegsEverUsed;
+    const TargetRegisterInfo *TRI;
+    const TargetInstrInfo *TII;
 
     // StackSlotForVirtReg - Maps virtual regs to the frame index where these
     // values are spilled.
@@ -47,7 +57,7 @@ namespace {
 
     // Virt2PhysRegMap - This map contains entries for each virtual register
     // that is currently available in a physical register.
-    DenseMap<unsigned, VirtReg2IndexFunctor> Virt2PhysRegMap;
+    IndexedMap<unsigned, VirtReg2IndexFunctor> Virt2PhysRegMap;
 
     unsigned &getVirt2PhysRegMapSlot(unsigned VirtReg) {
       return Virt2PhysRegMap[VirtReg];
@@ -58,8 +68,9 @@ namespace {
     // Virt2PhysRegMap).  The value mapped to is the virtual register
     // corresponding to the physical register (the inverse of the
     // Virt2PhysRegMap), or 0.  The value is set to 0 if this register is pinned
-    // because it is used by a future instruction.  If the entry for a physical
-    // register is -1, then the physical register is "not in the map".
+    // because it is used by a future instruction, and to -2 if it is not
+    // allocatable.  If the entry for a physical register is -1, then the
+    // physical register is "not in the map".
     //
     std::vector<int> PhysRegsUsed;
 
@@ -73,30 +84,54 @@ namespace {
     //
     std::vector<unsigned> PhysRegsUseOrder;
 
+    // Virt2LastUseMap - This maps each virtual register to its last use
+    // (MachineInstr*, operand index pair).
+    IndexedMap<std::pair<MachineInstr*, unsigned>, VirtReg2IndexFunctor>
+    Virt2LastUseMap;
+
+    std::pair<MachineInstr*,unsigned>& getVirtRegLastUse(unsigned Reg) {
+      assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
+      return Virt2LastUseMap[Reg];
+    }
+
     // VirtRegModified - This bitset contains information about which virtual
     // registers need to be spilled back to memory when their registers are
     // scavenged.  If a virtual register has simply been rematerialized, there
     // is no reason to spill it to memory when we need the register back.
     //
-    std::vector<bool> VirtRegModified;
+    BitVector VirtRegModified;
+    
+    // UsedInMultipleBlocks - Tracks whether a particular register is used in
+    // more than one block.
+    BitVector UsedInMultipleBlocks;
 
     void markVirtRegModified(unsigned Reg, bool Val = true) {
-      assert(MRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
-      Reg -= MRegisterInfo::FirstVirtualRegister;
-      if (VirtRegModified.size() <= Reg) VirtRegModified.resize(Reg+1);
-      VirtRegModified[Reg] = Val;
+      assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
+      Reg -= TargetRegisterInfo::FirstVirtualRegister;
+      if (Val)
+        VirtRegModified.set(Reg);
+      else
+        VirtRegModified.reset(Reg);
     }
 
     bool isVirtRegModified(unsigned Reg) const {
-      assert(MRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
-      assert(Reg - MRegisterInfo::FirstVirtualRegister < VirtRegModified.size()
+      assert(TargetRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
+      assert(Reg - TargetRegisterInfo::FirstVirtualRegister < VirtRegModified.size()
              && "Illegal virtual register!");
-      return VirtRegModified[Reg - MRegisterInfo::FirstVirtualRegister];
+      return VirtRegModified[Reg - TargetRegisterInfo::FirstVirtualRegister];
+    }
+
+    void AddToPhysRegsUseOrder(unsigned Reg) {
+      std::vector<unsigned>::iterator It =
+        std::find(PhysRegsUseOrder.begin(), PhysRegsUseOrder.end(), Reg);
+      if (It != PhysRegsUseOrder.end())
+        PhysRegsUseOrder.erase(It);
+      PhysRegsUseOrder.push_back(Reg);
     }
 
     void MarkPhysRegRecentlyUsed(unsigned Reg) {
-      if(PhysRegsUseOrder.empty() ||
-         PhysRegsUseOrder.back() == Reg) return;  // Already most recently used
+      if (PhysRegsUseOrder.empty() ||
+          PhysRegsUseOrder.back() == Reg) return;  // Already most recently used
 
       for (unsigned i = PhysRegsUseOrder.size(); i != 0; --i)
         if (areRegsEqual(Reg, PhysRegsUseOrder[i-1])) {
@@ -115,7 +150,6 @@ namespace {
     }
 
     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
-      AU.addRequired<LiveVariables>();
       AU.addRequiredID(PHIEliminationID);
       AU.addRequiredID(TwoAddressInstructionPassID);
       MachineFunctionPass::getAnalysisUsage(AU);
@@ -135,7 +169,7 @@ namespace {
     ///
     bool areRegsEqual(unsigned R1, unsigned R2) const {
       if (R1 == R2) return true;
-      for (const unsigned *AliasSet = RegInfo->getAliasSet(R2);
+      for (const unsigned *AliasSet = TRI->getAliasSet(R2);
            *AliasSet; ++AliasSet) {
         if (*AliasSet == R1) return true;
       }
@@ -172,13 +206,6 @@ namespace {
     ///
     void assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg);
 
-    /// liberatePhysReg - Make sure the specified physical register is available
-    /// for use.  If there is currently a value in it, it is either moved out of
-    /// the way or spilled to memory.
-    ///
-    void liberatePhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
-                         unsigned PhysReg);
-
     /// isPhysRegAvailable - Return true if the specified physical register is
     /// free and available for use.  This also includes checking to see if
     /// aliased registers are all free...
@@ -212,19 +239,23 @@ namespace {
     MachineInstr *reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
                                 unsigned OpNum);
 
+    /// ComputeLocalLiveness - Computes liveness of registers within a basic
+    /// block, setting the killed/dead flags as appropriate.
+    void ComputeLocalLiveness(MachineBasicBlock& MBB);
 
     void reloadPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
                        unsigned PhysReg);
   };
+  char RALocal::ID = 0;
 }
 
 /// getStackSpaceFor - This allocates space for the specified virtual register
 /// to be held on the stack.
-int RA::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) {
+int RALocal::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) {
   // Find the location Reg would belong...
-  std::map<unsigned, int>::iterator I =StackSlotForVirtReg.lower_bound(VirtReg);
+  std::map<unsigned, int>::iterator I = StackSlotForVirtReg.find(VirtReg);
 
-  if (I != StackSlotForVirtReg.end() && I->first == VirtReg)
+  if (I != StackSlotForVirtReg.end())
     return I->second;          // Already has space allocated?
 
   // Allocate a new stack object for this spill location...
@@ -240,7 +271,7 @@ int RA::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) {
 /// removePhysReg - This method marks the specified physical register as no
 /// longer being in use.
 ///
-void RA::removePhysReg(unsigned PhysReg) {
+void RALocal::removePhysReg(unsigned PhysReg) {
   PhysRegsUsed[PhysReg] = -1;      // PhyReg no longer used
 
   std::vector<unsigned>::iterator It =
@@ -254,30 +285,38 @@ void RA::removePhysReg(unsigned PhysReg) {
 /// virtual register slot specified by VirtReg.  It then updates the RA data
 /// structures to indicate the fact that PhysReg is now available.
 ///
-void RA::spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
-                      unsigned VirtReg, unsigned PhysReg) {
+void RALocal::spillVirtReg(MachineBasicBlock &MBB,
+                           MachineBasicBlock::iterator I,
+                           unsigned VirtReg, unsigned PhysReg) {
   assert(VirtReg && "Spilling a physical register is illegal!"
          " Must not have appropriate kill for the register or use exists beyond"
          " the intended one.");
-  DEBUG(std::cerr << "  Spilling register " << RegInfo->getName(PhysReg);
-        std::cerr << " containing %reg" << VirtReg;
-        if (!isVirtRegModified(VirtReg))
-        std::cerr << " which has not been modified, so no store necessary!");
-
-  // Otherwise, there is a virtual register corresponding to this physical
-  // register.  We only need to spill it into its stack slot if it has been
-  // modified.
-  if (isVirtRegModified(VirtReg)) {
-    const TargetRegisterClass *RC = MF->getSSARegMap()->getRegClass(VirtReg);
+  DOUT << "  Spilling register " << TRI->getName(PhysReg)
+       << " containing %reg" << VirtReg;
+  
+  if (!isVirtRegModified(VirtReg)) {
+    DOUT << " which has not been modified, so no store necessary!";
+    std::pair<MachineInstr*, unsigned> &LastUse = getVirtRegLastUse(VirtReg);
+    if (LastUse.first)
+      LastUse.first->getOperand(LastUse.second).setIsKill();
+  } else {
+    // Otherwise, there is a virtual register corresponding to this physical
+    // register.  We only need to spill it into its stack slot if it has been
+    // modified.
+    const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
     int FrameIndex = getStackSpaceFor(VirtReg, RC);
-    DEBUG(std::cerr << " to stack slot #" << FrameIndex);
-    RegInfo->storeRegToStackSlot(MBB, I, PhysReg, FrameIndex, RC);
+    DOUT << " to stack slot #" << FrameIndex;
+    // If the instruction reads the register that's spilled, (e.g. this can
+    // happen if it is a move to a physical register), then the spill
+    // instruction is not a kill.
+    bool isKill = !(I != MBB.end() && I->readsRegister(PhysReg));
+    TII->storeRegToStackSlot(MBB, I, PhysReg, isKill, FrameIndex, RC);
     ++NumStores;   // Update statistics
   }
 
   getVirt2PhysRegMapSlot(VirtReg) = 0;   // VirtReg no longer available
 
-  DEBUG(std::cerr << "\n");
+  DOUT << "\n";
   removePhysReg(PhysReg);
 }
 
@@ -287,19 +326,21 @@ void RA::spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
 /// then the request is ignored if the physical register does not contain a
 /// virtual register.
 ///
-void RA::spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
-                      unsigned PhysReg, bool OnlyVirtRegs) {
+void RALocal::spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
+                           unsigned PhysReg, bool OnlyVirtRegs) {
   if (PhysRegsUsed[PhysReg] != -1) {            // Only spill it if it's used!
+    assert(PhysRegsUsed[PhysReg] != -2 && "Non allocable reg used!");
     if (PhysRegsUsed[PhysReg] || !OnlyVirtRegs)
       spillVirtReg(MBB, I, PhysRegsUsed[PhysReg], PhysReg);
   } else {
     // If the selected register aliases any other registers, we must make
-    // sure that one of the aliases isn't alive...
-    for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg);
+    // sure that one of the aliases isn't alive.
+    for (const unsigned *AliasSet = TRI->getAliasSet(PhysReg);
          *AliasSet; ++AliasSet)
-      if (PhysRegsUsed[*AliasSet] != -1)     // Spill aliased register...
-        if (PhysRegsUsed[*AliasSet] || !OnlyVirtRegs)
-          spillVirtReg(MBB, I, PhysRegsUsed[*AliasSet], *AliasSet);
+      if (PhysRegsUsed[*AliasSet] != -1 &&     // Spill aliased register.
+          PhysRegsUsed[*AliasSet] != -2)       // If allocatable.
+          if (PhysRegsUsed[*AliasSet])
+            spillVirtReg(MBB, I, PhysRegsUsed[*AliasSet], *AliasSet);
   }
 }
 
@@ -308,13 +349,13 @@ void RA::spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
 /// that PhysReg is the proper container for VirtReg now.  The physical
 /// register must not be used for anything else when this is called.
 ///
-void RA::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) {
+void RALocal::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) {
   assert(PhysRegsUsed[PhysReg] == -1 && "Phys reg already assigned!");
   // Update information to note the fact that this register was just used, and
   // it holds VirtReg.
   PhysRegsUsed[PhysReg] = VirtReg;
   getVirt2PhysRegMapSlot(VirtReg) = PhysReg;
-  PhysRegsUseOrder.push_back(PhysReg);   // New use of PhysReg
+  AddToPhysRegsUseOrder(PhysReg);   // New use of PhysReg
 }
 
 
@@ -322,14 +363,14 @@ void RA::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) {
 /// and available for use.  This also includes checking to see if aliased
 /// registers are all free...
 ///
-bool RA::isPhysRegAvailable(unsigned PhysReg) const {
+bool RALocal::isPhysRegAvailable(unsigned PhysReg) const {
   if (PhysRegsUsed[PhysReg] != -1) return false;
 
   // If the selected register aliases any other allocated registers, it is
   // not free!
-  for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg);
+  for (const unsigned *AliasSet = TRI->getAliasSet(PhysReg);
        *AliasSet; ++AliasSet)
-    if (PhysRegsUsed[*AliasSet] != -1) // Aliased register in use?
+    if (PhysRegsUsed[*AliasSet] >= 0) // Aliased register in use?
       return false;                    // Can't use this reg then.
   return true;
 }
@@ -338,7 +379,7 @@ bool RA::isPhysRegAvailable(unsigned PhysReg) const {
 /// getFreeReg - Look to see if there is a free register available in the
 /// specified register class.  If not, return 0.
 ///
-unsigned RA::getFreeReg(const TargetRegisterClass *RC) {
+unsigned RALocal::getFreeReg(const TargetRegisterClass *RC) {
   // Get iterators defining the range of registers that are valid to allocate in
   // this class, which also specifies the preferred allocation order.
   TargetRegisterClass::iterator RI = RC->allocation_order_begin(*MF);
@@ -353,23 +394,13 @@ unsigned RA::getFreeReg(const TargetRegisterClass *RC) {
 }
 
 
-/// liberatePhysReg - Make sure the specified physical register is available for
-/// use.  If there is currently a value in it, it is either moved out of the way
-/// or spilled to memory.
-///
-void RA::liberatePhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
-                         unsigned PhysReg) {
-  spillPhysReg(MBB, I, PhysReg);
-}
-
-
 /// getReg - Find a physical register to hold the specified virtual
 /// register.  If all compatible physical registers are used, this method spills
 /// the last used virtual register to the stack, and uses that register.
 ///
-unsigned RA::getReg(MachineBasicBlock &MBB, MachineInstr *I,
-                    unsigned VirtReg) {
-  const TargetRegisterClass *RC = MF->getSSARegMap()->getRegClass(VirtReg);
+unsigned RALocal::getReg(MachineBasicBlock &MBB, MachineInstr *I,
+                         unsigned VirtReg) {
+  const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
 
   // First check to see if we have a free register of the requested type...
   unsigned PhysReg = getFreeReg(RC);
@@ -392,7 +423,7 @@ unsigned RA::getReg(MachineBasicBlock &MBB, MachineInstr *I,
       // physical register!
       assert(PhysRegsUsed[R] != -1 &&
              "PhysReg in PhysRegsUseOrder, but is not allocated?");
-      if (PhysRegsUsed[R]) {
+      if (PhysRegsUsed[R] && PhysRegsUsed[R] != -2) {
         // If the current register is compatible, use it.
         if (RC->contains(R)) {
           PhysReg = R;
@@ -400,10 +431,19 @@ unsigned RA::getReg(MachineBasicBlock &MBB, MachineInstr *I,
         } else {
           // If one of the registers aliased to the current register is
           // compatible, use it.
-          for (const unsigned *AliasSet = RegInfo->getAliasSet(R);
-               *AliasSet; ++AliasSet) {
-            if (RC->contains(*AliasSet)) {
-              PhysReg = *AliasSet;    // Take an aliased register
+          for (const unsigned *AliasIt = TRI->getAliasSet(R);
+               *AliasIt; ++AliasIt) {
+            if (RC->contains(*AliasIt) &&
+                // If this is pinned down for some reason, don't use it.  For
+                // example, if CL is pinned, and we run across CH, don't use
+                // CH as justification for using scavenging ECX (which will
+                // fail).
+                PhysRegsUsed[*AliasIt] != 0 &&
+                
+                // Make sure the register is allocatable.  Don't allocate SIL on
+                // x86-32.
+                PhysRegsUsed[*AliasIt] != -2) {
+              PhysReg = *AliasIt;    // Take an aliased register
               break;
             }
           }
@@ -435,78 +475,259 @@ unsigned RA::getReg(MachineBasicBlock &MBB, MachineInstr *I,
 /// subsequent instructions can use the reloaded value.  This method returns the
 /// modified instruction.
 ///
-MachineInstr *RA::reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
-                                unsigned OpNum) {
+MachineInstr *RALocal::reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
+                                     unsigned OpNum) {
   unsigned VirtReg = MI->getOperand(OpNum).getReg();
 
   // If the virtual register is already available, just update the instruction
   // and return.
   if (unsigned PR = getVirt2PhysRegMapSlot(VirtReg)) {
-    MarkPhysRegRecentlyUsed(PR);          // Already have this value available!
-    MI->SetMachineOperandReg(OpNum, PR);  // Assign the input register
+    MarkPhysRegRecentlyUsed(PR);       // Already have this value available!
+    MI->getOperand(OpNum).setReg(PR);  // Assign the input register
+    getVirtRegLastUse(VirtReg) = std::make_pair(MI, OpNum);
     return MI;
   }
 
   // Otherwise, we need to fold it into the current instruction, or reload it.
   // If we have registers available to hold the value, use them.
-  const TargetRegisterClass *RC = MF->getSSARegMap()->getRegClass(VirtReg);
+  const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
   unsigned PhysReg = getFreeReg(RC);
   int FrameIndex = getStackSpaceFor(VirtReg, RC);
 
   if (PhysReg) {   // Register is available, allocate it!
     assignVirtToPhysReg(VirtReg, PhysReg);
   } else {         // No registers available.
-    // If we can fold this spill into this instruction, do so now.
-    if (MachineInstr* FMI = RegInfo->foldMemoryOperand(MI, OpNum, FrameIndex)){
-      ++NumFolded;
-      // Since we changed the address of MI, make sure to update live variables
-      // to know that the new instruction has the properties of the old one.
-      LV->instructionChanged(MI, FMI);
-      return MBB.insert(MBB.erase(MI), FMI);
-    }
-
-    // It looks like we can't fold this virtual register load into this
-    // instruction.  Force some poor hapless value out of the register file to
+    // Force some poor hapless value out of the register file to
     // make room for the new register, and reload it.
     PhysReg = getReg(MBB, MI, VirtReg);
   }
 
   markVirtRegModified(VirtReg, false);   // Note that this reg was just reloaded
 
-  DEBUG(std::cerr << "  Reloading %reg" << VirtReg << " into "
-                  << RegInfo->getName(PhysReg) << "\n");
+  DOUT << "  Reloading %reg" << VirtReg << " into "
+       << TRI->getName(PhysReg) << "\n";
 
   // Add move instruction(s)
-  RegInfo->loadRegFromStackSlot(MBB, MI, PhysReg, FrameIndex, RC);
+  TII->loadRegFromStackSlot(MBB, MI, PhysReg, FrameIndex, RC);
   ++NumLoads;    // Update statistics
 
-  PhysRegsEverUsed[PhysReg] = true;
-  MI->SetMachineOperandReg(OpNum, PhysReg);  // Assign the input register
+  MF->getRegInfo().setPhysRegUsed(PhysReg);
+  MI->getOperand(OpNum).setReg(PhysReg);  // Assign the input register
+  getVirtRegLastUse(VirtReg) = std::make_pair(MI, OpNum);
   return MI;
 }
 
+/// isReadModWriteImplicitKill - True if this is an implicit kill for a
+/// read/mod/write register, i.e. update partial register.
+static bool isReadModWriteImplicitKill(MachineInstr *MI, unsigned Reg) {
+  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+    MachineOperand& MO = MI->getOperand(i);
+    if (MO.isRegister() && MO.getReg() == Reg && MO.isImplicit() &&
+        MO.isDef() && !MO.isDead())
+      return true;
+  }
+  return false;
+}
 
+/// isReadModWriteImplicitDef - True if this is an implicit def for a
+/// read/mod/write register, i.e. update partial register.
+static bool isReadModWriteImplicitDef(MachineInstr *MI, unsigned Reg) {
+  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+    MachineOperand& MO = MI->getOperand(i);
+    if (MO.isRegister() && MO.getReg() == Reg && MO.isImplicit() &&
+        !MO.isDef() && MO.isKill())
+      return true;
+  }
+  return false;
+}
 
-void RA::AllocateBasicBlock(MachineBasicBlock &MBB) {
+// precedes - Helper function to determine with MachineInstr A
+// precedes MachineInstr B within the same MBB.
+static bool precedes(MachineBasicBlock::iterator A,
+                     MachineBasicBlock::iterator B) {
+  if (A == B)
+    return false;
+  
+  MachineBasicBlock::iterator I = A->getParent()->begin();
+  while (I != A->getParent()->end()) {
+    if (I == A)
+      return true;
+    else if (I == B)
+      return false;
+    
+    ++I;
+  }
+  
+  return false;
+}
+
+/// ComputeLocalLiveness - Computes liveness of registers within a basic
+/// block, setting the killed/dead flags as appropriate.
+void RALocal::ComputeLocalLiveness(MachineBasicBlock& MBB) {
+  MachineRegisterInfo& MRI = MBB.getParent()->getRegInfo();
+  // Keep track of the most recently seen previous use or def of each reg, 
+  // so that we can update them with dead/kill markers.
+  std::map<unsigned, std::pair<MachineInstr*, unsigned> > LastUseDef;
+  for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
+       I != E; ++I) {
+    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
+      MachineOperand& MO = I->getOperand(i);
+      // Uses don't trigger any flags, but we need to save
+      // them for later.  Also, we have to process these
+      // _before_ processing the defs, since an instr
+      // uses regs before it defs them.
+      if (MO.isReg() && MO.getReg() && MO.isUse())
+        LastUseDef[MO.getReg()] = std::make_pair(I, i);
+    }
+    
+    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
+      MachineOperand& MO = I->getOperand(i);
+      // Defs others than 2-addr redefs _do_ trigger flag changes:
+      //   - A def followed by a def is dead
+      //   - A use followed by a def is a kill
+      if (MO.isReg() && MO.getReg() && MO.isDef()) {
+        std::map<unsigned, std::pair<MachineInstr*, unsigned> >::iterator
+          last = LastUseDef.find(MO.getReg());
+        if (last != LastUseDef.end()) {
+          
+          // If this is a two address instr, then we don't mark the def
+          // as killing the use.
+          if (last->second.first == I &&
+              I->getDesc().getOperandConstraint(last->second.second,
+                                                TOI::TIED_TO) == (signed)i) {
+            LastUseDef[MO.getReg()] = std::make_pair(I, i);
+            continue;
+          }
+            
+          
+          MachineOperand& lastUD =
+                      last->second.first->getOperand(last->second.second);
+          
+          if (lastUD.isDef())
+            lastUD.setIsDead(true);
+          else if (lastUD.isUse())
+            lastUD.setIsKill(true);
+        }
+        
+        LastUseDef[MO.getReg()] = std::make_pair(I, i);
+      }
+    }
+  }
+  
+  // Live-out (of the function) registers contain return values of the function,
+  // so we need to make sure they are alive at return time.
+  if (!MBB.empty() && MBB.back().getDesc().isReturn()) {
+    MachineInstr* Ret = &MBB.back();
+    for (MachineRegisterInfo::liveout_iterator
+         I = MF->getRegInfo().liveout_begin(),
+         E = MF->getRegInfo().liveout_end(); I != E; ++I)
+      if (!Ret->readsRegister(*I)) {
+        Ret->addOperand(MachineOperand::CreateReg(*I, false, true));
+        LastUseDef[*I] = std::make_pair(Ret, Ret->getNumOperands()-1);
+      }
+  }
+  
+  // Finally, loop over the final use/def of each reg 
+  // in the block and determine if it is dead.
+  for (std::map<unsigned, std::pair<MachineInstr*, unsigned> >::iterator
+       I = LastUseDef.begin(), E = LastUseDef.end(); I != E; ++I) {
+    MachineInstr* MI = I->second.first;
+    unsigned idx = I->second.second;
+    MachineOperand& MO = MI->getOperand(idx);
+    
+    bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(MO.getReg());
+    
+    // A crude approximation of "live-out" calculation
+    bool usedOutsideBlock = isPhysReg ? false :   
+          UsedInMultipleBlocks.test(MO.getReg() -  
+                                    TargetRegisterInfo::FirstVirtualRegister);
+    if (!isPhysReg && !usedOutsideBlock)
+      for (MachineRegisterInfo::reg_iterator UI = MRI.reg_begin(MO.getReg()),
+           UE = MRI.reg_end(); UI != UE; ++UI)
+        // Two cases:
+        // - used in another block
+        // - used in the same block before it is defined (loop)
+        if (UI->getParent() != &MBB ||
+            (MO.isDef() && UI.getOperand().isUse() && precedes(&*UI, MI))) {
+          UsedInMultipleBlocks.set(MO.getReg() - 
+                                   TargetRegisterInfo::FirstVirtualRegister);
+          usedOutsideBlock = true;
+          break;
+        }
+    
+    // Physical registers and those that are not live-out of the block
+    // are killed/dead at their last use/def within this block.
+    if (isPhysReg || !usedOutsideBlock) {
+      if (MO.isUse())
+        MO.setIsKill(true);
+      else if (MI->getOperand(idx).isDef())
+        MO.setIsDead(true);
+    }
+  }
+}
+
+void RALocal::AllocateBasicBlock(MachineBasicBlock &MBB) {
   // loop over each instruction
   MachineBasicBlock::iterator MII = MBB.begin();
-  const TargetInstrInfo &TII = *TM->getInstrInfo();
+  
+  DEBUG(const BasicBlock *LBB = MBB.getBasicBlock();
+        if (LBB) DOUT << "\nStarting RegAlloc of BB: " << LBB->getName());
+
+  // If this is the first basic block in the machine function, add live-in
+  // registers as active.
+  if (&MBB == &*MF->begin() || MBB.isLandingPad()) {
+    for (MachineBasicBlock::livein_iterator I = MBB.livein_begin(),
+         E = MBB.livein_end(); I != E; ++I) {
+      unsigned Reg = *I;
+      MF->getRegInfo().setPhysRegUsed(Reg);
+      PhysRegsUsed[Reg] = 0;            // It is free and reserved now
+      AddToPhysRegsUseOrder(Reg); 
+      for (const unsigned *AliasSet = TRI->getSubRegisters(Reg);
+           *AliasSet; ++AliasSet) {
+        if (PhysRegsUsed[*AliasSet] != -2) {
+          AddToPhysRegsUseOrder(*AliasSet); 
+          PhysRegsUsed[*AliasSet] = 0;  // It is free and reserved now
+          MF->getRegInfo().setPhysRegUsed(*AliasSet);
+        }
+      }
+    }    
+  }
+  
+  ComputeLocalLiveness(MBB);
+  
+  // Otherwise, sequentially allocate each instruction in the MBB.
   while (MII != MBB.end()) {
     MachineInstr *MI = MII++;
-    const TargetInstrDescriptor &TID = TII.get(MI->getOpcode());
-    DEBUG(std::cerr << "\nStarting RegAlloc of: " << *MI;
-          std::cerr << "  Regs have values: ";
-          for (unsigned i = 0; i != RegInfo->getNumRegs(); ++i)
-            if (PhysRegsUsed[i] != -1)
-               std::cerr << "[" << RegInfo->getName(i)
-                         << ",%reg" << PhysRegsUsed[i] << "] ";
-          std::cerr << "\n");
+    const TargetInstrDesc &TID = MI->getDesc();
+    DEBUG(DOUT << "\nStarting RegAlloc of: " << *MI;
+          DOUT << "  Regs have values: ";
+          for (unsigned i = 0; i != TRI->getNumRegs(); ++i)
+            if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2)
+               DOUT << "[" << TRI->getName(i)
+                    << ",%reg" << PhysRegsUsed[i] << "] ";
+          DOUT << "\n");
 
     // Loop over the implicit uses, making sure that they are at the head of the
     // use order list, so they don't get reallocated.
-    for (const unsigned *ImplicitUses = TID.ImplicitUses;
-         *ImplicitUses; ++ImplicitUses)
-      MarkPhysRegRecentlyUsed(*ImplicitUses);
+    if (TID.ImplicitUses) {
+      for (const unsigned *ImplicitUses = TID.ImplicitUses;
+           *ImplicitUses; ++ImplicitUses)
+        MarkPhysRegRecentlyUsed(*ImplicitUses);
+    }
+
+    SmallVector<unsigned, 8> Kills;
+    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+      MachineOperand& MO = MI->getOperand(i);
+      if (MO.isRegister() && MO.isKill()) {
+        if (!MO.isImplicit())
+          Kills.push_back(MO.getReg());
+        else if (!isReadModWriteImplicitKill(MI, MO.getReg()))
+          // These are extra physical register kills when a sub-register
+          // is defined (def of a sub-register is a read/mod/write of the
+          // larger registers). Ignore.
+          Kills.push_back(MO.getReg());
+      }
+    }
 
     // Get the used operands into registers.  This has the potential to spill
     // incoming values if we are out of registers.  Note that we completely
@@ -517,31 +738,45 @@ void RA::AllocateBasicBlock(MachineBasicBlock &MBB) {
     for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
       MachineOperand& MO = MI->getOperand(i);
       // here we are looking for only used operands (never def&use)
-      if (!MO.isDef() && MO.isRegister() && MO.getReg() &&
-          MRegisterInfo::isVirtualRegister(MO.getReg()))
+      if (MO.isRegister() && !MO.isDef() && MO.getReg() && !MO.isImplicit() &&
+          TargetRegisterInfo::isVirtualRegister(MO.getReg()))
         MI = reloadVirtReg(MBB, MI, i);
     }
 
-    // If this instruction is the last user of anything in registers, kill the
+    // If this instruction is the last user of this register, kill the
     // value, freeing the register being used, so it doesn't need to be
     // spilled to memory.
     //
-    for (LiveVariables::killed_iterator KI = LV->killed_begin(MI),
-           KE = LV->killed_end(MI); KI != KE; ++KI) {
-      unsigned VirtReg = *KI;
+    for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
+      unsigned VirtReg = Kills[i];
       unsigned PhysReg = VirtReg;
-      if (MRegisterInfo::isVirtualRegister(VirtReg)) {
+      if (TargetRegisterInfo::isVirtualRegister(VirtReg)) {
         // If the virtual register was never materialized into a register, it
         // might not be in the map, but it won't hurt to zero it out anyway.
         unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg);
         PhysReg = PhysRegSlot;
         PhysRegSlot = 0;
+      } else if (PhysRegsUsed[PhysReg] == -2) {
+        // Unallocatable register dead, ignore.
+        continue;
+      } else {
+        assert((!PhysRegsUsed[PhysReg] || PhysRegsUsed[PhysReg] == -1) &&
+               "Silently clearing a virtual register?");
       }
 
       if (PhysReg) {
-        DEBUG(std::cerr << "  Last use of " << RegInfo->getName(PhysReg)
-              << "[%reg" << VirtReg <<"], removing it from live set\n");
+        DOUT << "  Last use of " << TRI->getName(PhysReg)
+             << "[%reg" << VirtReg <<"], removing it from live set\n";
         removePhysReg(PhysReg);
+        for (const unsigned *AliasSet = TRI->getSubRegisters(PhysReg);
+             *AliasSet; ++AliasSet) {
+          if (PhysRegsUsed[*AliasSet] != -2) {
+            DOUT  << "  Last use of "
+                  << TRI->getName(*AliasSet)
+                  << "[%reg" << VirtReg <<"], removing it from live set\n";
+            removePhysReg(*AliasSet);
+          }
+        }
       }
     }
 
@@ -549,39 +784,60 @@ void RA::AllocateBasicBlock(MachineBasicBlock &MBB) {
     // are defined, and marking explicit destinations in the PhysRegsUsed map.
     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
       MachineOperand& MO = MI->getOperand(i);
-      if (MO.isDef() && MO.isRegister() && MO.getReg() &&
-          MRegisterInfo::isPhysicalRegister(MO.getReg())) {
+      if (MO.isRegister() && MO.isDef() && !MO.isImplicit() && MO.getReg() &&
+          TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
         unsigned Reg = MO.getReg();
-        PhysRegsEverUsed[Reg] = true;
-        spillPhysReg(MBB, MI, Reg, true); // Spill any existing value in the reg
+        if (PhysRegsUsed[Reg] == -2) continue;  // Something like ESP.
+        // These are extra physical register defs when a sub-register
+        // is defined (def of a sub-register is a read/mod/write of the
+        // larger registers). Ignore.
+        if (isReadModWriteImplicitDef(MI, MO.getReg())) continue;
+
+        MF->getRegInfo().setPhysRegUsed(Reg);
+        spillPhysReg(MBB, MI, Reg, true); // Spill any existing value in reg
         PhysRegsUsed[Reg] = 0;            // It is free and reserved now
-        PhysRegsUseOrder.push_back(Reg);
-        for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
+        AddToPhysRegsUseOrder(Reg); 
+
+        for (const unsigned *AliasSet = TRI->getSubRegisters(Reg);
              *AliasSet; ++AliasSet) {
-          PhysRegsUseOrder.push_back(*AliasSet);
-          PhysRegsUsed[*AliasSet] = 0;  // It is free and reserved now
-          PhysRegsEverUsed[*AliasSet] = true;
+          if (PhysRegsUsed[*AliasSet] != -2) {
+            MF->getRegInfo().setPhysRegUsed(*AliasSet);
+            PhysRegsUsed[*AliasSet] = 0;  // It is free and reserved now
+            AddToPhysRegsUseOrder(*AliasSet); 
+          }
         }
       }
     }
 
     // Loop over the implicit defs, spilling them as well.
-    for (const unsigned *ImplicitDefs = TID.ImplicitDefs;
-         *ImplicitDefs; ++ImplicitDefs) {
-      unsigned Reg = *ImplicitDefs;
-      spillPhysReg(MBB, MI, Reg, true);
-      PhysRegsUseOrder.push_back(Reg);
-      PhysRegsUsed[Reg] = 0;            // It is free and reserved now
-      PhysRegsEverUsed[Reg] = true;
-
-      for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
-           *AliasSet; ++AliasSet) {
-        PhysRegsUseOrder.push_back(*AliasSet);
-        PhysRegsUsed[*AliasSet] = 0;  // It is free and reserved now
-        PhysRegsEverUsed[*AliasSet] = true;
+    if (TID.ImplicitDefs) {
+      for (const unsigned *ImplicitDefs = TID.ImplicitDefs;
+           *ImplicitDefs; ++ImplicitDefs) {
+        unsigned Reg = *ImplicitDefs;
+        if (PhysRegsUsed[Reg] != -2) {
+          spillPhysReg(MBB, MI, Reg, true);
+          AddToPhysRegsUseOrder(Reg); 
+          PhysRegsUsed[Reg] = 0;            // It is free and reserved now
+        }
+        MF->getRegInfo().setPhysRegUsed(Reg);
+        for (const unsigned *AliasSet = TRI->getSubRegisters(Reg);
+             *AliasSet; ++AliasSet) {
+          if (PhysRegsUsed[*AliasSet] != -2) {
+            AddToPhysRegsUseOrder(*AliasSet); 
+            PhysRegsUsed[*AliasSet] = 0;  // It is free and reserved now
+            MF->getRegInfo().setPhysRegUsed(*AliasSet);
+          }
+        }
       }
     }
 
+    SmallVector<unsigned, 8> DeadDefs;
+    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+      MachineOperand& MO = MI->getOperand(i);
+      if (MO.isRegister() && MO.isDead())
+        DeadDefs.push_back(MO.getReg());
+    }
+
     // Okay, we have allocated all of the source operands and spilled any values
     // that would be destroyed by defs of this instruction.  Loop over the
     // explicit defs and assign them to a register, spilling incoming values if
@@ -589,65 +845,80 @@ void RA::AllocateBasicBlock(MachineBasicBlock &MBB) {
     //
     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
       MachineOperand& MO = MI->getOperand(i);
-      if (MO.isDef() && MO.isRegister() && MO.getReg() &&
-          MRegisterInfo::isVirtualRegister(MO.getReg())) {
+      if (MO.isRegister() && MO.isDef() && MO.getReg() &&
+          TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
         unsigned DestVirtReg = MO.getReg();
         unsigned DestPhysReg;
 
         // If DestVirtReg already has a value, use it.
         if (!(DestPhysReg = getVirt2PhysRegMapSlot(DestVirtReg)))
           DestPhysReg = getReg(MBB, MI, DestVirtReg);
-        PhysRegsEverUsed[DestPhysReg] = true;
+        MF->getRegInfo().setPhysRegUsed(DestPhysReg);
         markVirtRegModified(DestVirtReg);
-        MI->SetMachineOperandReg(i, DestPhysReg);  // Assign the output register
+        getVirtRegLastUse(DestVirtReg) = std::make_pair((MachineInstr*)0, 0);
+        DOUT << "  Assigning " << TRI->getName(DestPhysReg)
+             << " to %reg" << DestVirtReg << "\n";
+        MO.setReg(DestPhysReg);  // Assign the output register
       }
     }
 
     // If this instruction defines any registers that are immediately dead,
     // kill them now.
     //
-    for (LiveVariables::killed_iterator KI = LV->dead_begin(MI),
-           KE = LV->dead_end(MI); KI != KE; ++KI) {
-      unsigned VirtReg = *KI;
+    for (unsigned i = 0, e = DeadDefs.size(); i != e; ++i) {
+      unsigned VirtReg = DeadDefs[i];
       unsigned PhysReg = VirtReg;
-      if (MRegisterInfo::isVirtualRegister(VirtReg)) {
+      if (TargetRegisterInfo::isVirtualRegister(VirtReg)) {
         unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg);
         PhysReg = PhysRegSlot;
         assert(PhysReg != 0);
         PhysRegSlot = 0;
+      } else if (PhysRegsUsed[PhysReg] == -2) {
+        // Unallocatable register dead, ignore.
+        continue;
       }
 
       if (PhysReg) {
-        DEBUG(std::cerr << "  Register " << RegInfo->getName(PhysReg)
+        DOUT  << "  Register " << TRI->getName(PhysReg)
               << " [%reg" << VirtReg
-              << "] is never used, removing it frame live list\n");
+              << "] is never used, removing it frame live list\n";
         removePhysReg(PhysReg);
+        for (const unsigned *AliasSet = TRI->getAliasSet(PhysReg);
+             *AliasSet; ++AliasSet) {
+          if (PhysRegsUsed[*AliasSet] != -2) {
+            DOUT  << "  Register " << TRI->getName(*AliasSet)
+                  << " [%reg" << *AliasSet
+                  << "] is never used, removing it frame live list\n";
+            removePhysReg(*AliasSet);
+          }
+        }
       }
     }
     
     // Finally, if this is a noop copy instruction, zap it.
     unsigned SrcReg, DstReg;
-    if (TII.isMoveInstr(*MI, SrcReg, DstReg) && SrcReg == DstReg)
+    if (TII->isMoveInstr(*MI, SrcReg, DstReg) && SrcReg == DstReg)
       MBB.erase(MI);
   }
 
   MachineBasicBlock::iterator MI = MBB.getFirstTerminator();
 
   // Spill all physical registers holding virtual registers now.
-  for (unsigned i = 0, e = RegInfo->getNumRegs(); i != e; ++i)
-    if (PhysRegsUsed[i] != -1)
+  for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i)
+    if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2) {
       if (unsigned VirtReg = PhysRegsUsed[i])
         spillVirtReg(MBB, MI, VirtReg, i);
       else
         removePhysReg(i);
+    }
 
 #if 0
   // This checking code is very expensive.
   bool AllOk = true;
-  for (unsigned i = MRegisterInfo::FirstVirtualRegister,
-           e = MF->getSSARegMap()->getLastVirtReg(); i <= e; ++i)
+  for (unsigned i = TargetRegisterInfo::FirstVirtualRegister,
+           e = MF->getRegInfo().getLastVirtReg(); i <= e; ++i)
     if (unsigned PR = Virt2PhysRegMap[i]) {
-      std::cerr << "Register still mapped: " << i << " -> " << PR << "\n";
+      cerr << "Register still mapped: " << i << " -> " << PR << "\n";
       AllOk = false;
     }
   assert(AllOk && "Virtual registers still in phys regs?");
@@ -659,26 +930,35 @@ void RA::AllocateBasicBlock(MachineBasicBlock &MBB) {
   PhysRegsUseOrder.clear();
 }
 
-
 /// runOnMachineFunction - Register allocate the whole function
 ///
-bool RA::runOnMachineFunction(MachineFunction &Fn) {
-  DEBUG(std::cerr << "Machine Function " << "\n");
+bool RALocal::runOnMachineFunction(MachineFunction &Fn) {
+  DOUT << "Machine Function " << "\n";
   MF = &Fn;
   TM = &Fn.getTarget();
-  RegInfo = TM->getRegisterInfo();
-  LV = &getAnalysis<LiveVariables>();
-
-  PhysRegsEverUsed = new bool[RegInfo->getNumRegs()];
-  std::fill(PhysRegsEverUsed, PhysRegsEverUsed+RegInfo->getNumRegs(), false);
-  Fn.setUsedPhysRegs(PhysRegsEverUsed);
-
-  PhysRegsUsed.assign(RegInfo->getNumRegs(), -1);
+  TRI = TM->getRegisterInfo();
+  TII = TM->getInstrInfo();
+
+  PhysRegsUsed.assign(TRI->getNumRegs(), -1);
+  
+  // At various places we want to efficiently check to see whether a register
+  // is allocatable.  To handle this, we mark all unallocatable registers as
+  // being pinned down, permanently.
+  {
+    BitVector Allocable = TRI->getAllocatableSet(Fn);
+    for (unsigned i = 0, e = Allocable.size(); i != e; ++i)
+      if (!Allocable[i])
+        PhysRegsUsed[i] = -2;  // Mark the reg unallocable.
+  }
 
   // initialize the virtual->physical register map to have a 'null'
   // mapping for all virtual registers
-  Virt2PhysRegMap.grow(MF->getSSARegMap()->getLastVirtReg());
-
+  unsigned LastVirtReg = MF->getRegInfo().getLastVirtReg();
+  Virt2PhysRegMap.grow(LastVirtReg);
+  Virt2LastUseMap.grow(LastVirtReg);
+  VirtRegModified.resize(LastVirtReg+1-TargetRegisterInfo::FirstVirtualRegister);
+  UsedInMultipleBlocks.resize(LastVirtReg+1-TargetRegisterInfo::FirstVirtualRegister);
   // Loop over all of the basic blocks, eliminating virtual register references
   for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
        MBB != MBBe; ++MBB)
@@ -687,10 +967,12 @@ bool RA::runOnMachineFunction(MachineFunction &Fn) {
   StackSlotForVirtReg.clear();
   PhysRegsUsed.clear();
   VirtRegModified.clear();
+  UsedInMultipleBlocks.clear();
   Virt2PhysRegMap.clear();
+  Virt2LastUseMap.clear();
   return true;
 }
 
 FunctionPass *llvm::createLocalRegisterAllocator() {
-  return new RA();
+  return new RALocal();
 }