Inline check that's used only once.
[oota-llvm.git] / lib / CodeGen / PHIElimination.cpp
index a82e78e5a0d809b499fa923c5e0de304a305cca8..9fd5b0e5770edf0408bf7c0525d31a93f439942e 100644 (file)
 //===----------------------------------------------------------------------===//
 
 #define DEBUG_TYPE "phielim"
+#include "PHIEliminationUtils.h"
 #include "llvm/CodeGen/LiveVariables.h"
 #include "llvm/CodeGen/Passes.h"
-#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineDominators.h"
 #include "llvm/CodeGen/MachineInstr.h"
 #include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
 #include "llvm/CodeGen/MachineRegisterInfo.h"
 #include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Function.h"
 #include "llvm/Target/TargetMachine.h"
 #include "llvm/ADT/SmallPtrSet.h"
 #include "llvm/ADT/STLExtras.h"
 #include "llvm/ADT/Statistic.h"
+#include "llvm/Support/CommandLine.h"
 #include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
 #include <algorithm>
 #include <map>
 using namespace llvm;
 
-STATISTIC(NumAtomic, "Number of atomic phis lowered");
+static cl::opt<bool>
+DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
+                     cl::Hidden, cl::desc("Disable critical edge splitting "
+                                          "during PHI elimination"));
 
 namespace {
-  class VISIBILITY_HIDDEN PNE : public MachineFunctionPass {
-    MachineRegisterInfo  *MRI; // Machine register information
+  class PHIElimination : public MachineFunctionPass {
+    MachineRegisterInfo *MRI; // Machine register information
 
   public:
     static char ID; // Pass identification, replacement for typeid
-    PNE() : MachineFunctionPass((intptr_t)&ID) {}
+    PHIElimination() : MachineFunctionPass(ID) {
+      initializePHIEliminationPass(*PassRegistry::getPassRegistry());
+    }
 
     virtual bool runOnMachineFunction(MachineFunction &Fn);
-    
-    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
-      AU.addPreserved<LiveVariables>();
-      AU.addPreservedID(MachineLoopInfoID);
-      AU.addPreservedID(MachineDominatorsID);
-      MachineFunctionPass::getAnalysisUsage(AU);
-    }
+    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
 
   private:
     /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
@@ -65,292 +69,320 @@ namespace {
     ///
     void analyzePHINodes(const MachineFunction& Fn);
 
-    typedef std::pair<const MachineBasicBlock*, unsigned> BBVRegPair;
-    typedef std::map<BBVRegPair, unsigned> VRegPHIUse;
+    /// Split critical edges where necessary for good coalescer performance.
+    bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
+                       LiveVariables &LV, MachineLoopInfo *MLI);
+
+    typedef std::pair<unsigned, unsigned> BBVRegPair;
+    typedef DenseMap<BBVRegPair, unsigned> VRegPHIUse;
 
     VRegPHIUse VRegPHIUseCount;
 
     // Defs of PHI sources which are implicit_def.
     SmallPtrSet<MachineInstr*, 4> ImpDefs;
-  };
 
-  char PNE::ID = 0;
-  RegisterPass<PNE> X("phi-node-elimination",
-                      "Eliminate PHI nodes for register allocation");
+    // Map reusable lowered PHI node -> incoming join register.
+    typedef DenseMap<MachineInstr*, unsigned,
+                     MachineInstrExpressionTrait> LoweredPHIMap;
+    LoweredPHIMap LoweredPHIs;
+  };
 }
 
-const PassInfo *llvm::PHIEliminationID = X.getPassInfo();
+STATISTIC(NumAtomic, "Number of atomic phis lowered");
+STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
+STATISTIC(NumReused, "Number of reused lowered phis");
+
+char PHIElimination::ID = 0;
+INITIALIZE_PASS(PHIElimination, "phi-node-elimination",
+                "Eliminate PHI nodes for register allocation", false, false)
 
-bool PNE::runOnMachineFunction(MachineFunction &Fn) {
-  MRI = &Fn.getRegInfo();
+char& llvm::PHIEliminationID = PHIElimination::ID;
 
-  analyzePHINodes(Fn);
+void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
+  AU.addPreserved<LiveVariables>();
+  AU.addPreserved<MachineDominatorTree>();
+  AU.addPreserved<MachineLoopInfo>();
+  MachineFunctionPass::getAnalysisUsage(AU);
+}
+
+bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
+  MRI = &MF.getRegInfo();
 
   bool Changed = false;
 
+  // Split critical edges to help the coalescer
+  if (!DisableEdgeSplitting) {
+    if (LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>()) {
+      MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
+      for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
+        Changed |= SplitPHIEdges(MF, *I, *LV, MLI);
+    }
+  }
+
+  // Populate VRegPHIUseCount
+  analyzePHINodes(MF);
+
   // Eliminate PHI instructions by inserting copies into predecessor blocks.
-  for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
-    Changed |= EliminatePHINodes(Fn, *I);
+  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
+    Changed |= EliminatePHINodes(MF, *I);
 
   // Remove dead IMPLICIT_DEF instructions.
-  for (SmallPtrSet<MachineInstr*,4>::iterator I = ImpDefs.begin(),
+  for (SmallPtrSet<MachineInstr*, 4>::iterator I = ImpDefs.begin(),
          E = ImpDefs.end(); I != E; ++I) {
     MachineInstr *DefMI = *I;
     unsigned DefReg = DefMI->getOperand(0).getReg();
-    if (MRI->use_begin(DefReg) == MRI->use_end())
+    if (MRI->use_nodbg_empty(DefReg))
       DefMI->eraseFromParent();
   }
 
+  // Clean up the lowered PHI instructions.
+  for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end();
+       I != E; ++I)
+    MF.DeleteMachineInstr(I->first);
+
+  LoweredPHIs.clear();
   ImpDefs.clear();
   VRegPHIUseCount.clear();
+
   return Changed;
 }
 
-
 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
 /// predecessor basic blocks.
 ///
-bool PNE::EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB) {
-  if (MBB.empty() || MBB.front().getOpcode() != TargetInstrInfo::PHI)
+bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
+                                             MachineBasicBlock &MBB) {
+  if (MBB.empty() || !MBB.front().isPHI())
     return false;   // Quick exit for basic blocks without PHIs.
 
   // Get an iterator to the first instruction after the last PHI node (this may
   // also be the end of the basic block).
-  MachineBasicBlock::iterator AfterPHIsIt = MBB.begin();
-  while (AfterPHIsIt != MBB.end() &&
-         AfterPHIsIt->getOpcode() == TargetInstrInfo::PHI)
-    ++AfterPHIsIt;    // Skip over all of the PHI nodes...
+  MachineBasicBlock::iterator AfterPHIsIt = MBB.SkipPHIsAndLabels(MBB.begin());
 
-  while (MBB.front().getOpcode() == TargetInstrInfo::PHI)
+  while (MBB.front().isPHI())
     LowerAtomicPHINode(MBB, AfterPHIsIt);
 
   return true;
 }
 
-static bool isSourceDefinedByImplicitDef(MachineInstr *MPhi, unsigned SrcIdx,
-                                         MachineRegisterInfo  *MRI) {
-  unsigned SrcReg = MPhi->getOperand(SrcIdx*2+1).getReg();
-  MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
-  return DefMI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF;
+/// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
+/// are implicit_def's.
+static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
+                                         const MachineRegisterInfo *MRI) {
+  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
+    unsigned SrcReg = MPhi->getOperand(i).getReg();
+    const MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
+    if (!DefMI || !DefMI->isImplicitDef())
+      return false;
+  }
+  return true;
 }
 
+
+
 /// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
 /// under the assuption that it needs to be lowered in a way that supports
 /// atomic execution of PHIs.  This lowering method is always correct all of the
 /// time.
-void PNE::LowerAtomicPHINode(MachineBasicBlock &MBB,
-                             MachineBasicBlock::iterator AfterPHIsIt) {
+///
+void PHIElimination::LowerAtomicPHINode(
+                                      MachineBasicBlock &MBB,
+                                      MachineBasicBlock::iterator AfterPHIsIt) {
+  ++NumAtomic;
   // Unlink the PHI node from the basic block, but don't delete the PHI yet.
   MachineInstr *MPhi = MBB.remove(MBB.begin());
 
   unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
   unsigned DestReg = MPhi->getOperand(0).getReg();
+  assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
+  bool isDead = MPhi->getOperand(0).isDead();
 
   // Create a new register for the incoming PHI arguments.
   MachineFunction &MF = *MBB.getParent();
-  const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
-  unsigned IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
+  unsigned IncomingReg = 0;
+  bool reusedIncoming = false;  // Is IncomingReg reused from an earlier PHI?
 
-  // Insert a register to register copy in the top of the current block (but
+  // Insert a register to register copy at the top of the current block (but
   // after any remaining phi nodes) which copies the new incoming register
   // into the phi node destination.
-  //
   const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
-  if (NumSrcs == 1 && isSourceDefinedByImplicitDef(MPhi, 0, MRI))
-    // If the only source of a PHI node is an implicit_def, just emit an
+  if (isSourceDefinedByImplicitDef(MPhi, MRI))
+    // If all sources of a PHI node are implicit_def, just emit an
     // implicit_def instead of a copy.
-    BuildMI(MBB, AfterPHIsIt, TII->get(TargetInstrInfo::IMPLICIT_DEF), DestReg);
-  else
-    TII->copyRegToReg(MBB, AfterPHIsIt, DestReg, IncomingReg, RC, RC);
+    BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
+            TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
+  else {
+    // Can we reuse an earlier PHI node? This only happens for critical edges,
+    // typically those created by tail duplication.
+    unsigned &entry = LoweredPHIs[MPhi];
+    if (entry) {
+      // An identical PHI node was already lowered. Reuse the incoming register.
+      IncomingReg = entry;
+      reusedIncoming = true;
+      ++NumReused;
+      DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg) << " for " << *MPhi);
+    } else {
+      const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
+      entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
+    }
+    BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
+            TII->get(TargetOpcode::COPY), DestReg)
+      .addReg(IncomingReg);
+  }
 
-  // Update live variable information if there is any...
-  LiveVariables *LV = getAnalysisToUpdate<LiveVariables>();
+  // Update live variable information if there is any.
+  LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>();
   if (LV) {
     MachineInstr *PHICopy = prior(AfterPHIsIt);
 
-    // Increment use count of the newly created virtual register.
-    LV->getVarInfo(IncomingReg).NumUses++;
+    if (IncomingReg) {
+      LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
+
+      // Increment use count of the newly created virtual register.
+      VI.NumUses++;
+      LV->setPHIJoin(IncomingReg);
+
+      // When we are reusing the incoming register, it may already have been
+      // killed in this block. The old kill will also have been inserted at
+      // AfterPHIsIt, so it appears before the current PHICopy.
+      if (reusedIncoming)
+        if (MachineInstr *OldKill = VI.findKill(&MBB)) {
+          DEBUG(dbgs() << "Remove old kill from " << *OldKill);
+          LV->removeVirtualRegisterKilled(IncomingReg, OldKill);
+          DEBUG(MBB.dump());
+        }
 
-    // Add information to LiveVariables to know that the incoming value is
-    // killed.  Note that because the value is defined in several places (once
-    // each for each incoming block), the "def" block and instruction fields
-    // for the VarInfo is not filled in.
-    //
-    LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
+      // Add information to LiveVariables to know that the incoming value is
+      // killed.  Note that because the value is defined in several places (once
+      // each for each incoming block), the "def" block and instruction fields
+      // for the VarInfo is not filled in.
+      LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
+    }
 
-    // Since we are going to be deleting the PHI node, if it is the last use
-    // of any registers, or if the value itself is dead, we need to move this
+    // Since we are going to be deleting the PHI node, if it is the last use of
+    // any registers, or if the value itself is dead, we need to move this
     // information over to the new copy we just inserted.
-    //
     LV->removeVirtualRegistersKilled(MPhi);
 
     // If the result is dead, update LV.
-    if (MPhi->registerDefIsDead(DestReg)) {
+    if (isDead) {
       LV->addVirtualRegisterDead(DestReg, PHICopy);
-      LV->removeVirtualRegistersDead(MPhi);
+      LV->removeVirtualRegisterDead(DestReg, MPhi);
     }
-
-    LV->getVarInfo(IncomingReg).UsedBlocks[MBB.getNumber()] = true;
   }
 
-  // Adjust the VRegPHIUseCount map to account for the removal of this PHI
-  // node.
+  // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
   for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
-    --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i + 1).getMBB(),
+    --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
                                  MPhi->getOperand(i).getReg())];
 
-  // Now loop over all of the incoming arguments, changing them to copy into
-  // the IncomingReg register in the corresponding predecessor basic block.
-  //
+  // Now loop over all of the incoming arguments, changing them to copy into the
+  // IncomingReg register in the corresponding predecessor basic block.
   SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
   for (int i = NumSrcs - 1; i >= 0; --i) {
     unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
+    unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
+
     assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
            "Machine PHI Operands must all be virtual registers!");
 
-    // If source is defined by an implicit def, there is no need to insert
-    // a copy unless it's the only source.
+    // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
+    // path the PHI.
+    MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
+
+    // If source is defined by an implicit def, there is no need to insert a
+    // copy.
     MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
-    if (DefMI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF) {
+    if (DefMI->isImplicitDef()) {
       ImpDefs.insert(DefMI);
       continue;
     }
 
-    // Get the MachineBasicBlock equivalent of the BasicBlock that is the
-    // source path the PHI.
-    MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
-
     // Check to make sure we haven't already emitted the copy for this block.
-    // This can happen because PHI nodes may have multiple entries for the
-    // same basic block.
+    // This can happen because PHI nodes may have multiple entries for the same
+    // basic block.
     if (!MBBsInsertedInto.insert(&opBlock))
       continue;  // If the copy has already been emitted, we're done.
-    // Find a safe location to insert the copy, this may be the first
-    // terminator in the block (or end()).
-    MachineBasicBlock::iterator InsertPos = opBlock.getFirstTerminator();
-    
+
+    // Find a safe location to insert the copy, this may be the first terminator
+    // in the block (or end()).
+    MachineBasicBlock::iterator InsertPos =
+      findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
+
     // Insert the copy.
-    TII->copyRegToReg(opBlock, InsertPos, IncomingReg, SrcReg, RC, RC);
+    if (!reusedIncoming && IncomingReg)
+      BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
+              TII->get(TargetOpcode::COPY), IncomingReg).addReg(SrcReg, 0, SrcSubReg);
 
     // Now update live variable information if we have it.  Otherwise we're done
     if (!LV) continue;
-    
-    // We want to be able to insert a kill of the register if this PHI
-    // (aka, the copy we just inserted) is the last use of the source
-    // value.  Live variable analysis conservatively handles this by
-    // saying that the value is live until the end of the block the PHI
-    // entry lives in.  If the value really is dead at the PHI copy, there
-    // will be no successor blocks which have the value live-in.
-    //
-    // Check to see if the copy is the last use, and if so, update the
-    // live variables information so that it knows the copy source
-    // instruction kills the incoming value.
-    //
-    LiveVariables::VarInfo &InRegVI = LV->getVarInfo(SrcReg);
-    InRegVI.UsedBlocks[opBlock.getNumber()] = true;
-
-    // Loop over all of the successors of the basic block, checking to see
-    // if the value is either live in the block, or if it is killed in the
-    // block.  Also check to see if this register is in use by another PHI
-    // node which has not yet been eliminated.  If so, it will be killed
-    // at an appropriate point later.
-    //
 
-    // Is it used by any PHI instructions in this block?
-    bool ValueIsLive = VRegPHIUseCount[BBVRegPair(&opBlock, SrcReg)] != 0;
-
-    std::vector<MachineBasicBlock*> OpSuccBlocks;
-    
-    // Otherwise, scan successors, including the BB the PHI node lives in.
-    for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
-           E = opBlock.succ_end(); SI != E && !ValueIsLive; ++SI) {
-      MachineBasicBlock *SuccMBB = *SI;
-
-      // Is it alive in this successor?
-      unsigned SuccIdx = SuccMBB->getNumber();
-      if (SuccIdx < InRegVI.AliveBlocks.size() &&
-          InRegVI.AliveBlocks[SuccIdx]) {
-        ValueIsLive = true;
-        break;
-      }
+    // We want to be able to insert a kill of the register if this PHI (aka, the
+    // copy we just inserted) is the last use of the source value.  Live
+    // variable analysis conservatively handles this by saying that the value is
+    // live until the end of the block the PHI entry lives in.  If the value
+    // really is dead at the PHI copy, there will be no successor blocks which
+    // have the value live-in.
 
-      OpSuccBlocks.push_back(SuccMBB);
-    }
+    // Also check to see if this register is in use by another PHI node which
+    // has not yet been eliminated.  If so, it will be killed at an appropriate
+    // point later.
 
-    // Check to see if this value is live because there is a use in a successor
-    // that kills it.
-    if (!ValueIsLive) {
-      switch (OpSuccBlocks.size()) {
-      case 1: {
-        MachineBasicBlock *MBB = OpSuccBlocks[0];
-        for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
-          if (InRegVI.Kills[i]->getParent() == MBB) {
-            ValueIsLive = true;
-            break;
-          }
-        break;
-      }
-      case 2: {
-        MachineBasicBlock *MBB1 = OpSuccBlocks[0], *MBB2 = OpSuccBlocks[1];
-        for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
-          if (InRegVI.Kills[i]->getParent() == MBB1 || 
-              InRegVI.Kills[i]->getParent() == MBB2) {
-            ValueIsLive = true;
-            break;
-          }
-        break;        
-      }
-      default:
-        std::sort(OpSuccBlocks.begin(), OpSuccBlocks.end());
-        for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
-          if (std::binary_search(OpSuccBlocks.begin(), OpSuccBlocks.end(),
-                                 InRegVI.Kills[i]->getParent())) {
-            ValueIsLive = true;
-            break;
-          }
-      }
-    }        
+    // Is it used by any PHI instructions in this block?
+    bool ValueIsUsed = VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)];
 
-    // Okay, if we now know that the value is not live out of the block,
-    // we can add a kill marker in this block saying that it kills the incoming
-    // value!
-    if (!ValueIsLive) {
+    // Okay, if we now know that the value is not live out of the block, we can
+    // add a kill marker in this block saying that it kills the incoming value!
+    if (!ValueIsUsed && !LV->isLiveOut(SrcReg, opBlock)) {
       // In our final twist, we have to decide which instruction kills the
-      // register.  In most cases this is the copy, however, the first 
+      // register.  In most cases this is the copy, however, the first
       // terminator instruction at the end of the block may also use the value.
       // In this case, we should mark *it* as being the killing block, not the
       // copy.
-      MachineBasicBlock::iterator KillInst = prior(InsertPos);
+      MachineBasicBlock::iterator KillInst;
       MachineBasicBlock::iterator Term = opBlock.getFirstTerminator();
-      if (Term != opBlock.end()) {
-        if (Term->readsRegister(SrcReg))
-          KillInst = Term;
-      
+      if (Term != opBlock.end() && Term->readsRegister(SrcReg)) {
+        KillInst = Term;
+
         // Check that no other terminators use values.
 #ifndef NDEBUG
-        for (MachineBasicBlock::iterator TI = next(Term); TI != opBlock.end();
-             ++TI) {
+        for (MachineBasicBlock::iterator TI = llvm::next(Term);
+             TI != opBlock.end(); ++TI) {
+          if (TI->isDebugValue())
+            continue;
           assert(!TI->readsRegister(SrcReg) &&
                  "Terminator instructions cannot use virtual registers unless"
                  "they are the first terminator in a block!");
         }
 #endif
+      } else if (reusedIncoming || !IncomingReg) {
+        // We may have to rewind a bit if we didn't insert a copy this time.
+        KillInst = Term;
+        while (KillInst != opBlock.begin()) {
+          --KillInst;
+          if (KillInst->isDebugValue())
+            continue;
+          if (KillInst->readsRegister(SrcReg))
+            break;
+        }
+      } else {
+        // We just inserted this copy.
+        KillInst = prior(InsertPos);
       }
-      
+      assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
+
       // Finally, mark it killed.
       LV->addVirtualRegisterKilled(SrcReg, KillInst);
 
       // This vreg no longer lives all of the way through opBlock.
       unsigned opBlockNum = opBlock.getNumber();
-      if (opBlockNum < InRegVI.AliveBlocks.size())
-        InRegVI.AliveBlocks[opBlockNum] = false;
+      LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
     }
   }
-    
-  // Really delete the PHI instruction now!
-  delete MPhi;
-  ++NumAtomic;
+
+  // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
+  if (reusedIncoming || !IncomingReg)
+    MF.DeleteMachineInstr(MPhi);
 }
 
 /// analyzePHINodes - Gather information about the PHI nodes in here. In
@@ -358,12 +390,46 @@ void PNE::LowerAtomicPHINode(MachineBasicBlock &MBB,
 /// used in a PHI node. We map that to the BB the vreg is coming from. This is
 /// used later to determine when the vreg is killed in the BB.
 ///
-void PNE::analyzePHINodes(const MachineFunction& Fn) {
-  for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
+void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
+  for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
        I != E; ++I)
     for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
-         BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI)
+         BBI != BBE && BBI->isPHI(); ++BBI)
       for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
-        ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i + 1).getMBB(),
+        ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i+1).getMBB()->getNumber(),
                                      BBI->getOperand(i).getReg())];
 }
+
+bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
+                                   MachineBasicBlock &MBB,
+                                   LiveVariables &LV,
+                                   MachineLoopInfo *MLI) {
+  if (MBB.empty() || !MBB.front().isPHI() || MBB.isLandingPad())
+    return false;   // Quick exit for basic blocks without PHIs.
+
+  bool Changed = false;
+  for (MachineBasicBlock::const_iterator BBI = MBB.begin(), BBE = MBB.end();
+       BBI != BBE && BBI->isPHI(); ++BBI) {
+    for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
+      unsigned Reg = BBI->getOperand(i).getReg();
+      MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
+      // We break edges when registers are live out from the predecessor block
+      // (not considering PHI nodes). If the register is live in to this block
+      // anyway, we would gain nothing from splitting.
+      // Avoid splitting backedges of loops. It would introduce small
+      // out-of-line blocks into the loop which is very bad for code placement.
+      if (PreMBB != &MBB &&
+          !LV.isLiveIn(Reg, MBB) && LV.isLiveOut(Reg, *PreMBB)) {
+        if (!MLI ||
+            !(MLI->getLoopFor(PreMBB) == MLI->getLoopFor(&MBB) &&
+              MLI->isLoopHeader(&MBB))) {
+          if (PreMBB->SplitCriticalEdge(&MBB, this)) {
+            Changed = true;
+            ++NumCriticalEdgesSplit;
+          }
+        }
+      }
+    }
+  }
+  return Changed;
+}