Be more aggressive about renumbering vregs after splitting them.
[oota-llvm.git] / lib / CodeGen / PreAllocSplitting.cpp
index 09694403e3f72ff0dd5d8e4f39558c9ca5e75886..3c8257f1dac1065621fe325b57fd37210489889c 100644 (file)
@@ -16,6 +16,8 @@
 
 #define DEBUG_TYPE "pre-alloc-split"
 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "llvm/CodeGen/LiveStackAnalysis.h"
+#include "llvm/CodeGen/MachineDominators.h"
 #include "llvm/CodeGen/MachineFrameInfo.h"
 #include "llvm/CodeGen/MachineFunctionPass.h"
 #include "llvm/CodeGen/MachineLoopInfo.h"
 #include "llvm/Target/TargetRegisterInfo.h"
 #include "llvm/Support/CommandLine.h"
 #include "llvm/Support/Debug.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DepthFirstIterator.h"
 #include "llvm/ADT/SmallPtrSet.h"
 #include "llvm/ADT/Statistic.h"
-#include <map>
 using namespace llvm;
 
-STATISTIC(NumSplit     , "Number of intervals split");
+static cl::opt<int> PreSplitLimit("pre-split-limit", cl::init(-1), cl::Hidden);
+
+STATISTIC(NumSplits, "Number of intervals split");
+STATISTIC(NumRemats, "Number of intervals split by rematerialization");
+STATISTIC(NumFolds, "Number of intervals split with spill folding");
+STATISTIC(NumRenumbers, "Number of intervals renumbered into new registers");
 
 namespace {
   class VISIBILITY_HIDDEN PreAllocSplitting : public MachineFunctionPass {
-    MachineFunction       *CurMF;
+    MachineFunction       *CurrMF;
     const TargetMachine   *TM;
     const TargetInstrInfo *TII;
     MachineFrameInfo      *MFI;
     MachineRegisterInfo   *MRI;
     LiveIntervals         *LIs;
+    LiveStacks            *LSs;
 
     // Barrier - Current barrier being processed.
     MachineInstr          *Barrier;
@@ -56,13 +65,17 @@ namespace {
     // CurrLI - Current live interval being split.
     LiveInterval          *CurrLI;
 
-    // LIValNoSSMap - A map from live interval and val# pairs to spill slots.
-    // This records what live interval's val# has been split and what spill
-    // slot was used.
-    std::map<std::pair<unsigned, unsigned>, int> LIValNoSSMap;
+    // CurrSLI - Current stack slot live interval.
+    LiveInterval          *CurrSLI;
+
+    // CurrSValNo - Current val# for the stack slot live interval.
+    VNInfo                *CurrSValNo;
+
+    // IntervalSSMap - A map from live interval to spill slots.
+    DenseMap<unsigned, int> IntervalSSMap;
 
-    // RestoreMIs - All the restores inserted due to live interval splitting.
-    SmallPtrSet<MachineInstr*, 8> RestoreMIs;
+    // Def2SpillMap - A map from a def instruction index to spill index.
+    DenseMap<unsigned, unsigned> Def2SpillMap;
 
   public:
     static char ID;
@@ -73,17 +86,23 @@ namespace {
     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
       AU.addRequired<LiveIntervals>();
       AU.addPreserved<LiveIntervals>();
+      AU.addRequired<LiveStacks>();
+      AU.addPreserved<LiveStacks>();
       AU.addPreserved<RegisterCoalescer>();
       if (StrongPHIElim)
         AU.addPreservedID(StrongPHIEliminationID);
       else
         AU.addPreservedID(PHIEliminationID);
+      AU.addRequired<MachineDominatorTree>();
+      AU.addRequired<MachineLoopInfo>();
+      AU.addPreserved<MachineDominatorTree>();
+      AU.addPreserved<MachineLoopInfo>();
       MachineFunctionPass::getAnalysisUsage(AU);
     }
     
     virtual void releaseMemory() {
-      LIValNoSSMap.clear();
-      RestoreMIs.clear();
+      IntervalSSMap.clear();
+      Def2SpillMap.clear();
     }
 
     virtual const char *getPassName() const {
@@ -105,20 +124,23 @@ namespace {
                         unsigned&);
 
     MachineBasicBlock::iterator
-      findSpillPoint(MachineBasicBlock*, MachineInstr*,
+      findSpillPoint(MachineBasicBlock*, MachineInstr*, MachineInstr*,
                      SmallPtrSet<MachineInstr*, 4>&, unsigned&);
 
     MachineBasicBlock::iterator
-      findRestorePoint(MachineBasicBlock*, MachineInstr*,
+      findRestorePoint(MachineBasicBlock*, MachineInstr*, unsigned,
                      SmallPtrSet<MachineInstr*, 4>&, unsigned&);
 
-    void RecordSplit(unsigned, unsigned, unsigned, int);
+    int CreateSpillStackSlot(unsigned, const TargetRegisterClass *);
 
-    bool isAlreadySplit(unsigned, unsigned, int&);
+    bool IsAvailableInStack(MachineBasicBlock*, unsigned, unsigned, unsigned,
+                            unsigned&, int&) const;
 
-    void UpdateIntervalForSplit(VNInfo*, unsigned, unsigned);
+    void UpdateSpillSlotInterval(VNInfo*, unsigned, unsigned);
 
-    bool ShrinkWrapToLastUse(MachineBasicBlock*,
+    VNInfo* UpdateRegisterInterval(VNInfo*, unsigned, unsigned);
+
+    bool ShrinkWrapToLastUse(MachineBasicBlock*, VNInfo*,
                              SmallVector<MachineOperand*, 4>&,
                              SmallPtrSet<MachineInstr*, 4>&);
 
@@ -131,7 +153,36 @@ namespace {
     bool SplitRegLiveInterval(LiveInterval*);
 
     bool SplitRegLiveIntervals(const TargetRegisterClass **);
-  };
+    
+    void RepairLiveInterval(LiveInterval* CurrLI, VNInfo* ValNo,
+                            MachineInstr* DefMI, unsigned RestoreIdx);
+    
+    bool createsNewJoin(LiveRange* LR, MachineBasicBlock* DefMBB,
+                        MachineBasicBlock* BarrierMBB);
+    bool Rematerialize(unsigned vreg, VNInfo* ValNo,
+                       MachineInstr* DefMI,
+                       MachineBasicBlock::iterator RestorePt,
+                       unsigned RestoreIdx,
+                       SmallPtrSet<MachineInstr*, 4>& RefsInMBB);
+    MachineInstr* FoldSpill(unsigned vreg, const TargetRegisterClass* RC,
+                            MachineInstr* DefMI,
+                            MachineInstr* Barrier,
+                            MachineBasicBlock* MBB,
+                            int& SS,
+                            SmallPtrSet<MachineInstr*, 4>& RefsInMBB);
+    void RenumberValno(VNInfo* VN);
+    void ReconstructLiveInterval(LiveInterval* LI);
+    VNInfo* PerformPHIConstruction(MachineBasicBlock::iterator use,
+                                   MachineBasicBlock* MBB,
+                                   LiveInterval* LI,
+                                   SmallPtrSet<MachineInstr*, 4>& Visited,
+            DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs,
+            DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses,
+                                      DenseMap<MachineInstr*, VNInfo*>& NewVNs,
+                                DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut,
+                                DenseMap<MachineBasicBlock*, VNInfo*>& Phis,
+                                        bool toplevel, bool intrablock);
+};
 } // end anonymous namespace
 
 char PreAllocSplitting::ID = 0;
@@ -164,12 +215,13 @@ PreAllocSplitting::findNextEmptySlot(MachineBasicBlock *MBB, MachineInstr *MI,
 /// none is found.
 MachineBasicBlock::iterator
 PreAllocSplitting::findSpillPoint(MachineBasicBlock *MBB, MachineInstr *MI,
+                                  MachineInstr *DefMI,
                                   SmallPtrSet<MachineInstr*, 4> &RefsInMBB,
                                   unsigned &SpillIndex) {
   MachineBasicBlock::iterator Pt = MBB->begin();
 
   // Go top down if RefsInMBB is empty.
-  if (RefsInMBB.empty()) {
+  if (RefsInMBB.empty() && !DefMI) {
     MachineBasicBlock::iterator MII = MBB->begin();
     MachineBasicBlock::iterator EndPt = MI;
     do {
@@ -184,7 +236,9 @@ PreAllocSplitting::findSpillPoint(MachineBasicBlock *MBB, MachineInstr *MI,
     } while (MII != EndPt);
   } else {
     MachineBasicBlock::iterator MII = MI;
-    while (MII != MBB->begin() && !RefsInMBB.count(MII)) {
+    MachineBasicBlock::iterator EndPt = DefMI
+      ? MachineBasicBlock::iterator(DefMI) : MBB->begin();
+    while (MII != EndPt && !RefsInMBB.count(MII)) {
       unsigned Index = LIs->getInstructionIndex(MII);
       if (LIs->hasGapBeforeInstr(Index)) {
         Pt = MII;
@@ -203,16 +257,21 @@ PreAllocSplitting::findSpillPoint(MachineBasicBlock *MBB, MachineInstr *MI,
 /// found.
 MachineBasicBlock::iterator
 PreAllocSplitting::findRestorePoint(MachineBasicBlock *MBB, MachineInstr *MI,
+                                    unsigned LastIdx,
                                     SmallPtrSet<MachineInstr*, 4> &RefsInMBB,
                                     unsigned &RestoreIndex) {
+  // FIXME: Allow spill to be inserted to the beginning of the mbb. Update mbb
+  // begin index accordingly.
   MachineBasicBlock::iterator Pt = MBB->end();
+  unsigned EndIdx = LIs->getMBBEndIdx(MBB);
 
-  // Go bottom up if RefsInMBB is empty.
-  if (RefsInMBB.empty()) {
-    MachineBasicBlock::iterator MII = MBB->end();
+  // Go bottom up if RefsInMBB is empty and the end of the mbb isn't beyond
+  // the last index in the live range.
+  if (RefsInMBB.empty() && LastIdx >= EndIdx) {
+    MachineBasicBlock::iterator MII = MBB->getFirstTerminator();
     MachineBasicBlock::iterator EndPt = MI;
+    --MII;
     do {
-      --MII;
       unsigned Index = LIs->getInstructionIndex(MII);
       unsigned Gap = LIs->findGapBeforeInstr(Index);
       if (Gap) {
@@ -220,12 +279,17 @@ PreAllocSplitting::findRestorePoint(MachineBasicBlock *MBB, MachineInstr *MI,
         RestoreIndex = Gap;
         break;
       }
+      --MII;
     } while (MII != EndPt);
   } else {
     MachineBasicBlock::iterator MII = MI;
     MII = ++MII;
+    // FIXME: Limit the number of instructions to examine to reduce
+    // compile time?
     while (MII != MBB->end()) {
       unsigned Index = LIs->getInstructionIndex(MII);
+      if (Index > LastIdx)
+        break;
       unsigned Gap = LIs->findGapBeforeInstr(Index);
       if (Gap) {
         Pt = MII;
@@ -240,38 +304,129 @@ PreAllocSplitting::findRestorePoint(MachineBasicBlock *MBB, MachineInstr *MI,
   return Pt;
 }
 
-/// RecordSplit - Given a register live interval is split, remember the spill
-/// slot where the val#s are in.
-void PreAllocSplitting::RecordSplit(unsigned Reg, unsigned SpillIndex,
-                                    unsigned RestoreIndex, int SS) {
-  const LiveRange *LR = NULL;
-  if (SpillIndex) {
-    LR = CurrLI->getLiveRangeContaining(LIs->getUseIndex(SpillIndex));
-    LIValNoSSMap.insert(std::make_pair(std::make_pair(CurrLI->reg,
-                                                      LR->valno->id), SS));
-  }
-  LR = CurrLI->getLiveRangeContaining(LIs->getDefIndex(RestoreIndex));
-  LIValNoSSMap.insert(std::make_pair(std::make_pair(CurrLI->reg,
-                                                    LR->valno->id), SS));
+/// CreateSpillStackSlot - Create a stack slot for the live interval being
+/// split. If the live interval was previously split, just reuse the same
+/// slot.
+int PreAllocSplitting::CreateSpillStackSlot(unsigned Reg,
+                                            const TargetRegisterClass *RC) {
+  int SS;
+  DenseMap<unsigned, int>::iterator I = IntervalSSMap.find(Reg);
+  if (I != IntervalSSMap.end()) {
+    SS = I->second;
+  } else {
+    SS = MFI->CreateStackObject(RC->getSize(), RC->getAlignment());
+    IntervalSSMap[Reg] = SS;
+  }
+
+  // Create live interval for stack slot.
+  CurrSLI = &LSs->getOrCreateInterval(SS);
+  if (CurrSLI->hasAtLeastOneValue())
+    CurrSValNo = CurrSLI->getValNumInfo(0);
+  else
+    CurrSValNo = CurrSLI->getNextValue(~0U, 0, LSs->getVNInfoAllocator());
+  return SS;
 }
 
-/// isAlreadySplit - Return if a given val# of a register live interval is already
-/// split. Also return by reference the spill stock where the value is.
-bool PreAllocSplitting::isAlreadySplit(unsigned Reg, unsigned ValNoId, int &SS){
-  std::map<std::pair<unsigned, unsigned>, int>::iterator I =
-    LIValNoSSMap.find(std::make_pair(Reg, ValNoId));
-  if (I == LIValNoSSMap.end())
+/// IsAvailableInStack - Return true if register is available in a split stack
+/// slot at the specified index.
+bool
+PreAllocSplitting::IsAvailableInStack(MachineBasicBlock *DefMBB,
+                                    unsigned Reg, unsigned DefIndex,
+                                    unsigned RestoreIndex, unsigned &SpillIndex,
+                                    int& SS) const {
+  if (!DefMBB)
+    return false;
+
+  DenseMap<unsigned, int>::iterator I = IntervalSSMap.find(Reg);
+  if (I == IntervalSSMap.end())
     return false;
+  DenseMap<unsigned, unsigned>::iterator II = Def2SpillMap.find(DefIndex);
+  if (II == Def2SpillMap.end())
+    return false;
+
+  // If last spill of def is in the same mbb as barrier mbb (where restore will
+  // be), make sure it's not below the intended restore index.
+  // FIXME: Undo the previous spill?
+  assert(LIs->getMBBFromIndex(II->second) == DefMBB);
+  if (DefMBB == BarrierMBB && II->second >= RestoreIndex)
+    return false;
+
   SS = I->second;
+  SpillIndex = II->second;
   return true;
 }
 
-/// UpdateIntervalForSplit - Given the specified val# of the current live
-/// interval is being split, and the split and rejoin indices, update the live
-/// interval accordingly.
+/// UpdateSpillSlotInterval - Given the specified val# of the register live
+/// interval being split, and the spill and restore indicies, update the live
+/// interval of the spill stack slot.
 void
-PreAllocSplitting::UpdateIntervalForSplit(VNInfo *ValNo, unsigned SplitIndex,
-                                          unsigned JoinIndex) {
+PreAllocSplitting::UpdateSpillSlotInterval(VNInfo *ValNo, unsigned SpillIndex,
+                                           unsigned RestoreIndex) {
+  assert(LIs->getMBBFromIndex(RestoreIndex) == BarrierMBB &&
+         "Expect restore in the barrier mbb");
+
+  MachineBasicBlock *MBB = LIs->getMBBFromIndex(SpillIndex);
+  if (MBB == BarrierMBB) {
+    // Intra-block spill + restore. We are done.
+    LiveRange SLR(SpillIndex, RestoreIndex, CurrSValNo);
+    CurrSLI->addRange(SLR);
+    return;
+  }
+
+  SmallPtrSet<MachineBasicBlock*, 4> Processed;
+  unsigned EndIdx = LIs->getMBBEndIdx(MBB);
+  LiveRange SLR(SpillIndex, EndIdx+1, CurrSValNo);
+  CurrSLI->addRange(SLR);
+  Processed.insert(MBB);
+
+  // Start from the spill mbb, figure out the extend of the spill slot's
+  // live interval.
+  SmallVector<MachineBasicBlock*, 4> WorkList;
+  const LiveRange *LR = CurrLI->getLiveRangeContaining(SpillIndex);
+  if (LR->end > EndIdx)
+    // If live range extend beyond end of mbb, add successors to work list.
+    for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
+           SE = MBB->succ_end(); SI != SE; ++SI)
+      WorkList.push_back(*SI);
+
+  while (!WorkList.empty()) {
+    MachineBasicBlock *MBB = WorkList.back();
+    WorkList.pop_back();
+    if (Processed.count(MBB))
+      continue;
+    unsigned Idx = LIs->getMBBStartIdx(MBB);
+    LR = CurrLI->getLiveRangeContaining(Idx);
+    if (LR && LR->valno == ValNo) {
+      EndIdx = LIs->getMBBEndIdx(MBB);
+      if (Idx <= RestoreIndex && RestoreIndex < EndIdx) {
+        // Spill slot live interval stops at the restore.
+        LiveRange SLR(Idx, RestoreIndex, CurrSValNo);
+        CurrSLI->addRange(SLR);
+      } else if (LR->end > EndIdx) {
+        // Live range extends beyond end of mbb, process successors.
+        LiveRange SLR(Idx, EndIdx+1, CurrSValNo);
+        CurrSLI->addRange(SLR);
+        for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
+               SE = MBB->succ_end(); SI != SE; ++SI)
+          WorkList.push_back(*SI);
+      } else {
+        LiveRange SLR(Idx, LR->end, CurrSValNo);
+        CurrSLI->addRange(SLR);
+      }
+      Processed.insert(MBB);
+    }
+  }
+}
+
+/// UpdateRegisterInterval - Given the specified val# of the current live
+/// interval is being split, and the spill and restore indices, update the live
+/// interval accordingly.
+VNInfo*
+PreAllocSplitting::UpdateRegisterInterval(VNInfo *ValNo, unsigned SpillIndex,
+                                          unsigned RestoreIndex) {
+  assert(LIs->getMBBFromIndex(RestoreIndex) == BarrierMBB &&
+         "Expect restore in the barrier mbb");
+
   SmallVector<std::pair<unsigned,unsigned>, 4> Before;
   SmallVector<std::pair<unsigned,unsigned>, 4> After;
   SmallVector<unsigned, 4> BeforeKills;
@@ -280,24 +435,29 @@ PreAllocSplitting::UpdateIntervalForSplit(VNInfo *ValNo, unsigned SplitIndex,
 
   // First, let's figure out which parts of the live interval is now defined
   // by the restore, which are defined by the original definition.
-  const LiveRange *LR = CurrLI->getLiveRangeContaining(JoinIndex);
-  After.push_back(std::make_pair(JoinIndex, LR->end));
+  const LiveRange *LR = CurrLI->getLiveRangeContaining(RestoreIndex);
+  After.push_back(std::make_pair(RestoreIndex, LR->end));
   if (CurrLI->isKill(ValNo, LR->end))
     AfterKills.push_back(LR->end);
 
-  assert(LR->contains(SplitIndex));
-  if (SplitIndex > LR->start) {
-    Before.push_back(std::make_pair(LR->start, SplitIndex));
-    BeforeKills.push_back(SplitIndex);
+  assert(LR->contains(SpillIndex));
+  if (SpillIndex > LR->start) {
+    Before.push_back(std::make_pair(LR->start, SpillIndex));
+    BeforeKills.push_back(SpillIndex);
   }
   Processed.insert(LR);
 
+  // Start from the restore mbb, figure out what part of the live interval
+  // are defined by the restore.
   SmallVector<MachineBasicBlock*, 4> WorkList;
-  MachineBasicBlock *MBB = LIs->getMBBFromIndex(LR->end-1);
+  MachineBasicBlock *MBB = BarrierMBB;
   for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
          SE = MBB->succ_end(); SI != SE; ++SI)
     WorkList.push_back(*SI);
 
+  SmallPtrSet<MachineBasicBlock*, 4> ProcessedBlocks;
+  ProcessedBlocks.insert(MBB);
+
   while (!WorkList.empty()) {
     MBB = WorkList.back();
     WorkList.pop_back();
@@ -309,18 +469,19 @@ PreAllocSplitting::UpdateIntervalForSplit(VNInfo *ValNo, unsigned SplitIndex,
         AfterKills.push_back(LR->end);
       Idx = LIs->getMBBEndIdx(MBB);
       if (LR->end > Idx) {
-        for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
-               SE = MBB->succ_end(); SI != SE; ++SI)
-          WorkList.push_back(*SI);
-        if (LR->end > Idx+1) {
-          MBB = LIs->getMBBFromIndex(LR->end-1);
-          for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
-                 SE = MBB->succ_end(); SI != SE; ++SI)
-            WorkList.push_back(*SI);
-        }
+        // Live range extend beyond at least one mbb. Let's see what other
+        // mbbs it reaches.
+        LIs->findReachableMBBs(LR->start, LR->end, WorkList);
       }
       Processed.insert(LR);
     }
+    
+    ProcessedBlocks.insert(MBB);
+    if (LR)
+      for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
+            SE = MBB->succ_end(); SI != SE; ++SI)
+        if (!ProcessedBlocks.count(*SI))
+          WorkList.push_back(*SI);
   }
 
   for (LiveInterval::iterator I = CurrLI->begin(), E = CurrLI->end();
@@ -347,7 +508,7 @@ PreAllocSplitting::UpdateIntervalForSplit(VNInfo *ValNo, unsigned SplitIndex,
 
   VNInfo *AValNo = (After.empty())
     ? NULL
-    : CurrLI->getNextValue(JoinIndex,0, LIs->getVNInfoAllocator());
+    : CurrLI->getNextValue(RestoreIndex, 0, LIs->getVNInfoAllocator());
   if (AValNo) {
     AValNo->hasPHIKill = HasPHIKill;
     CurrLI->addKills(AValNo, AfterKills);
@@ -363,6 +524,8 @@ PreAllocSplitting::UpdateIntervalForSplit(VNInfo *ValNo, unsigned SplitIndex,
     unsigned End   = After[i].second;
     CurrLI->addRange(LiveRange(Start, End, AValNo));
   }
+  
+  return AValNo;
 }
 
 /// ShrinkWrapToLastUse - There are uses of the current live interval in the
@@ -370,7 +533,7 @@ PreAllocSplitting::UpdateIntervalForSplit(VNInfo *ValNo, unsigned SplitIndex,
 /// from last use to the end of the mbb). In case mbb is the where the barrier
 /// is, remove from the last use to the barrier.
 bool
-PreAllocSplitting::ShrinkWrapToLastUse(MachineBasicBlock *MBB,
+PreAllocSplitting::ShrinkWrapToLastUse(MachineBasicBlock *MBB, VNInfo *ValNo,
                                        SmallVector<MachineOperand*, 4> &Uses,
                                        SmallPtrSet<MachineInstr*, 4> &UseMIs) {
   MachineOperand *LastMO = 0;
@@ -387,7 +550,8 @@ PreAllocSplitting::ShrinkWrapToLastUse(MachineBasicBlock *MBB,
       MII = Barrier;
     else
       MII = MBB->end();
-    while (--MII != MEE) {
+    while (MII != MEE) {
+      --MII;
       MachineInstr *UseMI = &*MII;
       if (!UseMIs.count(UseMI))
         continue;
@@ -417,11 +581,310 @@ PreAllocSplitting::ShrinkWrapToLastUse(MachineBasicBlock *MBB,
   if (MBB == BarrierMBB)
     RangeEnd = LIs->getUseIndex(BarrierIdx)+1;
   CurrLI->removeRange(RangeStart, RangeEnd);
+  if (LastMI)
+    CurrLI->addKill(ValNo, RangeStart);
 
   // Return true if the last use becomes a new kill.
   return LastMI;
 }
 
+/// PerformPHIConstruction - From properly set up use and def lists, use a PHI
+/// construction algorithm to compute the ranges and valnos for an interval.
+VNInfo* PreAllocSplitting::PerformPHIConstruction(
+                                                MachineBasicBlock::iterator use,
+                                                         MachineBasicBlock* MBB,
+                                                               LiveInterval* LI,
+                                       SmallPtrSet<MachineInstr*, 4>& Visited,
+             DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs,
+             DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses,
+                                       DenseMap<MachineInstr*, VNInfo*>& NewVNs,
+                                 DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut,
+                                 DenseMap<MachineBasicBlock*, VNInfo*>& Phis,
+                                              bool toplevel, bool intrablock) {
+  // Return memoized result if it's available.
+  if (toplevel && Visited.count(use) && NewVNs.count(use))
+    return NewVNs[use];
+  else if (!toplevel && intrablock && NewVNs.count(use))
+    return NewVNs[use];
+  else if (!intrablock && LiveOut.count(MBB))
+    return LiveOut[MBB];
+  
+  typedef DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> > RegMap;
+  
+  // Check if our block contains any uses or defs.
+  bool ContainsDefs = Defs.count(MBB);
+  bool ContainsUses = Uses.count(MBB);
+  
+  VNInfo* ret = 0;
+  
+  // Enumerate the cases of use/def contaning blocks.
+  if (!ContainsDefs && !ContainsUses) {
+  Fallback:
+    // NOTE: Because this is the fallback case from other cases, we do NOT
+    // assume that we are not intrablock here.
+    if (Phis.count(MBB)) return Phis[MBB];
+    
+    unsigned StartIndex = LIs->getMBBStartIdx(MBB);
+    
+    if (MBB->pred_size() == 1) {
+      Phis[MBB] = ret = PerformPHIConstruction((*MBB->pred_begin())->end(),
+                                          *(MBB->pred_begin()), LI, Visited,
+                                          Defs, Uses, NewVNs, LiveOut, Phis,
+                                          false, false);
+      unsigned EndIndex = 0;
+      if (intrablock) {
+        EndIndex = LIs->getInstructionIndex(use);
+        EndIndex = LiveIntervals::getUseIndex(EndIndex);
+      } else
+        EndIndex = LIs->getMBBEndIdx(MBB);
+      
+      LI->addRange(LiveRange(StartIndex, EndIndex+1, ret));
+      if (intrablock)
+        LI->addKill(ret, EndIndex);
+    } else {
+      Phis[MBB] = ret = LI->getNextValue(~0U, /*FIXME*/ 0,
+                                          LIs->getVNInfoAllocator());
+      if (!intrablock) LiveOut[MBB] = ret;
+    
+      // If there are no uses or defs between our starting point and the
+      // beginning of the block, then recursive perform phi construction
+      // on our predecessors.
+      DenseMap<MachineBasicBlock*, VNInfo*> IncomingVNs;
+      for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
+           PE = MBB->pred_end(); PI != PE; ++PI) {
+        VNInfo* Incoming = PerformPHIConstruction((*PI)->end(), *PI, LI, 
+                                            Visited, Defs, Uses, NewVNs,
+                                            LiveOut, Phis, false, false);
+        if (Incoming != 0)
+          IncomingVNs[*PI] = Incoming;
+      }
+    
+      // Otherwise, merge the incoming VNInfos with a phi join.  Create a new
+      // VNInfo to represent the joined value.
+      for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator I =
+           IncomingVNs.begin(), E = IncomingVNs.end(); I != E; ++I) {
+        I->second->hasPHIKill = true;
+        unsigned KillIndex = LIs->getMBBEndIdx(I->first);
+        LI->addKill(I->second, KillIndex);
+      }
+      
+      unsigned EndIndex = 0;
+      if (intrablock) {
+        EndIndex = LIs->getInstructionIndex(use);
+        EndIndex = LiveIntervals::getUseIndex(EndIndex);
+      } else
+        EndIndex = LIs->getMBBEndIdx(MBB);
+      LI->addRange(LiveRange(StartIndex, EndIndex+1, ret));
+      if (intrablock)
+        LI->addKill(ret, EndIndex);
+    }
+  } else if (ContainsDefs && !ContainsUses) {
+    SmallPtrSet<MachineInstr*, 2>& BlockDefs = Defs[MBB];
+
+    // Search for the def in this block.  If we don't find it before the
+    // instruction we care about, go to the fallback case.  Note that that
+    // should never happen: this cannot be intrablock, so use should
+    // always be an end() iterator.
+    assert(use == MBB->end() && "No use marked in intrablock");
+    
+    MachineBasicBlock::iterator walker = use;
+    --walker;
+    while (walker != MBB->begin())
+      if (BlockDefs.count(walker)) {
+        break;
+      } else
+        --walker;
+    
+    // Once we've found it, extend its VNInfo to our instruction.
+    unsigned DefIndex = LIs->getInstructionIndex(walker);
+    DefIndex = LiveIntervals::getDefIndex(DefIndex);
+    unsigned EndIndex = LIs->getMBBEndIdx(MBB);
+    
+    ret = NewVNs[walker];
+    LI->addRange(LiveRange(DefIndex, EndIndex+1, ret));
+  } else if (!ContainsDefs && ContainsUses) {
+    SmallPtrSet<MachineInstr*, 2>& BlockUses = Uses[MBB];
+    
+    // Search for the use in this block that precedes the instruction we care 
+    // about, going to the fallback case if we don't find it.
+    
+    if (use == MBB->begin())
+      goto Fallback;
+    
+    MachineBasicBlock::iterator walker = use;
+    --walker;
+    bool found = false;
+    while (walker != MBB->begin())
+      if (BlockUses.count(walker)) {
+        found = true;
+        break;
+      } else
+        --walker;
+        
+    // Must check begin() too.
+    if (!found) {
+      if (BlockUses.count(walker))
+        found = true;
+      else
+        goto Fallback;
+    }
+
+    unsigned UseIndex = LIs->getInstructionIndex(walker);
+    UseIndex = LiveIntervals::getUseIndex(UseIndex);
+    unsigned EndIndex = 0;
+    if (intrablock) {
+      EndIndex = LIs->getInstructionIndex(use);
+      EndIndex = LiveIntervals::getUseIndex(EndIndex);
+    } else
+      EndIndex = LIs->getMBBEndIdx(MBB);
+
+    // Now, recursively phi construct the VNInfo for the use we found,
+    // and then extend it to include the instruction we care about
+    ret = PerformPHIConstruction(walker, MBB, LI, Visited, Defs, Uses,
+                                 NewVNs, LiveOut, Phis, false, true);
+    
+    // FIXME: Need to set kills properly for inter-block stuff.
+    if (LI->isKill(ret, UseIndex)) LI->removeKill(ret, UseIndex);
+    if (intrablock)
+      LI->addKill(ret, EndIndex);
+    
+    LI->addRange(LiveRange(UseIndex, EndIndex+1, ret));
+  } else if (ContainsDefs && ContainsUses){
+    SmallPtrSet<MachineInstr*, 2>& BlockDefs = Defs[MBB];
+    SmallPtrSet<MachineInstr*, 2>& BlockUses = Uses[MBB];
+    
+    // This case is basically a merging of the two preceding case, with the
+    // special note that checking for defs must take precedence over checking
+    // for uses, because of two-address instructions.
+    
+    if (use == MBB->begin())
+      goto Fallback;
+    
+    MachineBasicBlock::iterator walker = use;
+    --walker;
+    bool foundDef = false;
+    bool foundUse = false;
+    while (walker != MBB->begin())
+      if (BlockDefs.count(walker)) {
+        foundDef = true;
+        break;
+      } else if (BlockUses.count(walker)) {
+        foundUse = true;
+        break;
+      } else
+        --walker;
+        
+    // Must check begin() too.
+    if (!foundDef && !foundUse) {
+      if (BlockDefs.count(walker))
+        foundDef = true;
+      else if (BlockUses.count(walker))
+        foundUse = true;
+      else
+        goto Fallback;
+    }
+
+    unsigned StartIndex = LIs->getInstructionIndex(walker);
+    StartIndex = foundDef ? LiveIntervals::getDefIndex(StartIndex) :
+                            LiveIntervals::getUseIndex(StartIndex);
+    unsigned EndIndex = 0;
+    if (intrablock) {
+      EndIndex = LIs->getInstructionIndex(use);
+      EndIndex = LiveIntervals::getUseIndex(EndIndex);
+    } else
+      EndIndex = LIs->getMBBEndIdx(MBB);
+
+    if (foundDef)
+      ret = NewVNs[walker];
+    else
+      ret = PerformPHIConstruction(walker, MBB, LI, Visited, Defs, Uses,
+                                   NewVNs, LiveOut, Phis, false, true);
+
+    if (foundUse && LI->isKill(ret, StartIndex))
+      LI->removeKill(ret, StartIndex);
+    if (intrablock) {
+      LI->addKill(ret, EndIndex);
+    }
+
+    LI->addRange(LiveRange(StartIndex, EndIndex+1, ret));
+  }
+  
+  // Memoize results so we don't have to recompute them.
+  if (!intrablock) LiveOut[MBB] = ret;
+  else {
+    if (!NewVNs.count(use))
+      NewVNs[use] = ret;
+    Visited.insert(use);
+  }
+
+  return ret;
+}
+
+/// ReconstructLiveInterval - Recompute a live interval from scratch.
+void PreAllocSplitting::ReconstructLiveInterval(LiveInterval* LI) {
+  BumpPtrAllocator& Alloc = LIs->getVNInfoAllocator();
+  
+  // Clear the old ranges and valnos;
+  LI->clear();
+  
+  // Cache the uses and defs of the register
+  typedef DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> > RegMap;
+  RegMap Defs, Uses;
+  
+  // Keep track of the new VNs we're creating.
+  DenseMap<MachineInstr*, VNInfo*> NewVNs;
+  SmallPtrSet<VNInfo*, 2> PhiVNs;
+  
+  // Cache defs, and create a new VNInfo for each def.
+  for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(LI->reg),
+       DE = MRI->def_end(); DI != DE; ++DI) {
+    Defs[(*DI).getParent()].insert(&*DI);
+    
+    unsigned DefIdx = LIs->getInstructionIndex(&*DI);
+    DefIdx = LiveIntervals::getDefIndex(DefIdx);
+    
+    VNInfo* NewVN = LI->getNextValue(DefIdx, 0, Alloc);
+    
+    // If the def is a move, set the copy field.
+    unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
+    if (TII->isMoveInstr(*DI, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
+      if (DstReg == LI->reg)
+        NewVN->copy = &*DI;
+    
+    NewVNs[&*DI] = NewVN;
+  }
+  
+  // Cache uses as a separate pass from actually processing them.
+  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(LI->reg),
+       UE = MRI->use_end(); UI != UE; ++UI)
+    Uses[(*UI).getParent()].insert(&*UI);
+    
+  // Now, actually process every use and use a phi construction algorithm
+  // to walk from it to its reaching definitions, building VNInfos along
+  // the way.
+  DenseMap<MachineBasicBlock*, VNInfo*> LiveOut;
+  DenseMap<MachineBasicBlock*, VNInfo*> Phis;
+  SmallPtrSet<MachineInstr*, 4> Visited;
+  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(LI->reg),
+       UE = MRI->use_end(); UI != UE; ++UI) {
+    PerformPHIConstruction(&*UI, UI->getParent(), LI, Visited, Defs,
+                           Uses, NewVNs, LiveOut, Phis, true, true); 
+  }
+  
+  // Add ranges for dead defs
+  for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(LI->reg),
+       DE = MRI->def_end(); DI != DE; ++DI) {
+    unsigned DefIdx = LIs->getInstructionIndex(&*DI);
+    DefIdx = LiveIntervals::getDefIndex(DefIdx);
+    
+    if (LI->liveAt(DefIdx)) continue;
+    
+    VNInfo* DeadVN = NewVNs[&*DI];
+    LI->addRange(LiveRange(DefIdx, DefIdx+1, DeadVN));
+    LI->addKill(DeadVN, DefIdx);
+  }
+}
+
 /// ShrinkWrapLiveInterval - Recursively traverse the predecessor
 /// chain to find the new 'kills' and shrink wrap the live interval to the
 /// new kill indices.
@@ -438,13 +901,15 @@ PreAllocSplitting::ShrinkWrapLiveInterval(VNInfo *ValNo, MachineBasicBlock *MBB,
   // If live interval is live in another successor path, then we can't process
   // this block. But we may able to do so after all the successors have been
   // processed.
-  for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
-         SE = MBB->succ_end(); SI != SE; ++SI) {
-    MachineBasicBlock *SMBB = *SI;
-    if (SMBB == SuccMBB)
-      continue;
-    if (CurrLI->liveAt(LIs->getMBBStartIdx(SMBB)))
-      return;
+  if (MBB != BarrierMBB) {
+    for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
+           SE = MBB->succ_end(); SI != SE; ++SI) {
+      MachineBasicBlock *SMBB = *SI;
+      if (SMBB == SuccMBB)
+        continue;
+      if (CurrLI->liveAt(LIs->getMBBStartIdx(SMBB)))
+        return;
+    }
   }
 
   Visited.insert(MBB);
@@ -455,15 +920,12 @@ PreAllocSplitting::ShrinkWrapLiveInterval(VNInfo *ValNo, MachineBasicBlock *MBB,
     // At least one use in this mbb, lets look for the kill.
     DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 4> >::iterator
       UMII2 = UseMIs.find(MBB);
-    if (ShrinkWrapToLastUse(MBB, UMII->second, UMII2->second))
+    if (ShrinkWrapToLastUse(MBB, ValNo, UMII->second, UMII2->second))
       // Found a kill, shrink wrapping of this path ends here.
       return;
   } else if (MBB == DefMBB) {
-    assert(LIValNoSSMap.find(std::make_pair(CurrLI->reg, ValNo->id)) !=
-           LIValNoSSMap.end() && "Why wasn't def spilled?");
     // There are no uses after the def.
     MachineInstr *DefMI = LIs->getInstructionFromIndex(ValNo->def);
-    assert(RestoreMIs.count(DefMI) && "Not defined by a join?");
     if (UseMBBs.empty()) {
       // The only use must be below barrier in the barrier block. It's safe to
       // remove the def.
@@ -494,6 +956,8 @@ PreAllocSplitting::ShrinkWrapLiveInterval(VNInfo *ValNo, MachineBasicBlock *MBB,
       // Pred is the def bb and the def reaches other val#s, we must
       // allow the value to be live out of the bb.
       continue;
+    if (!CurrLI->liveAt(LIs->getMBBEndIdx(Pred)-1))
+      return;
     ShrinkWrapLiveInterval(ValNo, Pred, MBB, DefMBB, Visited,
                            Uses, UseMIs, UseMBBs);
   }
@@ -501,6 +965,240 @@ PreAllocSplitting::ShrinkWrapLiveInterval(VNInfo *ValNo, MachineBasicBlock *MBB,
   return;
 }
 
+
+void PreAllocSplitting::RepairLiveInterval(LiveInterval* CurrLI,
+                                           VNInfo* ValNo,
+                                           MachineInstr* DefMI,
+                                           unsigned RestoreIdx) {
+  // Shrink wrap the live interval by walking up the CFG and find the
+  // new kills.
+  // Now let's find all the uses of the val#.
+  DenseMap<MachineBasicBlock*, SmallVector<MachineOperand*, 4> > Uses;
+  DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 4> > UseMIs;
+  SmallPtrSet<MachineBasicBlock*, 4> Seen;
+  SmallVector<MachineBasicBlock*, 4> UseMBBs;
+  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(CurrLI->reg),
+         UE = MRI->use_end(); UI != UE; ++UI) {
+    MachineOperand &UseMO = UI.getOperand();
+    MachineInstr *UseMI = UseMO.getParent();
+    unsigned UseIdx = LIs->getInstructionIndex(UseMI);
+    LiveInterval::iterator ULR = CurrLI->FindLiveRangeContaining(UseIdx);
+    if (ULR->valno != ValNo)
+      continue;
+    MachineBasicBlock *UseMBB = UseMI->getParent();
+    // Remember which other mbb's use this val#.
+    if (Seen.insert(UseMBB) && UseMBB != BarrierMBB)
+      UseMBBs.push_back(UseMBB);
+    DenseMap<MachineBasicBlock*, SmallVector<MachineOperand*, 4> >::iterator
+      UMII = Uses.find(UseMBB);
+    if (UMII != Uses.end()) {
+      DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 4> >::iterator
+        UMII2 = UseMIs.find(UseMBB);
+      UMII->second.push_back(&UseMO);
+      UMII2->second.insert(UseMI);
+    } else {
+      SmallVector<MachineOperand*, 4> Ops;
+      Ops.push_back(&UseMO);
+      Uses.insert(std::make_pair(UseMBB, Ops));
+      SmallPtrSet<MachineInstr*, 4> MIs;
+      MIs.insert(UseMI);
+      UseMIs.insert(std::make_pair(UseMBB, MIs));
+    }
+  }
+
+  // Walk up the predecessor chains.
+  SmallPtrSet<MachineBasicBlock*, 8> Visited;
+  ShrinkWrapLiveInterval(ValNo, BarrierMBB, NULL, DefMI->getParent(), Visited,
+                         Uses, UseMIs, UseMBBs);
+
+  // Remove live range from barrier to the restore. FIXME: Find a better
+  // point to re-start the live interval.
+  VNInfo* AfterValNo = UpdateRegisterInterval(ValNo,
+                                              LIs->getUseIndex(BarrierIdx)+1,
+                                              LIs->getDefIndex(RestoreIdx));
+  
+  // Attempt to renumber the new valno into a new vreg.
+  RenumberValno(AfterValNo);
+}
+
+/// RenumberValno - Split the given valno out into a new vreg, allowing it to
+/// be allocated to a different register.  This function creates a new vreg,
+/// copies the valno and its live ranges over to the new vreg's interval,
+/// removes them from the old interval, and rewrites all uses and defs of
+/// the original reg to the new vreg within those ranges.
+void PreAllocSplitting::RenumberValno(VNInfo* VN) {
+  SmallVector<VNInfo*, 4> Stack;
+  SmallVector<VNInfo*, 4> VNsToCopy;
+  Stack.push_back(VN);
+
+  // Walk through and copy the valno we care about, and any other valnos
+  // that are two-address redefinitions of the one we care about.  These
+  // will need to be rewritten as well.  We also check for safety of the 
+  // renumbering here, by making sure that none of the valno involved has
+  // phi kills.
+  while (!Stack.empty()) {
+    VNInfo* OldVN = Stack.back();
+    Stack.pop_back();
+    
+    // Bail out if we ever encounter a valno that has a PHI kill.  We can't
+    // renumber these.
+    if (OldVN->hasPHIKill) return;
+    
+    VNsToCopy.push_back(OldVN);
+    
+    // Locate two-address redefinitions
+    for (SmallVector<unsigned, 4>::iterator KI = OldVN->kills.begin(),
+         KE = OldVN->kills.end(); KI != KE; ++KI) {
+      MachineInstr* MI = LIs->getInstructionFromIndex(*KI);
+      //if (!MI) continue;
+      unsigned DefIdx = MI->findRegisterDefOperandIdx(CurrLI->reg);
+      if (DefIdx == ~0U) continue;
+      if (MI->isRegReDefinedByTwoAddr(DefIdx)) {
+        VNInfo* NextVN =
+                     CurrLI->findDefinedVNInfo(LiveIntervals::getDefIndex(*KI));
+        Stack.push_back(NextVN);
+      }
+    }
+  }
+  
+  // Create the new vreg
+  unsigned NewVReg = MRI->createVirtualRegister(MRI->getRegClass(CurrLI->reg));
+  
+  // Create the new live interval
+  LiveInterval& NewLI = LIs->getOrCreateInterval(NewVReg);
+  
+  for (SmallVector<VNInfo*, 4>::iterator OI = VNsToCopy.begin(), OE = 
+       VNsToCopy.end(); OI != OE; ++OI) {
+    VNInfo* OldVN = *OI;
+    
+    // Copy the valno over
+    VNInfo* NewVN = NewLI.getNextValue(OldVN->def, OldVN->copy, 
+                                       LIs->getVNInfoAllocator());
+    NewLI.copyValNumInfo(NewVN, OldVN);
+    NewLI.MergeValueInAsValue(*CurrLI, OldVN, NewVN);
+
+    // Remove the valno from the old interval
+    CurrLI->removeValNo(OldVN);
+  }
+  
+  // Rewrite defs and uses.  This is done in two stages to avoid invalidating
+  // the reg_iterator.
+  SmallVector<std::pair<MachineInstr*, unsigned>, 8> OpsToChange;
+  
+  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(CurrLI->reg),
+         E = MRI->reg_end(); I != E; ++I) {
+    MachineOperand& MO = I.getOperand();
+    unsigned InstrIdx = LIs->getInstructionIndex(&*I);
+    
+    if ((MO.isUse() && NewLI.liveAt(LiveIntervals::getUseIndex(InstrIdx))) ||
+        (MO.isDef() && NewLI.liveAt(LiveIntervals::getDefIndex(InstrIdx))))
+      OpsToChange.push_back(std::make_pair(&*I, I.getOperandNo()));
+  }
+  
+  for (SmallVector<std::pair<MachineInstr*, unsigned>, 8>::iterator I =
+       OpsToChange.begin(), E = OpsToChange.end(); I != E; ++I) {
+    MachineInstr* Inst = I->first;
+    unsigned OpIdx = I->second;
+    MachineOperand& MO = Inst->getOperand(OpIdx);
+    MO.setReg(NewVReg);
+  }
+  
+  NumRenumbers++;
+}
+
+bool PreAllocSplitting::Rematerialize(unsigned vreg, VNInfo* ValNo,
+                                      MachineInstr* DefMI,
+                                      MachineBasicBlock::iterator RestorePt,
+                                      unsigned RestoreIdx,
+                                    SmallPtrSet<MachineInstr*, 4>& RefsInMBB) {
+  MachineBasicBlock& MBB = *RestorePt->getParent();
+  
+  MachineBasicBlock::iterator KillPt = BarrierMBB->end();
+  unsigned KillIdx = 0;
+  if (ValNo->def == ~0U || DefMI->getParent() == BarrierMBB)
+    KillPt = findSpillPoint(BarrierMBB, Barrier, NULL, RefsInMBB, KillIdx);
+  else
+    KillPt = findNextEmptySlot(DefMI->getParent(), DefMI, KillIdx);
+  
+  if (KillPt == DefMI->getParent()->end())
+    return false;
+  
+  TII->reMaterialize(MBB, RestorePt, vreg, DefMI);
+  LIs->InsertMachineInstrInMaps(prior(RestorePt), RestoreIdx);
+  
+  if (KillPt->getParent() == BarrierMBB) {
+    VNInfo* After = UpdateRegisterInterval(ValNo, LIs->getUseIndex(KillIdx)+1,
+                           LIs->getDefIndex(RestoreIdx));
+    
+    RenumberValno(After);
+
+    ++NumSplits;
+    ++NumRemats;
+    return true;
+  }
+
+  RepairLiveInterval(CurrLI, ValNo, DefMI, RestoreIdx);
+  
+  ++NumSplits;
+  ++NumRemats;
+  return true;  
+}
+
+MachineInstr* PreAllocSplitting::FoldSpill(unsigned vreg, 
+                                           const TargetRegisterClass* RC,
+                                           MachineInstr* DefMI,
+                                           MachineInstr* Barrier,
+                                           MachineBasicBlock* MBB,
+                                           int& SS,
+                                    SmallPtrSet<MachineInstr*, 4>& RefsInMBB) {
+  MachineBasicBlock::iterator Pt = MBB->begin();
+
+  // Go top down if RefsInMBB is empty.
+  if (RefsInMBB.empty())
+    return 0;
+  
+  MachineBasicBlock::iterator FoldPt = Barrier;
+  while (&*FoldPt != DefMI && FoldPt != MBB->begin() &&
+         !RefsInMBB.count(FoldPt))
+    --FoldPt;
+  
+  int OpIdx = FoldPt->findRegisterDefOperandIdx(vreg, false);
+  if (OpIdx == -1)
+    return 0;
+  
+  SmallVector<unsigned, 1> Ops;
+  Ops.push_back(OpIdx);
+  
+  if (!TII->canFoldMemoryOperand(FoldPt, Ops))
+    return 0;
+  
+  DenseMap<unsigned, int>::iterator I = IntervalSSMap.find(vreg);
+  if (I != IntervalSSMap.end()) {
+    SS = I->second;
+  } else {
+    SS = MFI->CreateStackObject(RC->getSize(), RC->getAlignment());
+    
+  }
+  
+  MachineInstr* FMI = TII->foldMemoryOperand(*MBB->getParent(),
+                                             FoldPt, Ops, SS);
+  
+  if (FMI) {
+    LIs->ReplaceMachineInstrInMaps(FoldPt, FMI);
+    FMI = MBB->insert(MBB->erase(FoldPt), FMI);
+    ++NumFolds;
+    
+    IntervalSSMap[vreg] = SS;
+    CurrSLI = &LSs->getOrCreateInterval(SS);
+    if (CurrSLI->hasAtLeastOneValue())
+      CurrSValNo = CurrSLI->getValNumInfo(0);
+    else
+      CurrSValNo = CurrSLI->getNextValue(~0U, 0, LSs->getVNInfoAllocator());
+  }
+  
+  return FMI;
+}
+
 /// SplitRegLiveInterval - Split (spill and restore) the given live interval
 /// so it would not cross the barrier that's being processed. Shrink wrap
 /// (minimize) the live interval to the last uses.
@@ -518,11 +1216,8 @@ bool PreAllocSplitting::SplitRegLiveInterval(LiveInterval *LI) {
     abort();
   }
 
-  // FIXME: For now, if definition is rematerializable, do not split.
   MachineInstr *DefMI = (ValNo->def != ~0U)
     ? LIs->getInstructionFromIndex(ValNo->def) : NULL;
-  if (DefMI && LIs->isReMaterializable(*LI, ValNo, DefMI))
-    return false;
 
   // Find all references in the barrier mbb.
   SmallPtrSet<MachineInstr*, 4> RefsInMBB;
@@ -536,121 +1231,105 @@ bool PreAllocSplitting::SplitRegLiveInterval(LiveInterval *LI) {
   // Find a point to restore the value after the barrier.
   unsigned RestoreIndex;
   MachineBasicBlock::iterator RestorePt =
-    findRestorePoint(BarrierMBB, Barrier, RefsInMBB, RestoreIndex);
+    findRestorePoint(BarrierMBB, Barrier, LR->end, RefsInMBB, RestoreIndex);
   if (RestorePt == BarrierMBB->end())
     return false;
 
+  if (DefMI && LIs->isReMaterializable(*LI, ValNo, DefMI))
+    if (Rematerialize(LI->reg, ValNo, DefMI, RestorePt,
+                      RestoreIndex, RefsInMBB))
+    return true;
+
   // Add a spill either before the barrier or after the definition.
   MachineBasicBlock *DefMBB = DefMI ? DefMI->getParent() : NULL;
   const TargetRegisterClass *RC = MRI->getRegClass(CurrLI->reg);
-  int SS;
   unsigned SpillIndex = 0;
   MachineInstr *SpillMI = NULL;
-  bool PrevSpilled = isAlreadySplit(CurrLI->reg, ValNo->id, SS);
+  int SS = -1;
   if (ValNo->def == ~0U) {
     // If it's defined by a phi, we must split just before the barrier.
-    MachineBasicBlock::iterator SpillPt = 
-      findSpillPoint(BarrierMBB, Barrier, RefsInMBB, SpillIndex);
-    if (SpillPt == BarrierMBB->begin())
-      return false; // No gap to insert spill.
-    // Add spill.
-    if (!PrevSpilled)
-      // If previously split, reuse the spill slot.
-      SS = MFI->CreateStackObject(RC->getSize(), RC->getAlignment());
-    TII->storeRegToStackSlot(*BarrierMBB, SpillPt, CurrLI->reg, true, SS, RC);
-    SpillMI = prior(SpillPt);
-    LIs->InsertMachineInstrInMaps(SpillMI, SpillIndex);
-  } else if (!PrevSpilled) {
-    if (!DefMI)
-      // Def is dead. Do nothing.
-      return false;
+    if ((SpillMI = FoldSpill(LI->reg, RC, 0, Barrier,
+                            BarrierMBB, SS, RefsInMBB))) {
+      SpillIndex = LIs->getInstructionIndex(SpillMI);
+    } else {
+      MachineBasicBlock::iterator SpillPt = 
+        findSpillPoint(BarrierMBB, Barrier, NULL, RefsInMBB, SpillIndex);
+      if (SpillPt == BarrierMBB->begin())
+        return false; // No gap to insert spill.
+      // Add spill.
+    
+      SS = CreateSpillStackSlot(CurrLI->reg, RC);
+      TII->storeRegToStackSlot(*BarrierMBB, SpillPt, CurrLI->reg, true, SS, RC);
+      SpillMI = prior(SpillPt);
+      LIs->InsertMachineInstrInMaps(SpillMI, SpillIndex);
+    }
+  } else if (!IsAvailableInStack(DefMBB, CurrLI->reg, ValNo->def,
+                                 RestoreIndex, SpillIndex, SS)) {
     // If it's already split, just restore the value. There is no need to spill
     // the def again.
-    // Check if it's possible to insert a spill after the def MI.
-    MachineBasicBlock::iterator SpillPt =
-      findNextEmptySlot(DefMBB, DefMI, SpillIndex);
-    if (SpillPt == DefMBB->end())
-      return false; // No gap to insert spill.
-    SS = MFI->CreateStackObject(RC->getSize(), RC->getAlignment());
-
-    // Add spill. The store instruction kills the register if def is before
-    // the barrier in the barrier block.
-    TII->storeRegToStackSlot(*DefMBB, SpillPt, CurrLI->reg,
-                             DefMBB == BarrierMBB, SS, RC);
-    SpillMI = prior(SpillPt);
-    LIs->InsertMachineInstrInMaps(SpillMI, SpillIndex);
+    if (!DefMI)
+      return false; // Def is dead. Do nothing.
+    
+    if ((SpillMI = FoldSpill(LI->reg, RC, DefMI, Barrier,
+                            BarrierMBB, SS, RefsInMBB))) {
+      SpillIndex = LIs->getInstructionIndex(SpillMI);
+    } else {
+      // Check if it's possible to insert a spill after the def MI.
+      MachineBasicBlock::iterator SpillPt;
+      if (DefMBB == BarrierMBB) {
+        // Add spill after the def and the last use before the barrier.
+        SpillPt = findSpillPoint(BarrierMBB, Barrier, DefMI,
+                                 RefsInMBB, SpillIndex);
+        if (SpillPt == DefMBB->begin())
+          return false; // No gap to insert spill.
+      } else {
+        SpillPt = findNextEmptySlot(DefMBB, DefMI, SpillIndex);
+        if (SpillPt == DefMBB->end())
+          return false; // No gap to insert spill.
+      }
+      // Add spill. The store instruction kills the register if def is before
+      // the barrier in the barrier block.
+      SS = CreateSpillStackSlot(CurrLI->reg, RC);
+      TII->storeRegToStackSlot(*DefMBB, SpillPt, CurrLI->reg,
+                               DefMBB == BarrierMBB, SS, RC);
+      SpillMI = prior(SpillPt);
+      LIs->InsertMachineInstrInMaps(SpillMI, SpillIndex);
+    }
   }
 
+  // Remember def instruction index to spill index mapping.
+  if (DefMI && SpillMI)
+    Def2SpillMap[ValNo->def] = SpillIndex;
+
   // Add restore.
-  // FIXME: Create live interval for stack slot.
   TII->loadRegFromStackSlot(*BarrierMBB, RestorePt, CurrLI->reg, SS, RC);
   MachineInstr *LoadMI = prior(RestorePt);
   LIs->InsertMachineInstrInMaps(LoadMI, RestoreIndex);
-  RestoreMIs.insert(LoadMI);
 
   // If live interval is spilled in the same block as the barrier, just
   // create a hole in the interval.
   if (!DefMBB ||
       (SpillMI && SpillMI->getParent() == BarrierMBB)) {
-    UpdateIntervalForSplit(ValNo, LIs->getUseIndex(SpillIndex)+1,
-                           LIs->getDefIndex(RestoreIndex));
+    // Update spill stack slot live interval.
+    UpdateSpillSlotInterval(ValNo, LIs->getUseIndex(SpillIndex)+1,
+                            LIs->getDefIndex(RestoreIndex));
 
-    // Record val# values are in the specific spill slot.
-    RecordSplit(CurrLI->reg, SpillIndex, RestoreIndex, SS);
-
-    ++NumSplit;
+    VNInfo* After = UpdateRegisterInterval(ValNo,
+                           LIs->getUseIndex(SpillIndex)+1,
+                           LIs->getDefIndex(RestoreIndex));
+    RenumberValno(After);
+   
+    ++NumSplits;
     return true;
   }
 
-  // Shrink wrap the live interval by walking up the CFG and find the
-  // new kills.
-  // Now let's find all the uses of the val#.
-  DenseMap<MachineBasicBlock*, SmallVector<MachineOperand*, 4> > Uses;
-  DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 4> > UseMIs;
-  SmallPtrSet<MachineBasicBlock*, 4> Seen;
-  SmallVector<MachineBasicBlock*, 4> UseMBBs;
-  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(CurrLI->reg),
-         UE = MRI->use_end(); UI != UE; ++UI) {
-    MachineOperand &UseMO = UI.getOperand();
-    MachineInstr *UseMI = UseMO.getParent();
-    unsigned UseIdx = LIs->getInstructionIndex(UseMI);
-    LiveInterval::iterator ULR = CurrLI->FindLiveRangeContaining(UseIdx);
-    if (ULR->valno != ValNo)
-      continue;
-    MachineBasicBlock *UseMBB = UseMI->getParent();
-    // Remember which other mbb's use this val#.
-    if (Seen.insert(UseMBB) && UseMBB != BarrierMBB)
-      UseMBBs.push_back(UseMBB);
-    DenseMap<MachineBasicBlock*, SmallVector<MachineOperand*, 4> >::iterator
-      UMII = Uses.find(UseMBB);
-    if (UMII != Uses.end()) {
-      DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 4> >::iterator
-        UMII2 = UseMIs.find(UseMBB);
-      UMII->second.push_back(&UseMO);
-      UMII2->second.insert(UseMI);
-    } else {
-      SmallVector<MachineOperand*, 4> Ops;
-      Ops.push_back(&UseMO);
-      Uses.insert(std::make_pair(UseMBB, Ops));
-      SmallPtrSet<MachineInstr*, 4> MIs;
-      MIs.insert(UseMI);
-      UseMIs.insert(std::make_pair(UseMBB, MIs));
-    }
-  }
+  // Update spill stack slot live interval.
+  UpdateSpillSlotInterval(ValNo, LIs->getUseIndex(SpillIndex)+1,
+                          LIs->getDefIndex(RestoreIndex));
 
-  // Walk up the predecessor chains.
-  SmallPtrSet<MachineBasicBlock*, 8> Visited;
-  ShrinkWrapLiveInterval(ValNo, BarrierMBB, NULL, DefMBB, Visited,
-                         Uses, UseMIs, UseMBBs);
-
-  // Remove live range from barrier to the restore. FIXME: Find a better
-  // point to re-start the live interval.
-  UpdateIntervalForSplit(ValNo, LIs->getUseIndex(BarrierIdx)+1,
-                         LIs->getDefIndex(RestoreIndex));
-  // Record val# values are in the specific spill slot.
-  RecordSplit(CurrLI->reg, SpillIndex, RestoreIndex, SS);
-
-  ++NumSplit;
+  RepairLiveInterval(CurrLI, ValNo, DefMI, RestoreIndex);
+  
+  ++NumSplits;
   return true;
 }
 
@@ -680,6 +1359,10 @@ PreAllocSplitting::SplitRegLiveIntervals(const TargetRegisterClass **RCs) {
   // Process the affected live intervals.
   bool Change = false;
   while (!Intervals.empty()) {
+    if (PreSplitLimit != -1 && (int)NumSplits == PreSplitLimit)
+      break;
+    else if (NumSplits == 4)
+      Change |= Change;
     LiveInterval *LI = Intervals.back();
     Intervals.pop_back();
     Change |= SplitRegLiveInterval(LI);
@@ -688,25 +1371,95 @@ PreAllocSplitting::SplitRegLiveIntervals(const TargetRegisterClass **RCs) {
   return Change;
 }
 
+bool PreAllocSplitting::createsNewJoin(LiveRange* LR,
+                                       MachineBasicBlock* DefMBB,
+                                       MachineBasicBlock* BarrierMBB) {
+  if (DefMBB == BarrierMBB)
+    return false;
+  
+  if (LR->valno->hasPHIKill)
+    return false;
+  
+  unsigned MBBEnd = LIs->getMBBEndIdx(BarrierMBB);
+  if (LR->end < MBBEnd)
+    return false;
+  
+  MachineLoopInfo& MLI = getAnalysis<MachineLoopInfo>();
+  if (MLI.getLoopFor(DefMBB) != MLI.getLoopFor(BarrierMBB))
+    return true;
+  
+  MachineDominatorTree& MDT = getAnalysis<MachineDominatorTree>();
+  SmallPtrSet<MachineBasicBlock*, 4> Visited;
+  typedef std::pair<MachineBasicBlock*,
+                    MachineBasicBlock::succ_iterator> ItPair;
+  SmallVector<ItPair, 4> Stack;
+  Stack.push_back(std::make_pair(BarrierMBB, BarrierMBB->succ_begin()));
+  
+  while (!Stack.empty()) {
+    ItPair P = Stack.back();
+    Stack.pop_back();
+    
+    MachineBasicBlock* PredMBB = P.first;
+    MachineBasicBlock::succ_iterator S = P.second;
+    
+    if (S == PredMBB->succ_end())
+      continue;
+    else if (Visited.count(*S)) {
+      Stack.push_back(std::make_pair(PredMBB, ++S));
+      continue;
+    } else
+      Stack.push_back(std::make_pair(PredMBB, S+1));
+    
+    MachineBasicBlock* MBB = *S;
+    Visited.insert(MBB);
+    
+    if (MBB == BarrierMBB)
+      return true;
+    
+    MachineDomTreeNode* DefMDTN = MDT.getNode(DefMBB);
+    MachineDomTreeNode* BarrierMDTN = MDT.getNode(BarrierMBB);
+    MachineDomTreeNode* MDTN = MDT.getNode(MBB)->getIDom();
+    while (MDTN) {
+      if (MDTN == DefMDTN)
+        return true;
+      else if (MDTN == BarrierMDTN)
+        break;
+      MDTN = MDTN->getIDom();
+    }
+    
+    MBBEnd = LIs->getMBBEndIdx(MBB);
+    if (LR->end > MBBEnd)
+      Stack.push_back(std::make_pair(MBB, MBB->succ_begin()));
+  }
+  
+  return false;
+} 
+  
+
 bool PreAllocSplitting::runOnMachineFunction(MachineFunction &MF) {
-  CurMF = &MF;
-  TM    = &MF.getTarget();
-  TII   = TM->getInstrInfo();
-  MFI   = MF.getFrameInfo();
-  MRI   = &MF.getRegInfo();
-  LIs   = &getAnalysis<LiveIntervals>();
+  CurrMF = &MF;
+  TM     = &MF.getTarget();
+  TII    = TM->getInstrInfo();
+  MFI    = MF.getFrameInfo();
+  MRI    = &MF.getRegInfo();
+  LIs    = &getAnalysis<LiveIntervals>();
+  LSs    = &getAnalysis<LiveStacks>();
 
   bool MadeChange = false;
 
   // Make sure blocks are numbered in order.
   MF.RenumberBlocks();
 
-  for (MachineFunction::reverse_iterator I = MF.rbegin(), E = MF.rend();
-       I != E; ++I) {
-    BarrierMBB = &*I;
-    for (MachineBasicBlock::reverse_iterator II = BarrierMBB->rbegin(),
-           EE = BarrierMBB->rend(); II != EE; ++II) {
-      Barrier = &*II;
+  MachineBasicBlock *Entry = MF.begin();
+  SmallPtrSet<MachineBasicBlock*,16> Visited;
+
+  for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> >
+         DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
+       DFI != E; ++DFI) {
+    BarrierMBB = *DFI;
+    for (MachineBasicBlock::iterator I = BarrierMBB->begin(),
+           E = BarrierMBB->end(); I != E; ++I) {
+      Barrier = &*I;
       const TargetRegisterClass **BarrierRCs =
         Barrier->getDesc().getRegClassBarriers();
       if (!BarrierRCs)