ReleaseNotes: drop in-progress warning and svn checkout note
[oota-llvm.git] / lib / CodeGen / MachineScheduler.cpp
index 847bf1e76e3f21ec9ff45ace2cacb7f3755628fb..bcee15c7c75f76be2e8c368715283fae518e0a2d 100644 (file)
 //
 //===----------------------------------------------------------------------===//
 
-#define DEBUG_TYPE "misched"
-
-#include "llvm/CodeGen/LiveIntervalAnalysis.h"
 #include "llvm/CodeGen/MachineScheduler.h"
+#include "llvm/ADT/PriorityQueue.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
 #include "llvm/CodeGen/Passes.h"
 #include "llvm/CodeGen/RegisterClassInfo.h"
-#include "llvm/CodeGen/RegisterPressure.h"
-#include "llvm/CodeGen/ScheduleDAGInstrs.h"
+#include "llvm/CodeGen/ScheduleDFS.h"
 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
-#include "llvm/Target/TargetInstrInfo.h"
-#include "llvm/MC/MCInstrItineraries.h"
-#include "llvm/Analysis/AliasAnalysis.h"
 #include "llvm/Support/CommandLine.h"
 #include "llvm/Support/Debug.h"
 #include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/GraphWriter.h"
 #include "llvm/Support/raw_ostream.h"
-#include "llvm/ADT/OwningPtr.h"
-#include "llvm/ADT/PriorityQueue.h"
-
+#include "llvm/Target/TargetInstrInfo.h"
 #include <queue>
 
 using namespace llvm;
 
-static cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
-                                  cl::desc("Force top-down list scheduling"));
-static cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
-                                  cl::desc("Force bottom-up list scheduling"));
+#define DEBUG_TYPE "misched"
+
+namespace llvm {
+cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
+                           cl::desc("Force top-down list scheduling"));
+cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
+                            cl::desc("Force bottom-up list scheduling"));
+cl::opt<bool>
+DumpCriticalPathLength("misched-dcpl", cl::Hidden,
+                       cl::desc("Print critical path length to stdout"));
+}
 
 #ifndef NDEBUG
 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
   cl::desc("Pop up a window to show MISched dags after they are processed"));
 
+/// In some situations a few uninteresting nodes depend on nearly all other
+/// nodes in the graph, provide a cutoff to hide them.
+static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden,
+  cl::desc("Hide nodes with more predecessor/successor than cutoff"));
+
 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
   cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
+
+static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden,
+  cl::desc("Only schedule this function"));
+static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
+  cl::desc("Only schedule this MBB#"));
 #else
 static bool ViewMISchedDAGs = false;
 #endif // NDEBUG
 
+static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
+  cl::desc("Enable register pressure scheduling."), cl::init(true));
+
+static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
+  cl::desc("Enable cyclic critical path analysis."), cl::init(true));
+
+static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden,
+  cl::desc("Enable load clustering."), cl::init(true));
+
+// Experimental heuristics
+static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden,
+  cl::desc("Enable scheduling for macro fusion."), cl::init(true));
+
+static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden,
+  cl::desc("Verify machine instrs before and after machine scheduling"));
+
+// DAG subtrees must have at least this many nodes.
+static const unsigned MinSubtreeSize = 8;
+
+// Pin the vtables to this file.
+void MachineSchedStrategy::anchor() {}
+void ScheduleDAGMutation::anchor() {}
+
 //===----------------------------------------------------------------------===//
 // Machine Instruction Scheduling Pass and Registry
 //===----------------------------------------------------------------------===//
 
 MachineSchedContext::MachineSchedContext():
-    MF(0), MLI(0), MDT(0), PassConfig(0), AA(0), LIS(0) {
+    MF(nullptr), MLI(nullptr), MDT(nullptr), PassConfig(nullptr), AA(nullptr), LIS(nullptr) {
   RegClassInfo = new RegisterClassInfo();
 }
 
@@ -64,21 +102,46 @@ MachineSchedContext::~MachineSchedContext() {
 }
 
 namespace {
+/// Base class for a machine scheduler class that can run at any point.
+class MachineSchedulerBase : public MachineSchedContext,
+                             public MachineFunctionPass {
+public:
+  MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}
+
+  void print(raw_ostream &O, const Module* = nullptr) const override;
+
+protected:
+  void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags);
+};
+
 /// MachineScheduler runs after coalescing and before register allocation.
-class MachineScheduler : public MachineSchedContext,
-                         public MachineFunctionPass {
+class MachineScheduler : public MachineSchedulerBase {
 public:
   MachineScheduler();
 
-  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
+  void getAnalysisUsage(AnalysisUsage &AU) const override;
+
+  bool runOnMachineFunction(MachineFunction&) override;
+
+  static char ID; // Class identification, replacement for typeinfo
+
+protected:
+  ScheduleDAGInstrs *createMachineScheduler();
+};
 
-  virtual void releaseMemory() {}
+/// PostMachineScheduler runs after shortly before code emission.
+class PostMachineScheduler : public MachineSchedulerBase {
+public:
+  PostMachineScheduler();
 
-  virtual bool runOnMachineFunction(MachineFunction&);
+  void getAnalysisUsage(AnalysisUsage &AU) const override;
 
-  virtual void print(raw_ostream &O, const Module* = 0) const;
+  bool runOnMachineFunction(MachineFunction&) override;
 
   static char ID; // Class identification, replacement for typeinfo
+
+protected:
+  ScheduleDAGInstrs *createPostMachineScheduler();
 };
 } // namespace
 
@@ -86,16 +149,16 @@ char MachineScheduler::ID = 0;
 
 char &llvm::MachineSchedulerID = MachineScheduler::ID;
 
-INITIALIZE_PASS_BEGIN(MachineScheduler, "misched",
+INITIALIZE_PASS_BEGIN(MachineScheduler, "machine-scheduler",
                       "Machine Instruction Scheduler", false, false)
-INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
+INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
-INITIALIZE_PASS_END(MachineScheduler, "misched",
+INITIALIZE_PASS_END(MachineScheduler, "machine-scheduler",
                     "Machine Instruction Scheduler", false, false)
 
 MachineScheduler::MachineScheduler()
-: MachineFunctionPass(ID) {
+: MachineSchedulerBase(ID) {
   initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
 }
 
@@ -103,7 +166,7 @@ void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
   AU.setPreservesCFG();
   AU.addRequiredID(MachineDominatorsID);
   AU.addRequired<MachineLoopInfo>();
-  AU.addRequired<AliasAnalysis>();
+  AU.addRequired<AAResultsWrapperPass>();
   AU.addRequired<TargetPassConfig>();
   AU.addRequired<SlotIndexes>();
   AU.addPreserved<SlotIndexes>();
@@ -112,12 +175,32 @@ void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
   MachineFunctionPass::getAnalysisUsage(AU);
 }
 
+char PostMachineScheduler::ID = 0;
+
+char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;
+
+INITIALIZE_PASS(PostMachineScheduler, "postmisched",
+                "PostRA Machine Instruction Scheduler", false, false)
+
+PostMachineScheduler::PostMachineScheduler()
+: MachineSchedulerBase(ID) {
+  initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry());
+}
+
+void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
+  AU.setPreservesCFG();
+  AU.addRequiredID(MachineDominatorsID);
+  AU.addRequired<MachineLoopInfo>();
+  AU.addRequired<TargetPassConfig>();
+  MachineFunctionPass::getAnalysisUsage(AU);
+}
+
 MachinePassRegistry MachineSchedRegistry::Registry;
 
 /// A dummy default scheduler factory indicates whether the scheduler
 /// is overridden on the command line.
 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
-  return 0;
+  return nullptr;
 }
 
 /// MachineSchedOpt allows command line selection of the scheduler.
@@ -131,14 +214,20 @@ static MachineSchedRegistry
 DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
                      useDefaultMachineSched);
 
+static cl::opt<bool> EnableMachineSched(
+    "enable-misched",
+    cl::desc("Enable the machine instruction scheduling pass."), cl::init(true),
+    cl::Hidden);
+
 /// Forward declare the standard machine scheduler. This will be used as the
 /// default scheduler if the target does not set a default.
-static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C);
-
+static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C);
+static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C);
 
 /// Decrement this iterator until reaching the top or a non-debug instr.
-static MachineBasicBlock::iterator
-priorNonDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator Beg) {
+static MachineBasicBlock::const_iterator
+priorNonDebug(MachineBasicBlock::const_iterator I,
+              MachineBasicBlock::const_iterator Beg) {
   assert(I != Beg && "reached the top of the region, cannot decrement");
   while (--I != Beg) {
     if (!I->isDebugValue())
@@ -147,10 +236,19 @@ priorNonDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator Beg) {
   return I;
 }
 
+/// Non-const version.
+static MachineBasicBlock::iterator
+priorNonDebug(MachineBasicBlock::iterator I,
+              MachineBasicBlock::const_iterator Beg) {
+  return const_cast<MachineInstr*>(
+    &*priorNonDebug(MachineBasicBlock::const_iterator(I), Beg));
+}
+
 /// If this iterator is a debug value, increment until reaching the End or a
 /// non-debug instruction.
-static MachineBasicBlock::iterator
-nextIfDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator End) {
+static MachineBasicBlock::const_iterator
+nextIfDebug(MachineBasicBlock::const_iterator I,
+            MachineBasicBlock::const_iterator End) {
   for(; I != End; ++I) {
     if (!I->isDebugValue())
       break;
@@ -158,6 +256,47 @@ nextIfDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator End) {
   return I;
 }
 
+/// Non-const version.
+static MachineBasicBlock::iterator
+nextIfDebug(MachineBasicBlock::iterator I,
+            MachineBasicBlock::const_iterator End) {
+  // Cast the return value to nonconst MachineInstr, then cast to an
+  // instr_iterator, which does not check for null, finally return a
+  // bundle_iterator.
+  return MachineBasicBlock::instr_iterator(
+    const_cast<MachineInstr*>(
+      &*nextIfDebug(MachineBasicBlock::const_iterator(I), End)));
+}
+
+/// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
+ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
+  // Select the scheduler, or set the default.
+  MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
+  if (Ctor != useDefaultMachineSched)
+    return Ctor(this);
+
+  // Get the default scheduler set by the target for this function.
+  ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
+  if (Scheduler)
+    return Scheduler;
+
+  // Default to GenericScheduler.
+  return createGenericSchedLive(this);
+}
+
+/// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
+/// the caller. We don't have a command line option to override the postRA
+/// scheduler. The Target must configure it.
+ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
+  // Get the postRA scheduler set by the target for this function.
+  ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
+  if (Scheduler)
+    return Scheduler;
+
+  // Default to GenericScheduler.
+  return createGenericSchedPostRA(this);
+}
+
 /// Top-level MachineScheduler pass driver.
 ///
 /// Visit blocks in function order. Divide each block into scheduling regions
@@ -175,32 +314,88 @@ nextIfDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator End) {
 /// design would be to split blocks at scheduling boundaries, but LLVM has a
 /// general bias against block splitting purely for implementation simplicity.
 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
-  DEBUG(dbgs() << "Before MISsched:\n"; mf.print(dbgs()));
+  if (EnableMachineSched.getNumOccurrences()) {
+    if (!EnableMachineSched)
+      return false;
+  } else if (!mf.getSubtarget().enableMachineScheduler())
+    return false;
+
+  DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs()));
 
   // Initialize the context of the pass.
   MF = &mf;
   MLI = &getAnalysis<MachineLoopInfo>();
   MDT = &getAnalysis<MachineDominatorTree>();
   PassConfig = &getAnalysis<TargetPassConfig>();
-  AA = &getAnalysis<AliasAnalysis>();
+  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
 
   LIS = &getAnalysis<LiveIntervals>();
-  const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
 
+  if (VerifyScheduling) {
+    DEBUG(LIS->dump());
+    MF->verify(this, "Before machine scheduling.");
+  }
   RegClassInfo->runOnMachineFunction(*MF);
 
-  // Select the scheduler, or set the default.
-  MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
-  if (Ctor == useDefaultMachineSched) {
-    // Get the default scheduler set by the target.
-    Ctor = MachineSchedRegistry::getDefault();
-    if (!Ctor) {
-      Ctor = createConvergingSched;
-      MachineSchedRegistry::setDefault(Ctor);
-    }
+  // Instantiate the selected scheduler for this target, function, and
+  // optimization level.
+  std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
+  scheduleRegions(*Scheduler, false);
+
+  DEBUG(LIS->dump());
+  if (VerifyScheduling)
+    MF->verify(this, "After machine scheduling.");
+  return true;
+}
+
+bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
+  if (skipOptnoneFunction(*mf.getFunction()))
+    return false;
+
+  if (!mf.getSubtarget().enablePostRAScheduler()) {
+    DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");
+    return false;
   }
-  // Instantiate the selected scheduler.
-  OwningPtr<ScheduleDAGInstrs> Scheduler(Ctor(this));
+  DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));
+
+  // Initialize the context of the pass.
+  MF = &mf;
+  PassConfig = &getAnalysis<TargetPassConfig>();
+
+  if (VerifyScheduling)
+    MF->verify(this, "Before post machine scheduling.");
+
+  // Instantiate the selected scheduler for this target, function, and
+  // optimization level.
+  std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
+  scheduleRegions(*Scheduler, true);
+
+  if (VerifyScheduling)
+    MF->verify(this, "After post machine scheduling.");
+  return true;
+}
+
+/// Return true of the given instruction should not be included in a scheduling
+/// region.
+///
+/// MachineScheduler does not currently support scheduling across calls. To
+/// handle calls, the DAG builder needs to be modified to create register
+/// anti/output dependencies on the registers clobbered by the call's regmask
+/// operand. In PreRA scheduling, the stack pointer adjustment already prevents
+/// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
+/// the boundary, but there would be no benefit to postRA scheduling across
+/// calls this late anyway.
+static bool isSchedBoundary(MachineBasicBlock::iterator MI,
+                            MachineBasicBlock *MBB,
+                            MachineFunction *MF,
+                            const TargetInstrInfo *TII) {
+  return MI->isCall() || TII->isSchedulingBoundary(MI, MBB, *MF);
+}
+
+/// Main driver for both MachineScheduler and PostMachineScheduler.
+void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler,
+                                           bool FixKillFlags) {
+  const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
 
   // Visit all machine basic blocks.
   //
@@ -209,10 +404,18 @@ bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
   for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
        MBB != MBBEnd; ++MBB) {
 
-    Scheduler->startBlock(MBB);
+    Scheduler.startBlock(&*MBB);
+
+#ifndef NDEBUG
+    if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
+      continue;
+    if (SchedOnlyBlock.getNumOccurrences()
+        && (int)SchedOnlyBlock != MBB->getNumber())
+      continue;
+#endif
 
     // Break the block into scheduling regions [I, RegionEnd), and schedule each
-    // region as soon as it is discovered. RegionEnd points the the scheduling
+    // region as soon as it is discovered. RegionEnd points the scheduling
     // boundary at the bottom of the region. The DAG does not include RegionEnd,
     // but the region does (i.e. the next RegionEnd is above the previous
     // RegionBegin). If the current block has no terminator then RegionEnd ==
@@ -221,215 +424,116 @@ bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
     // The Scheduler may insert instructions during either schedule() or
     // exitRegion(), even for empty regions. So the local iterators 'I' and
     // 'RegionEnd' are invalid across these calls.
-    unsigned RemainingCount = MBB->size();
+    //
+    // MBB::size() uses instr_iterator to count. Here we need a bundle to count
+    // as a single instruction.
+    unsigned RemainingInstrs = std::distance(MBB->begin(), MBB->end());
     for(MachineBasicBlock::iterator RegionEnd = MBB->end();
-        RegionEnd != MBB->begin(); RegionEnd = Scheduler->begin()) {
+        RegionEnd != MBB->begin(); RegionEnd = Scheduler.begin()) {
 
       // Avoid decrementing RegionEnd for blocks with no terminator.
-      if (RegionEnd != MBB->end()
-          || TII->isSchedulingBoundary(llvm::prior(RegionEnd), MBB, *MF)) {
+      if (RegionEnd != MBB->end() ||
+          isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) {
         --RegionEnd;
         // Count the boundary instruction.
-        --RemainingCount;
+        --RemainingInstrs;
       }
 
       // The next region starts above the previous region. Look backward in the
       // instruction stream until we find the nearest boundary.
+      unsigned NumRegionInstrs = 0;
       MachineBasicBlock::iterator I = RegionEnd;
-      for(;I != MBB->begin(); --I, --RemainingCount) {
-        if (TII->isSchedulingBoundary(llvm::prior(I), MBB, *MF))
+      for(;I != MBB->begin(); --I, --RemainingInstrs) {
+        if (isSchedBoundary(&*std::prev(I), &*MBB, MF, TII))
           break;
+        if (!I->isDebugValue())
+          ++NumRegionInstrs;
       }
       // Notify the scheduler of the region, even if we may skip scheduling
       // it. Perhaps it still needs to be bundled.
-      Scheduler->enterRegion(MBB, I, RegionEnd, RemainingCount);
+      Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs);
 
       // Skip empty scheduling regions (0 or 1 schedulable instructions).
-      if (I == RegionEnd || I == llvm::prior(RegionEnd)) {
+      if (I == RegionEnd || I == std::prev(RegionEnd)) {
         // Close the current region. Bundle the terminator if needed.
         // This invalidates 'RegionEnd' and 'I'.
-        Scheduler->exitRegion();
+        Scheduler.exitRegion();
         continue;
       }
       DEBUG(dbgs() << "********** MI Scheduling **********\n");
-      DEBUG(dbgs() << MF->getFunction()->getName()
-            << ":BB#" << MBB->getNumber() << "\n  From: " << *I << "    To: ";
+      DEBUG(dbgs() << MF->getName()
+            << ":BB#" << MBB->getNumber() << " " << MBB->getName()
+            << "\n  From: " << *I << "    To: ";
             if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
             else dbgs() << "End";
-            dbgs() << " Remaining: " << RemainingCount << "\n");
+            dbgs() << " RegionInstrs: " << NumRegionInstrs
+            << " Remaining: " << RemainingInstrs << "\n");
+      if (DumpCriticalPathLength) {
+        errs() << MF->getName();
+        errs() << ":BB# " << MBB->getNumber();
+        errs() << " " << MBB->getName() << " \n";
+      }
 
       // Schedule a region: possibly reorder instructions.
       // This invalidates 'RegionEnd' and 'I'.
-      Scheduler->schedule();
+      Scheduler.schedule();
 
       // Close the current region.
-      Scheduler->exitRegion();
+      Scheduler.exitRegion();
 
       // Scheduling has invalidated the current iterator 'I'. Ask the
       // scheduler for the top of it's scheduled region.
-      RegionEnd = Scheduler->begin();
+      RegionEnd = Scheduler.begin();
     }
-    assert(RemainingCount == 0 && "Instruction count mismatch!");
-    Scheduler->finishBlock();
+    assert(RemainingInstrs == 0 && "Instruction count mismatch!");
+    Scheduler.finishBlock();
+    // FIXME: Ideally, no further passes should rely on kill flags. However,
+    // thumb2 size reduction is currently an exception, so the PostMIScheduler
+    // needs to do this.
+    if (FixKillFlags)
+        Scheduler.fixupKills(&*MBB);
   }
-  Scheduler->finalizeSchedule();
-  DEBUG(LIS->print(dbgs()));
-  return true;
+  Scheduler.finalizeSchedule();
 }
 
-void MachineScheduler::print(raw_ostream &O, const Module* m) const {
+void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
   // unimplemented
 }
 
-//===----------------------------------------------------------------------===//
-// MachineSchedStrategy - Interface to a machine scheduling algorithm.
-//===----------------------------------------------------------------------===//
-
-namespace {
-class ScheduleDAGMI;
-
-/// MachineSchedStrategy - Interface used by ScheduleDAGMI to drive the selected
-/// scheduling algorithm.
-///
-/// If this works well and targets wish to reuse ScheduleDAGMI, we may expose it
-/// in ScheduleDAGInstrs.h
-class MachineSchedStrategy {
-public:
-  virtual ~MachineSchedStrategy() {}
-
-  /// Initialize the strategy after building the DAG for a new region.
-  virtual void initialize(ScheduleDAGMI *DAG) = 0;
-
-  /// Pick the next node to schedule, or return NULL. Set IsTopNode to true to
-  /// schedule the node at the top of the unscheduled region. Otherwise it will
-  /// be scheduled at the bottom.
-  virtual SUnit *pickNode(bool &IsTopNode) = 0;
-
-  /// Notify MachineSchedStrategy that ScheduleDAGMI has scheduled a node.
-  virtual void schedNode(SUnit *SU, bool IsTopNode) = 0;
-
-  /// When all predecessor dependencies have been resolved, free this node for
-  /// top-down scheduling.
-  virtual void releaseTopNode(SUnit *SU) = 0;
-  /// When all successor dependencies have been resolved, free this node for
-  /// bottom-up scheduling.
-  virtual void releaseBottomNode(SUnit *SU) = 0;
-};
-} // namespace
+LLVM_DUMP_METHOD
+void ReadyQueue::dump() {
+  dbgs() << "Queue " << Name << ": ";
+  for (unsigned i = 0, e = Queue.size(); i < e; ++i)
+    dbgs() << Queue[i]->NodeNum << " ";
+  dbgs() << "\n";
+}
 
 //===----------------------------------------------------------------------===//
-// ScheduleDAGMI - Base class for MachineInstr scheduling with LiveIntervals
-// preservation.
-//===----------------------------------------------------------------------===//
-
-namespace {
-/// ScheduleDAGMI is an implementation of ScheduleDAGInstrs that schedules
-/// machine instructions while updating LiveIntervals.
-class ScheduleDAGMI : public ScheduleDAGInstrs {
-  AliasAnalysis *AA;
-  RegisterClassInfo *RegClassInfo;
-  MachineSchedStrategy *SchedImpl;
-
-  MachineBasicBlock::iterator LiveRegionEnd;
-
-  /// Register pressure in this region computed by buildSchedGraph.
-  IntervalPressure RegPressure;
-  RegPressureTracker RPTracker;
-
-  /// List of pressure sets that exceed the target's pressure limit before
-  /// scheduling, listed in increasing set ID order. Each pressure set is paired
-  /// with its max pressure in the currently scheduled regions.
-  std::vector<PressureElement> RegionCriticalPSets;
-
-  /// The top of the unscheduled zone.
-  MachineBasicBlock::iterator CurrentTop;
-  IntervalPressure TopPressure;
-  RegPressureTracker TopRPTracker;
-
-  /// The bottom of the unscheduled zone.
-  MachineBasicBlock::iterator CurrentBottom;
-  IntervalPressure BotPressure;
-  RegPressureTracker BotRPTracker;
-
-#ifndef NDEBUG
-  /// The number of instructions scheduled so far. Used to cut off the
-  /// scheduler at the point determined by misched-cutoff.
-  unsigned NumInstrsScheduled;
-#endif
-public:
-  ScheduleDAGMI(MachineSchedContext *C, MachineSchedStrategy *S):
-    ScheduleDAGInstrs(*C->MF, *C->MLI, *C->MDT, /*IsPostRA=*/false, C->LIS),
-    AA(C->AA), RegClassInfo(C->RegClassInfo), SchedImpl(S),
-    RPTracker(RegPressure), CurrentTop(), TopRPTracker(TopPressure),
-    CurrentBottom(), BotRPTracker(BotPressure) {
-#ifndef NDEBUG
-    NumInstrsScheduled = 0;
-#endif
-  }
+// ScheduleDAGMI - Basic machine instruction scheduling. This is
+// independent of PreRA/PostRA scheduling and involves no extra book-keeping for
+// virtual registers.
+// ===----------------------------------------------------------------------===/
 
-  ~ScheduleDAGMI() {
-    delete SchedImpl;
-  }
-
-  MachineBasicBlock::iterator top() const { return CurrentTop; }
-  MachineBasicBlock::iterator bottom() const { return CurrentBottom; }
-
-  /// Implement the ScheduleDAGInstrs interface for handling the next scheduling
-  /// region. This covers all instructions in a block, while schedule() may only
-  /// cover a subset.
-  void enterRegion(MachineBasicBlock *bb,
-                   MachineBasicBlock::iterator begin,
-                   MachineBasicBlock::iterator end,
-                   unsigned endcount);
-
-  /// Implement ScheduleDAGInstrs interface for scheduling a sequence of
-  /// reorderable instructions.
-  void schedule();
-
-  /// Get current register pressure for the top scheduled instructions.
-  const IntervalPressure &getTopPressure() const { return TopPressure; }
-  const RegPressureTracker &getTopRPTracker() const { return TopRPTracker; }
-
-  /// Get current register pressure for the bottom scheduled instructions.
-  const IntervalPressure &getBotPressure() const { return BotPressure; }
-  const RegPressureTracker &getBotRPTracker() const { return BotRPTracker; }
-
-  /// Get register pressure for the entire scheduling region before scheduling.
-  const IntervalPressure &getRegPressure() const { return RegPressure; }
-
-  const std::vector<PressureElement> &getRegionCriticalPSets() const {
-    return RegionCriticalPSets;
-  }
+// Provide a vtable anchor.
+ScheduleDAGMI::~ScheduleDAGMI() {
+}
 
-  /// getIssueWidth - Return the max instructions per scheduling group.
-  unsigned getIssueWidth() const {
-    return InstrItins ? InstrItins->Props.IssueWidth : 1;
-  }
+bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
+  return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
+}
 
-  /// getNumMicroOps - Return the number of issue slots required for this MI.
-  unsigned getNumMicroOps(MachineInstr *MI) const {
-    if (!InstrItins) return 1;
-    int UOps = InstrItins->getNumMicroOps(MI->getDesc().getSchedClass());
-    return (UOps >= 0) ? UOps : TII->getNumMicroOps(InstrItins, MI);
+bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) {
+  if (SuccSU != &ExitSU) {
+    // Do not use WillCreateCycle, it assumes SD scheduling.
+    // If Pred is reachable from Succ, then the edge creates a cycle.
+    if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
+      return false;
+    Topo.AddPred(SuccSU, PredDep.getSUnit());
   }
-
-protected:
-  void initRegPressure();
-  void updateScheduledPressure(std::vector<unsigned> NewMaxPressure);
-
-  void moveInstruction(MachineInstr *MI, MachineBasicBlock::iterator InsertPos);
-  bool checkSchedLimit();
-
-  void releaseRoots();
-
-  void releaseSucc(SUnit *SU, SDep *SuccEdge);
-  void releaseSuccessors(SUnit *SU);
-  void releasePred(SUnit *SU, SDep *PredEdge);
-  void releasePredecessors(SUnit *SU);
-
-  void placeDebugValues();
-};
-} // namespace
+  SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
+  // Return true regardless of whether a new edge needed to be inserted.
+  return true;
+}
 
 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
 /// NumPredsLeft reaches zero, release the successor node.
@@ -438,14 +542,25 @@ protected:
 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
   SUnit *SuccSU = SuccEdge->getSUnit();
 
+  if (SuccEdge->isWeak()) {
+    --SuccSU->WeakPredsLeft;
+    if (SuccEdge->isCluster())
+      NextClusterSucc = SuccSU;
+    return;
+  }
 #ifndef NDEBUG
   if (SuccSU->NumPredsLeft == 0) {
     dbgs() << "*** Scheduling failed! ***\n";
     SuccSU->dump(this);
     dbgs() << " has been released too many times!\n";
-    llvm_unreachable(0);
+    llvm_unreachable(nullptr);
   }
 #endif
+  // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However,
+  // CurrCycle may have advanced since then.
+  if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency())
+    SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency();
+
   --SuccSU->NumPredsLeft;
   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
     SchedImpl->releaseTopNode(SuccSU);
@@ -466,14 +581,25 @@ void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
   SUnit *PredSU = PredEdge->getSUnit();
 
+  if (PredEdge->isWeak()) {
+    --PredSU->WeakSuccsLeft;
+    if (PredEdge->isCluster())
+      NextClusterPred = PredSU;
+    return;
+  }
 #ifndef NDEBUG
   if (PredSU->NumSuccsLeft == 0) {
     dbgs() << "*** Scheduling failed! ***\n";
     PredSU->dump(this);
     dbgs() << " has been released too many times!\n";
-    llvm_unreachable(0);
+    llvm_unreachable(nullptr);
   }
 #endif
+  // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However,
+  // CurrCycle may have advanced since then.
+  if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency())
+    PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency();
+
   --PredSU->NumSuccsLeft;
   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
     SchedImpl->releaseBottomNode(PredSU);
@@ -487,8 +613,24 @@ void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
   }
 }
 
-void ScheduleDAGMI::moveInstruction(MachineInstr *MI,
-                                    MachineBasicBlock::iterator InsertPos) {
+/// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
+/// crossing a scheduling boundary. [begin, end) includes all instructions in
+/// the region, including the boundary itself and single-instruction regions
+/// that don't get scheduled.
+void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
+                                     MachineBasicBlock::iterator begin,
+                                     MachineBasicBlock::iterator end,
+                                     unsigned regioninstrs)
+{
+  ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
+
+  SchedImpl->initPolicy(begin, end, regioninstrs);
+}
+
+/// This is normally called from the main scheduler loop but may also be invoked
+/// by the scheduling strategy to perform additional code motion.
+void ScheduleDAGMI::moveInstruction(
+  MachineInstr *MI, MachineBasicBlock::iterator InsertPos) {
   // Advance RegionBegin if the first instruction moves down.
   if (&*RegionBegin == MI)
     ++RegionBegin;
@@ -497,7 +639,8 @@ void ScheduleDAGMI::moveInstruction(MachineInstr *MI,
   BB->splice(InsertPos, BB, MI);
 
   // Update LiveIntervals
-  LIS->handleMove(MI);
+  if (LIS)
+    LIS->handleMove(MI, /*UpdateFlags=*/true);
 
   // Recede RegionBegin if an instruction moves above the first.
   if (RegionBegin == InsertPos)
@@ -515,183 +658,154 @@ bool ScheduleDAGMI::checkSchedLimit() {
   return true;
 }
 
-/// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
-/// crossing a scheduling boundary. [begin, end) includes all instructions in
-/// the region, including the boundary itself and single-instruction regions
-/// that don't get scheduled.
-void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
-                                MachineBasicBlock::iterator begin,
-                                MachineBasicBlock::iterator end,
-                                unsigned endcount)
-{
-  ScheduleDAGInstrs::enterRegion(bb, begin, end, endcount);
+/// Per-region scheduling driver, called back from
+/// MachineScheduler::runOnMachineFunction. This is a simplified driver that
+/// does not consider liveness or register pressure. It is useful for PostRA
+/// scheduling and potentially other custom schedulers.
+void ScheduleDAGMI::schedule() {
+  DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n");
+  DEBUG(SchedImpl->dumpPolicy());
 
-  // For convenience remember the end of the liveness region.
-  LiveRegionEnd =
-    (RegionEnd == bb->end()) ? RegionEnd : llvm::next(RegionEnd);
-}
+  // Build the DAG.
+  buildSchedGraph(AA);
 
-// Setup the register pressure trackers for the top scheduled top and bottom
-// scheduled regions.
-void ScheduleDAGMI::initRegPressure() {
-  TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin);
-  BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);
+  Topo.InitDAGTopologicalSorting();
 
-  // Close the RPTracker to finalize live ins.
-  RPTracker.closeRegion();
+  postprocessDAG();
 
-  DEBUG(RPTracker.getPressure().dump(TRI));
+  SmallVector<SUnit*, 8> TopRoots, BotRoots;
+  findRootsAndBiasEdges(TopRoots, BotRoots);
 
-  // Initialize the live ins and live outs.
-  TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
-  BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
+  // Initialize the strategy before modifying the DAG.
+  // This may initialize a DFSResult to be used for queue priority.
+  SchedImpl->initialize(this);
 
-  // Close one end of the tracker so we can call
-  // getMaxUpward/DownwardPressureDelta before advancing across any
-  // instructions. This converts currently live regs into live ins/outs.
-  TopRPTracker.closeTop();
-  BotRPTracker.closeBottom();
+  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
+          SUnits[su].dumpAll(this));
+  if (ViewMISchedDAGs) viewGraph();
 
-  // Account for liveness generated by the region boundary.
-  if (LiveRegionEnd != RegionEnd)
-    BotRPTracker.recede();
+  // Initialize ready queues now that the DAG and priority data are finalized.
+  initQueues(TopRoots, BotRoots);
 
-  assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom");
+  bool IsTopNode = false;
+  while (true) {
+    DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n");
+    SUnit *SU = SchedImpl->pickNode(IsTopNode);
+    if (!SU) break;
 
-  // Cache the list of excess pressure sets in this region. This will also track
-  // the max pressure in the scheduled code for these sets.
-  RegionCriticalPSets.clear();
-  std::vector<unsigned> RegionPressure = RPTracker.getPressure().MaxSetPressure;
-  for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
-    unsigned Limit = TRI->getRegPressureSetLimit(i);
-    if (RegionPressure[i] > Limit)
-      RegionCriticalPSets.push_back(PressureElement(i, 0));
+    assert(!SU->isScheduled && "Node already scheduled");
+    if (!checkSchedLimit())
+      break;
+
+    MachineInstr *MI = SU->getInstr();
+    if (IsTopNode) {
+      assert(SU->isTopReady() && "node still has unscheduled dependencies");
+      if (&*CurrentTop == MI)
+        CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
+      else
+        moveInstruction(MI, CurrentTop);
+    }
+    else {
+      assert(SU->isBottomReady() && "node still has unscheduled dependencies");
+      MachineBasicBlock::iterator priorII =
+        priorNonDebug(CurrentBottom, CurrentTop);
+      if (&*priorII == MI)
+        CurrentBottom = priorII;
+      else {
+        if (&*CurrentTop == MI)
+          CurrentTop = nextIfDebug(++CurrentTop, priorII);
+        moveInstruction(MI, CurrentBottom);
+        CurrentBottom = MI;
+      }
+    }
+    // Notify the scheduling strategy before updating the DAG.
+    // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues
+    // runs, it can then use the accurate ReadyCycle time to determine whether
+    // newly released nodes can move to the readyQ.
+    SchedImpl->schedNode(SU, IsTopNode);
+
+    updateQueues(SU, IsTopNode);
   }
-  DEBUG(dbgs() << "Excess PSets: ";
-        for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i)
-          dbgs() << TRI->getRegPressureSetName(
-            RegionCriticalPSets[i].PSetID) << " ";
-        dbgs() << "\n");
+  assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
+
+  placeDebugValues();
+
+  DEBUG({
+      unsigned BBNum = begin()->getParent()->getNumber();
+      dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
+      dumpSchedule();
+      dbgs() << '\n';
+    });
 }
 
-// FIXME: When the pressure tracker deals in pressure differences then we won't
-// iterate over all RegionCriticalPSets[i].
-void ScheduleDAGMI::
-updateScheduledPressure(std::vector<unsigned> NewMaxPressure) {
-  for (unsigned i = 0, e = RegionCriticalPSets.size(); i < e; ++i) {
-    unsigned ID = RegionCriticalPSets[i].PSetID;
-    int &MaxUnits = RegionCriticalPSets[i].UnitIncrease;
-    if ((int)NewMaxPressure[ID] > MaxUnits)
-      MaxUnits = NewMaxPressure[ID];
+/// Apply each ScheduleDAGMutation step in order.
+void ScheduleDAGMI::postprocessDAG() {
+  for (unsigned i = 0, e = Mutations.size(); i < e; ++i) {
+    Mutations[i]->apply(this);
   }
 }
 
-// Release all DAG roots for scheduling.
-void ScheduleDAGMI::releaseRoots() {
-  SmallVector<SUnit*, 16> BotRoots;
-
+void ScheduleDAGMI::
+findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
+                      SmallVectorImpl<SUnit*> &BotRoots) {
   for (std::vector<SUnit>::iterator
          I = SUnits.begin(), E = SUnits.end(); I != E; ++I) {
+    SUnit *SU = &(*I);
+    assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits");
+
+    // Order predecessors so DFSResult follows the critical path.
+    SU->biasCriticalPath();
+
     // A SUnit is ready to top schedule if it has no predecessors.
-    if (I->Preds.empty())
-      SchedImpl->releaseTopNode(&(*I));
+    if (!I->NumPredsLeft)
+      TopRoots.push_back(SU);
     // A SUnit is ready to bottom schedule if it has no successors.
-    if (I->Succs.empty())
-      BotRoots.push_back(&(*I));
+    if (!I->NumSuccsLeft)
+      BotRoots.push_back(SU);
+  }
+  ExitSU.biasCriticalPath();
+}
+
+/// Identify DAG roots and setup scheduler queues.
+void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
+                               ArrayRef<SUnit*> BotRoots) {
+  NextClusterSucc = nullptr;
+  NextClusterPred = nullptr;
+
+  // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
+  //
+  // Nodes with unreleased weak edges can still be roots.
+  // Release top roots in forward order.
+  for (SmallVectorImpl<SUnit*>::const_iterator
+         I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) {
+    SchedImpl->releaseTopNode(*I);
   }
   // Release bottom roots in reverse order so the higher priority nodes appear
   // first. This is more natural and slightly more efficient.
   for (SmallVectorImpl<SUnit*>::const_reverse_iterator
-         I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I)
+         I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
     SchedImpl->releaseBottomNode(*I);
-}
+  }
 
-/// schedule - Called back from MachineScheduler::runOnMachineFunction
-/// after setting up the current scheduling region. [RegionBegin, RegionEnd)
-/// only includes instructions that have DAG nodes, not scheduling boundaries.
-void ScheduleDAGMI::schedule() {
-  // Initialize the register pressure tracker used by buildSchedGraph.
-  RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);
+  releaseSuccessors(&EntrySU);
+  releasePredecessors(&ExitSU);
 
-  // Account for liveness generate by the region boundary.
-  if (LiveRegionEnd != RegionEnd)
-    RPTracker.recede();
-
-  // Build the DAG, and compute current register pressure.
-  buildSchedGraph(AA, &RPTracker);
-
-  // Initialize top/bottom trackers after computing region pressure.
-  initRegPressure();
-
-  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
-          SUnits[su].dumpAll(this));
-
-  if (ViewMISchedDAGs) viewGraph();
-
-  SchedImpl->initialize(this);
-
-  // Release edges from the special Entry node or to the special Exit node.
-  releaseSuccessors(&EntrySU);
-  releasePredecessors(&ExitSU);
-
-  // Release all DAG roots for scheduling.
-  releaseRoots();
+  SchedImpl->registerRoots();
 
+  // Advance past initial DebugValues.
   CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
   CurrentBottom = RegionEnd;
-  bool IsTopNode = false;
-  while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) {
-    if (!checkSchedLimit())
-      break;
-
-    // Move the instruction to its new location in the instruction stream.
-    MachineInstr *MI = SU->getInstr();
-
-    if (IsTopNode) {
-      assert(SU->isTopReady() && "node still has unscheduled dependencies");
-      if (&*CurrentTop == MI)
-        CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
-      else {
-        moveInstruction(MI, CurrentTop);
-        TopRPTracker.setPos(MI);
-      }
-
-      // Update top scheduled pressure.
-      TopRPTracker.advance();
-      assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
-      updateScheduledPressure(TopRPTracker.getPressure().MaxSetPressure);
-
-      // Release dependent instructions for scheduling.
-      releaseSuccessors(SU);
-    }
-    else {
-      assert(SU->isBottomReady() && "node still has unscheduled dependencies");
-      MachineBasicBlock::iterator priorII =
-        priorNonDebug(CurrentBottom, CurrentTop);
-      if (&*priorII == MI)
-        CurrentBottom = priorII;
-      else {
-        if (&*CurrentTop == MI) {
-          CurrentTop = nextIfDebug(++CurrentTop, priorII);
-          TopRPTracker.setPos(CurrentTop);
-        }
-        moveInstruction(MI, CurrentBottom);
-        CurrentBottom = MI;
-      }
-      // Update bottom scheduled pressure.
-      BotRPTracker.recede();
-      assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
-      updateScheduledPressure(BotRPTracker.getPressure().MaxSetPressure);
+}
 
-      // Release dependent instructions for scheduling.
-      releasePredecessors(SU);
-    }
-    SU->isScheduled = true;
-    SchedImpl->schedNode(SU, IsTopNode);
-  }
-  assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
+/// Update scheduler queues after scheduling an instruction.
+void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
+  // Release dependent instructions for scheduling.
+  if (IsTopNode)
+    releaseSuccessors(SU);
+  else
+    releasePredecessors(SU);
 
-  placeDebugValues();
+  SU->isScheduled = true;
 }
 
 /// Reinsert any remaining debug_values, just like the PostRA scheduler.
@@ -704,235 +818,938 @@ void ScheduleDAGMI::placeDebugValues() {
 
   for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
-    std::pair<MachineInstr *, MachineInstr *> P = *prior(DI);
+    std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
     MachineInstr *DbgValue = P.first;
     MachineBasicBlock::iterator OrigPrevMI = P.second;
+    if (&*RegionBegin == DbgValue)
+      ++RegionBegin;
     BB->splice(++OrigPrevMI, BB, DbgValue);
-    if (OrigPrevMI == llvm::prior(RegionEnd))
+    if (OrigPrevMI == std::prev(RegionEnd))
       RegionEnd = DbgValue;
   }
   DbgValues.clear();
-  FirstDbgValue = NULL;
+  FirstDbgValue = nullptr;
 }
 
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+void ScheduleDAGMI::dumpSchedule() const {
+  for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
+    if (SUnit *SU = getSUnit(&(*MI)))
+      SU->dump(this);
+    else
+      dbgs() << "Missing SUnit\n";
+  }
+}
+#endif
+
 //===----------------------------------------------------------------------===//
-// ConvergingScheduler - Implementation of the standard MachineSchedStrategy.
+// ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
+// preservation.
 //===----------------------------------------------------------------------===//
 
-namespace {
-/// ReadyQueue encapsulates vector of "ready" SUnits with basic convenience
-/// methods for pushing and removing nodes. ReadyQueue's are uniquely identified
-/// by an ID. SUnit::NodeQueueId is a mask of the ReadyQueues the SUnit is in.
-class ReadyQueue {
-  unsigned ID;
-  std::string Name;
-  std::vector<SUnit*> Queue;
+ScheduleDAGMILive::~ScheduleDAGMILive() {
+  delete DFSResult;
+}
 
-public:
-  ReadyQueue(unsigned id, const Twine &name): ID(id), Name(name.str()) {}
+/// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
+/// crossing a scheduling boundary. [begin, end) includes all instructions in
+/// the region, including the boundary itself and single-instruction regions
+/// that don't get scheduled.
+void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
+                                MachineBasicBlock::iterator begin,
+                                MachineBasicBlock::iterator end,
+                                unsigned regioninstrs)
+{
+  // ScheduleDAGMI initializes SchedImpl's per-region policy.
+  ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);
 
-  unsigned getID() const { return ID; }
+  // For convenience remember the end of the liveness region.
+  LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);
 
-  StringRef getName() const { return Name; }
+  SUPressureDiffs.clear();
 
-  // SU is in this queue if it's NodeQueueID is a superset of this ID.
-  bool isInQueue(SUnit *SU) const { return (SU->NodeQueueId & ID); }
+  ShouldTrackPressure = SchedImpl->shouldTrackPressure();
+}
 
-  bool empty() const { return Queue.empty(); }
+// Setup the register pressure trackers for the top scheduled top and bottom
+// scheduled regions.
+void ScheduleDAGMILive::initRegPressure() {
+  TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin);
+  BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);
 
-  unsigned size() const { return Queue.size(); }
+  // Close the RPTracker to finalize live ins.
+  RPTracker.closeRegion();
 
-  typedef std::vector<SUnit*>::iterator iterator;
+  DEBUG(RPTracker.dump());
 
-  iterator begin() { return Queue.begin(); }
+  // Initialize the live ins and live outs.
+  TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
+  BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
 
-  iterator end() { return Queue.end(); }
+  // Close one end of the tracker so we can call
+  // getMaxUpward/DownwardPressureDelta before advancing across any
+  // instructions. This converts currently live regs into live ins/outs.
+  TopRPTracker.closeTop();
+  BotRPTracker.closeBottom();
 
-  iterator find(SUnit *SU) {
-    return std::find(Queue.begin(), Queue.end(), SU);
+  BotRPTracker.initLiveThru(RPTracker);
+  if (!BotRPTracker.getLiveThru().empty()) {
+    TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
+    DEBUG(dbgs() << "Live Thru: ";
+          dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
+  };
+
+  // For each live out vreg reduce the pressure change associated with other
+  // uses of the same vreg below the live-out reaching def.
+  updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
+
+  // Account for liveness generated by the region boundary.
+  if (LiveRegionEnd != RegionEnd) {
+    SmallVector<unsigned, 8> LiveUses;
+    BotRPTracker.recede(&LiveUses);
+    updatePressureDiffs(LiveUses);
   }
 
-  void push(SUnit *SU) {
-    Queue.push_back(SU);
-    SU->NodeQueueId |= ID;
+  DEBUG(
+    dbgs() << "Top Pressure:\n";
+    dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
+    dbgs() << "Bottom Pressure:\n";
+    dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI);
+  );
+
+  assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom");
+
+  // Cache the list of excess pressure sets in this region. This will also track
+  // the max pressure in the scheduled code for these sets.
+  RegionCriticalPSets.clear();
+  const std::vector<unsigned> &RegionPressure =
+    RPTracker.getPressure().MaxSetPressure;
+  for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
+    unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
+    if (RegionPressure[i] > Limit) {
+      DEBUG(dbgs() << TRI->getRegPressureSetName(i)
+            << " Limit " << Limit
+            << " Actual " << RegionPressure[i] << "\n");
+      RegionCriticalPSets.push_back(PressureChange(i));
+    }
   }
+  DEBUG(dbgs() << "Excess PSets: ";
+        for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i)
+          dbgs() << TRI->getRegPressureSetName(
+            RegionCriticalPSets[i].getPSet()) << " ";
+        dbgs() << "\n");
+}
 
-  void remove(iterator I) {
-    (*I)->NodeQueueId &= ~ID;
-    *I = Queue.back();
-    Queue.pop_back();
+void ScheduleDAGMILive::
+updateScheduledPressure(const SUnit *SU,
+                        const std::vector<unsigned> &NewMaxPressure) {
+  const PressureDiff &PDiff = getPressureDiff(SU);
+  unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
+  for (PressureDiff::const_iterator I = PDiff.begin(), E = PDiff.end();
+       I != E; ++I) {
+    if (!I->isValid())
+      break;
+    unsigned ID = I->getPSet();
+    while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
+      ++CritIdx;
+    if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
+      if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
+          && NewMaxPressure[ID] <= INT16_MAX)
+        RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
+    }
+    unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
+    if (NewMaxPressure[ID] >= Limit - 2) {
+      DEBUG(dbgs() << "  " << TRI->getRegPressureSetName(ID) << ": "
+            << NewMaxPressure[ID]
+            << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") << Limit
+            << "(+ " << BotRPTracker.getLiveThru()[ID] << " livethru)\n");
+    }
   }
+}
+
+/// Update the PressureDiff array for liveness after scheduling this
+/// instruction.
+void ScheduleDAGMILive::updatePressureDiffs(ArrayRef<unsigned> LiveUses) {
+  for (unsigned LUIdx = 0, LUEnd = LiveUses.size(); LUIdx != LUEnd; ++LUIdx) {
+    /// FIXME: Currently assuming single-use physregs.
+    unsigned Reg = LiveUses[LUIdx];
+    DEBUG(dbgs() << "  LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n");
+    if (!TRI->isVirtualRegister(Reg))
+      continue;
 
-  void dump() {
-    dbgs() << Name << ": ";
-    for (unsigned i = 0, e = Queue.size(); i < e; ++i)
-      dbgs() << Queue[i]->NodeNum << " ";
-    dbgs() << "\n";
+    // This may be called before CurrentBottom has been initialized. However,
+    // BotRPTracker must have a valid position. We want the value live into the
+    // instruction or live out of the block, so ask for the previous
+    // instruction's live-out.
+    const LiveInterval &LI = LIS->getInterval(Reg);
+    VNInfo *VNI;
+    MachineBasicBlock::const_iterator I =
+      nextIfDebug(BotRPTracker.getPos(), BB->end());
+    if (I == BB->end())
+      VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
+    else {
+      LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(I));
+      VNI = LRQ.valueIn();
+    }
+    // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
+    assert(VNI && "No live value at use.");
+    for (const VReg2SUnit &V2SU
+         : make_range(VRegUses.find(Reg), VRegUses.end())) {
+      SUnit *SU = V2SU.SU;
+      // If this use comes before the reaching def, it cannot be a last use, so
+      // descrease its pressure change.
+      if (!SU->isScheduled && SU != &ExitSU) {
+        LiveQueryResult LRQ
+          = LI.Query(LIS->getInstructionIndex(SU->getInstr()));
+        if (LRQ.valueIn() == VNI) {
+          PressureDiff &PDiff = getPressureDiff(SU);
+          PDiff.addPressureChange(Reg, true, &MRI);
+          DEBUG(
+            dbgs() << "  UpdateRegP: SU(" << SU->NodeNum << ") "
+                   << *SU->getInstr();
+            dbgs() << "              to ";
+            PDiff.dump(*TRI);
+          );
+        }
+      }
+    }
   }
-};
+}
+
+/// schedule - Called back from MachineScheduler::runOnMachineFunction
+/// after setting up the current scheduling region. [RegionBegin, RegionEnd)
+/// only includes instructions that have DAG nodes, not scheduling boundaries.
+///
+/// This is a skeletal driver, with all the functionality pushed into helpers,
+/// so that it can be easily extended by experimental schedulers. Generally,
+/// implementing MachineSchedStrategy should be sufficient to implement a new
+/// scheduling algorithm. However, if a scheduler further subclasses
+/// ScheduleDAGMILive then it will want to override this virtual method in order
+/// to update any specialized state.
+void ScheduleDAGMILive::schedule() {
+  DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n");
+  DEBUG(SchedImpl->dumpPolicy());
+  buildDAGWithRegPressure();
+
+  Topo.InitDAGTopologicalSorting();
+
+  postprocessDAG();
+
+  SmallVector<SUnit*, 8> TopRoots, BotRoots;
+  findRootsAndBiasEdges(TopRoots, BotRoots);
+
+  // Initialize the strategy before modifying the DAG.
+  // This may initialize a DFSResult to be used for queue priority.
+  SchedImpl->initialize(this);
 
-/// ConvergingScheduler shrinks the unscheduled zone using heuristics to balance
-/// the schedule.
-class ConvergingScheduler : public MachineSchedStrategy {
+  DEBUG(
+    for (const SUnit &SU : SUnits) {
+      SU.dumpAll(this);
+      if (ShouldTrackPressure) {
+        dbgs() << "  Pressure Diff      : ";
+        getPressureDiff(&SU).dump(*TRI);
+      }
+      dbgs() << '\n';
+    }
+  );
+  if (ViewMISchedDAGs) viewGraph();
 
-  /// Store the state used by ConvergingScheduler heuristics, required for the
-  /// lifetime of one invocation of pickNode().
-  struct SchedCandidate {
-    // The best SUnit candidate.
-    SUnit *SU;
+  // Initialize ready queues now that the DAG and priority data are finalized.
+  initQueues(TopRoots, BotRoots);
 
-    // Register pressure values for the best candidate.
-    RegPressureDelta RPDelta;
+  if (ShouldTrackPressure) {
+    assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
+    TopRPTracker.setPos(CurrentTop);
+  }
 
-    SchedCandidate(): SU(NULL) {}
-  };
-  /// Represent the type of SchedCandidate found within a single queue.
-  enum CandResult {
-    NoCand, NodeOrder, SingleExcess, SingleCritical, SingleMax, MultiPressure };
+  bool IsTopNode = false;
+  while (true) {
+    DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n");
+    SUnit *SU = SchedImpl->pickNode(IsTopNode);
+    if (!SU) break;
+
+    assert(!SU->isScheduled && "Node already scheduled");
+    if (!checkSchedLimit())
+      break;
+
+    scheduleMI(SU, IsTopNode);
+
+    if (DFSResult) {
+      unsigned SubtreeID = DFSResult->getSubtreeID(SU);
+      if (!ScheduledTrees.test(SubtreeID)) {
+        ScheduledTrees.set(SubtreeID);
+        DFSResult->scheduleTree(SubtreeID);
+        SchedImpl->scheduleTree(SubtreeID);
+      }
+    }
+
+    // Notify the scheduling strategy after updating the DAG.
+    SchedImpl->schedNode(SU, IsTopNode);
+
+    updateQueues(SU, IsTopNode);
+  }
+  assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
+
+  placeDebugValues();
+
+  DEBUG({
+      unsigned BBNum = begin()->getParent()->getNumber();
+      dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
+      dumpSchedule();
+      dbgs() << '\n';
+    });
+}
+
+/// Build the DAG and setup three register pressure trackers.
+void ScheduleDAGMILive::buildDAGWithRegPressure() {
+  if (!ShouldTrackPressure) {
+    RPTracker.reset();
+    RegionCriticalPSets.clear();
+    buildSchedGraph(AA);
+    return;
+  }
+
+  // Initialize the register pressure tracker used by buildSchedGraph.
+  RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
+                 /*TrackUntiedDefs=*/true);
+
+  // Account for liveness generate by the region boundary.
+  if (LiveRegionEnd != RegionEnd)
+    RPTracker.recede();
 
-  /// Each Scheduling boundary is associated with ready queues. It tracks the
-  /// current cycle in whichever direction at has moved, and maintains the state
-  /// of "hazards" and other interlocks at the current cycle.
-  struct SchedBoundary {
-    ScheduleDAGMI *DAG;
+  // Build the DAG, and compute current register pressure.
+  buildSchedGraph(AA, &RPTracker, &SUPressureDiffs);
 
-    ReadyQueue Available;
-    ReadyQueue Pending;
-    bool CheckPending;
+  // Initialize top/bottom trackers after computing region pressure.
+  initRegPressure();
+}
 
-    ScheduleHazardRecognizer *HazardRec;
+void ScheduleDAGMILive::computeDFSResult() {
+  if (!DFSResult)
+    DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
+  DFSResult->clear();
+  ScheduledTrees.clear();
+  DFSResult->resize(SUnits.size());
+  DFSResult->compute(SUnits);
+  ScheduledTrees.resize(DFSResult->getNumSubtrees());
+}
 
-    unsigned CurrCycle;
-    unsigned IssueCount;
+/// Compute the max cyclic critical path through the DAG. The scheduling DAG
+/// only provides the critical path for single block loops. To handle loops that
+/// span blocks, we could use the vreg path latencies provided by
+/// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
+/// available for use in the scheduler.
+///
+/// The cyclic path estimation identifies a def-use pair that crosses the back
+/// edge and considers the depth and height of the nodes. For example, consider
+/// the following instruction sequence where each instruction has unit latency
+/// and defines an epomymous virtual register:
+///
+/// a->b(a,c)->c(b)->d(c)->exit
+///
+/// The cyclic critical path is a two cycles: b->c->b
+/// The acyclic critical path is four cycles: a->b->c->d->exit
+/// LiveOutHeight = height(c) = len(c->d->exit) = 2
+/// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
+/// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
+/// LiveInDepth = depth(b) = len(a->b) = 1
+///
+/// LiveOutDepth - LiveInDepth = 3 - 1 = 2
+/// LiveInHeight - LiveOutHeight = 4 - 2 = 2
+/// CyclicCriticalPath = min(2, 2) = 2
+///
+/// This could be relevant to PostRA scheduling, but is currently implemented
+/// assuming LiveIntervals.
+unsigned ScheduleDAGMILive::computeCyclicCriticalPath() {
+  // This only applies to single block loop.
+  if (!BB->isSuccessor(BB))
+    return 0;
+
+  unsigned MaxCyclicLatency = 0;
+  // Visit each live out vreg def to find def/use pairs that cross iterations.
+  ArrayRef<unsigned> LiveOuts = RPTracker.getPressure().LiveOutRegs;
+  for (ArrayRef<unsigned>::iterator RI = LiveOuts.begin(), RE = LiveOuts.end();
+       RI != RE; ++RI) {
+    unsigned Reg = *RI;
+    if (!TRI->isVirtualRegister(Reg))
+        continue;
+    const LiveInterval &LI = LIS->getInterval(Reg);
+    const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
+    if (!DefVNI)
+      continue;
 
-    /// MinReadyCycle - Cycle of the soonest available instruction.
-    unsigned MinReadyCycle;
+    MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
+    const SUnit *DefSU = getSUnit(DefMI);
+    if (!DefSU)
+      continue;
 
-    // Remember the greatest min operand latency.
-    unsigned MaxMinLatency;
+    unsigned LiveOutHeight = DefSU->getHeight();
+    unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
+    // Visit all local users of the vreg def.
+    for (const VReg2SUnit &V2SU
+         : make_range(VRegUses.find(Reg), VRegUses.end())) {
+      SUnit *SU = V2SU.SU;
+      if (SU == &ExitSU)
+        continue;
 
-    /// Pending queues extend the ready queues with the same ID and the
-    /// PendingFlag set.
-    SchedBoundary(unsigned ID, const Twine &Name):
-      DAG(0), Available(ID, Name+".A"),
-      Pending(ID << ConvergingScheduler::LogMaxQID, Name+".P"),
-      CheckPending(false), HazardRec(0), CurrCycle(0), IssueCount(0),
-      MinReadyCycle(UINT_MAX), MaxMinLatency(0) {}
+      // Only consider uses of the phi.
+      LiveQueryResult LRQ =
+        LI.Query(LIS->getInstructionIndex(SU->getInstr()));
+      if (!LRQ.valueIn()->isPHIDef())
+        continue;
 
-    ~SchedBoundary() { delete HazardRec; }
+      // Assume that a path spanning two iterations is a cycle, which could
+      // overestimate in strange cases. This allows cyclic latency to be
+      // estimated as the minimum slack of the vreg's depth or height.
+      unsigned CyclicLatency = 0;
+      if (LiveOutDepth > SU->getDepth())
+        CyclicLatency = LiveOutDepth - SU->getDepth();
+
+      unsigned LiveInHeight = SU->getHeight() + DefSU->Latency;
+      if (LiveInHeight > LiveOutHeight) {
+        if (LiveInHeight - LiveOutHeight < CyclicLatency)
+          CyclicLatency = LiveInHeight - LiveOutHeight;
+      }
+      else
+        CyclicLatency = 0;
 
-    bool isTop() const {
-      return Available.getID() == ConvergingScheduler::TopQID;
+      DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
+            << SU->NodeNum << ") = " << CyclicLatency << "c\n");
+      if (CyclicLatency > MaxCyclicLatency)
+        MaxCyclicLatency = CyclicLatency;
     }
+  }
+  DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
+  return MaxCyclicLatency;
+}
 
-    bool checkHazard(SUnit *SU);
+/// Move an instruction and update register pressure.
+void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
+  // Move the instruction to its new location in the instruction stream.
+  MachineInstr *MI = SU->getInstr();
 
-    void releaseNode(SUnit *SU, unsigned ReadyCycle);
+  if (IsTopNode) {
+    assert(SU->isTopReady() && "node still has unscheduled dependencies");
+    if (&*CurrentTop == MI)
+      CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
+    else {
+      moveInstruction(MI, CurrentTop);
+      TopRPTracker.setPos(MI);
+    }
 
-    void bumpCycle();
+    if (ShouldTrackPressure) {
+      // Update top scheduled pressure.
+      TopRPTracker.advance();
+      assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
+      DEBUG(
+        dbgs() << "Top Pressure:\n";
+        dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
+      );
+
+      updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
+    }
+  }
+  else {
+    assert(SU->isBottomReady() && "node still has unscheduled dependencies");
+    MachineBasicBlock::iterator priorII =
+      priorNonDebug(CurrentBottom, CurrentTop);
+    if (&*priorII == MI)
+      CurrentBottom = priorII;
+    else {
+      if (&*CurrentTop == MI) {
+        CurrentTop = nextIfDebug(++CurrentTop, priorII);
+        TopRPTracker.setPos(CurrentTop);
+      }
+      moveInstruction(MI, CurrentBottom);
+      CurrentBottom = MI;
+    }
+    if (ShouldTrackPressure) {
+      // Update bottom scheduled pressure.
+      SmallVector<unsigned, 8> LiveUses;
+      BotRPTracker.recede(&LiveUses);
+      assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
+      DEBUG(
+        dbgs() << "Bottom Pressure:\n";
+        dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI);
+      );
 
-    void bumpNode(SUnit *SU);
+      updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
+      updatePressureDiffs(LiveUses);
+    }
+  }
+}
 
-    void releasePending();
+//===----------------------------------------------------------------------===//
+// LoadClusterMutation - DAG post-processing to cluster loads.
+//===----------------------------------------------------------------------===//
 
-    void removeReady(SUnit *SU);
+namespace {
+/// \brief Post-process the DAG to create cluster edges between neighboring
+/// loads.
+class LoadClusterMutation : public ScheduleDAGMutation {
+  struct LoadInfo {
+    SUnit *SU;
+    unsigned BaseReg;
+    unsigned Offset;
+    LoadInfo(SUnit *su, unsigned reg, unsigned ofs)
+      : SU(su), BaseReg(reg), Offset(ofs) {}
 
-    SUnit *pickOnlyChoice();
+    bool operator<(const LoadInfo &RHS) const {
+      return std::tie(BaseReg, Offset) < std::tie(RHS.BaseReg, RHS.Offset);
+    }
   };
 
-  ScheduleDAGMI *DAG;
+  const TargetInstrInfo *TII;
   const TargetRegisterInfo *TRI;
+public:
+  LoadClusterMutation(const TargetInstrInfo *tii,
+                      const TargetRegisterInfo *tri)
+    : TII(tii), TRI(tri) {}
+
+  void apply(ScheduleDAGMI *DAG) override;
+protected:
+  void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG);
+};
+} // anonymous
+
+void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads,
+                                                  ScheduleDAGMI *DAG) {
+  SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords;
+  for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) {
+    SUnit *SU = Loads[Idx];
+    unsigned BaseReg;
+    unsigned Offset;
+    if (TII->getMemOpBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI))
+      LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset));
+  }
+  if (LoadRecords.size() < 2)
+    return;
+  std::sort(LoadRecords.begin(), LoadRecords.end());
+  unsigned ClusterLength = 1;
+  for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) {
+    if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) {
+      ClusterLength = 1;
+      continue;
+    }
+
+    SUnit *SUa = LoadRecords[Idx].SU;
+    SUnit *SUb = LoadRecords[Idx+1].SU;
+    if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength)
+        && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
+
+      DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU("
+            << SUb->NodeNum << ")\n");
+      // Copy successor edges from SUa to SUb. Interleaving computation
+      // dependent on SUa can prevent load combining due to register reuse.
+      // Predecessor edges do not need to be copied from SUb to SUa since nearby
+      // loads should have effectively the same inputs.
+      for (SUnit::const_succ_iterator
+             SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) {
+        if (SI->getSUnit() == SUb)
+          continue;
+        DEBUG(dbgs() << "  Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n");
+        DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial));
+      }
+      ++ClusterLength;
+    }
+    else
+      ClusterLength = 1;
+  }
+}
+
+/// \brief Callback from DAG postProcessing to create cluster edges for loads.
+void LoadClusterMutation::apply(ScheduleDAGMI *DAG) {
+  // Map DAG NodeNum to store chain ID.
+  DenseMap<unsigned, unsigned> StoreChainIDs;
+  // Map each store chain to a set of dependent loads.
+  SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents;
+  for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
+    SUnit *SU = &DAG->SUnits[Idx];
+    if (!SU->getInstr()->mayLoad())
+      continue;
+    unsigned ChainPredID = DAG->SUnits.size();
+    for (SUnit::const_pred_iterator
+           PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
+      if (PI->isCtrl()) {
+        ChainPredID = PI->getSUnit()->NodeNum;
+        break;
+      }
+    }
+    // Check if this chain-like pred has been seen
+    // before. ChainPredID==MaxNodeID for loads at the top of the schedule.
+    unsigned NumChains = StoreChainDependents.size();
+    std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result =
+      StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains));
+    if (Result.second)
+      StoreChainDependents.resize(NumChains + 1);
+    StoreChainDependents[Result.first->second].push_back(SU);
+  }
+  // Iterate over the store chains.
+  for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx)
+    clusterNeighboringLoads(StoreChainDependents[Idx], DAG);
+}
 
-  // State of the top and bottom scheduled instruction boundaries.
-  SchedBoundary Top;
-  SchedBoundary Bot;
+//===----------------------------------------------------------------------===//
+// MacroFusion - DAG post-processing to encourage fusion of macro ops.
+//===----------------------------------------------------------------------===//
 
+namespace {
+/// \brief Post-process the DAG to create cluster edges between instructions
+/// that may be fused by the processor into a single operation.
+class MacroFusion : public ScheduleDAGMutation {
+  const TargetInstrInfo &TII;
+  const TargetRegisterInfo &TRI;
 public:
-  /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both)
-  enum {
-    TopQID = 1,
-    BotQID = 2,
-    LogMaxQID = 2
-  };
+  MacroFusion(const TargetInstrInfo &TII, const TargetRegisterInfo &TRI)
+    : TII(TII), TRI(TRI) {}
 
-  ConvergingScheduler():
-    DAG(0), TRI(0), Top(TopQID, "TopQ"), Bot(BotQID, "BotQ") {}
+  void apply(ScheduleDAGMI *DAG) override;
+};
+} // anonymous
 
-  virtual void initialize(ScheduleDAGMI *dag);
+/// Returns true if \p MI reads a register written by \p Other.
+static bool HasDataDep(const TargetRegisterInfo &TRI, const MachineInstr &MI,
+                       const MachineInstr &Other) {
+  for (const MachineOperand &MO : MI.uses()) {
+    if (!MO.isReg() || !MO.readsReg())
+      continue;
 
-  virtual SUnit *pickNode(bool &IsTopNode);
+    unsigned Reg = MO.getReg();
+    if (Other.modifiesRegister(Reg, &TRI))
+      return true;
+  }
+  return false;
+}
 
-  virtual void schedNode(SUnit *SU, bool IsTopNode);
+/// \brief Callback from DAG postProcessing to create cluster edges to encourage
+/// fused operations.
+void MacroFusion::apply(ScheduleDAGMI *DAG) {
+  // For now, assume targets can only fuse with the branch.
+  SUnit &ExitSU = DAG->ExitSU;
+  MachineInstr *Branch = ExitSU.getInstr();
+  if (!Branch)
+    return;
 
-  virtual void releaseTopNode(SUnit *SU);
+  for (SUnit &SU : DAG->SUnits) {
+    // SUnits with successors can't be schedule in front of the ExitSU.
+    if (!SU.Succs.empty())
+      continue;
+    // We only care if the node writes to a register that the branch reads.
+    MachineInstr *Pred = SU.getInstr();
+    if (!HasDataDep(TRI, *Branch, *Pred))
+      continue;
 
-  virtual void releaseBottomNode(SUnit *SU);
+    if (!TII.shouldScheduleAdjacent(Pred, Branch))
+      continue;
 
-protected:
-  SUnit *pickNodeBidrectional(bool &IsTopNode);
+    // Create a single weak edge from SU to ExitSU. The only effect is to cause
+    // bottom-up scheduling to heavily prioritize the clustered SU.  There is no
+    // need to copy predecessor edges from ExitSU to SU, since top-down
+    // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling
+    // of SU, we could create an artificial edge from the deepest root, but it
+    // hasn't been needed yet.
+    bool Success = DAG->addEdge(&ExitSU, SDep(&SU, SDep::Cluster));
+    (void)Success;
+    assert(Success && "No DAG nodes should be reachable from ExitSU");
+
+    DEBUG(dbgs() << "Macro Fuse SU(" << SU.NodeNum << ")\n");
+    break;
+  }
+}
 
-  CandResult pickNodeFromQueue(ReadyQueue &Q,
-                               const RegPressureTracker &RPTracker,
-                               SchedCandidate &Candidate);
-#ifndef NDEBUG
-  void traceCandidate(const char *Label, const ReadyQueue &Q, SUnit *SU,
-                      PressureElement P = PressureElement());
-#endif
+//===----------------------------------------------------------------------===//
+// CopyConstrain - DAG post-processing to encourage copy elimination.
+//===----------------------------------------------------------------------===//
+
+namespace {
+/// \brief Post-process the DAG to create weak edges from all uses of a copy to
+/// the one use that defines the copy's source vreg, most likely an induction
+/// variable increment.
+class CopyConstrain : public ScheduleDAGMutation {
+  // Transient state.
+  SlotIndex RegionBeginIdx;
+  // RegionEndIdx is the slot index of the last non-debug instruction in the
+  // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
+  SlotIndex RegionEndIdx;
+public:
+  CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
+
+  void apply(ScheduleDAGMI *DAG) override;
+
+protected:
+  void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
 };
-} // namespace
+} // anonymous
+
+/// constrainLocalCopy handles two possibilities:
+/// 1) Local src:
+/// I0:     = dst
+/// I1: src = ...
+/// I2:     = dst
+/// I3: dst = src (copy)
+/// (create pred->succ edges I0->I1, I2->I1)
+///
+/// 2) Local copy:
+/// I0: dst = src (copy)
+/// I1:     = dst
+/// I2: src = ...
+/// I3:     = dst
+/// (create pred->succ edges I1->I2, I3->I2)
+///
+/// Although the MachineScheduler is currently constrained to single blocks,
+/// this algorithm should handle extended blocks. An EBB is a set of
+/// contiguously numbered blocks such that the previous block in the EBB is
+/// always the single predecessor.
+void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
+  LiveIntervals *LIS = DAG->getLIS();
+  MachineInstr *Copy = CopySU->getInstr();
+
+  // Check for pure vreg copies.
+  unsigned SrcReg = Copy->getOperand(1).getReg();
+  if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
+    return;
 
-void ConvergingScheduler::initialize(ScheduleDAGMI *dag) {
-  DAG = dag;
-  TRI = DAG->TRI;
-  Top.DAG = dag;
-  Bot.DAG = dag;
+  unsigned DstReg = Copy->getOperand(0).getReg();
+  if (!TargetRegisterInfo::isVirtualRegister(DstReg))
+    return;
 
-  // Initialize the HazardRecognizers.
-  const TargetMachine &TM = DAG->MF.getTarget();
-  const InstrItineraryData *Itin = TM.getInstrItineraryData();
-  Top.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
-  Bot.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
+  // Check if either the dest or source is local. If it's live across a back
+  // edge, it's not local. Note that if both vregs are live across the back
+  // edge, we cannot successfully contrain the copy without cyclic scheduling.
+  // If both the copy's source and dest are local live intervals, then we
+  // should treat the dest as the global for the purpose of adding
+  // constraints. This adds edges from source's other uses to the copy.
+  unsigned LocalReg = SrcReg;
+  unsigned GlobalReg = DstReg;
+  LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
+  if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
+    LocalReg = DstReg;
+    GlobalReg = SrcReg;
+    LocalLI = &LIS->getInterval(LocalReg);
+    if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
+      return;
+  }
+  LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
+
+  // Find the global segment after the start of the local LI.
+  LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
+  // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
+  // local live range. We could create edges from other global uses to the local
+  // start, but the coalescer should have already eliminated these cases, so
+  // don't bother dealing with it.
+  if (GlobalSegment == GlobalLI->end())
+    return;
 
-  assert((!ForceTopDown || !ForceBottomUp) &&
-         "-misched-topdown incompatible with -misched-bottomup");
-}
+  // If GlobalSegment is killed at the LocalLI->start, the call to find()
+  // returned the next global segment. But if GlobalSegment overlaps with
+  // LocalLI->start, then advance to the next segement. If a hole in GlobalLI
+  // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
+  if (GlobalSegment->contains(LocalLI->beginIndex()))
+    ++GlobalSegment;
 
-void ConvergingScheduler::releaseTopNode(SUnit *SU) {
-  if (SU->isScheduled)
+  if (GlobalSegment == GlobalLI->end())
+    return;
+
+  // Check if GlobalLI contains a hole in the vicinity of LocalLI.
+  if (GlobalSegment != GlobalLI->begin()) {
+    // Two address defs have no hole.
+    if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
+                               GlobalSegment->start)) {
+      return;
+    }
+    // If the prior global segment may be defined by the same two-address
+    // instruction that also defines LocalLI, then can't make a hole here.
+    if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
+                               LocalLI->beginIndex())) {
+      return;
+    }
+    // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
+    // it would be a disconnected component in the live range.
+    assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
+           "Disconnected LRG within the scheduling region.");
+  }
+  MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
+  if (!GlobalDef)
     return;
 
-  for (SUnit::succ_iterator I = SU->Preds.begin(), E = SU->Preds.end();
+  SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
+  if (!GlobalSU)
+    return;
+
+  // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
+  // constraining the uses of the last local def to precede GlobalDef.
+  SmallVector<SUnit*,8> LocalUses;
+  const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
+  MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
+  SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
+  for (SUnit::const_succ_iterator
+         I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end();
        I != E; ++I) {
-    unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle;
-    unsigned Latency =
-      DAG->computeOperandLatency(I->getSUnit(), SU, *I, /*FindMin=*/true);
-#ifndef NDEBUG
-    Top.MaxMinLatency = std::max(Latency, Top.MaxMinLatency);
-#endif
-    if (SU->TopReadyCycle < PredReadyCycle + Latency)
-      SU->TopReadyCycle = PredReadyCycle + Latency;
+    if (I->getKind() != SDep::Data || I->getReg() != LocalReg)
+      continue;
+    if (I->getSUnit() == GlobalSU)
+      continue;
+    if (!DAG->canAddEdge(GlobalSU, I->getSUnit()))
+      return;
+    LocalUses.push_back(I->getSUnit());
+  }
+  // Open the top of the GlobalLI hole by constraining any earlier global uses
+  // to precede the start of LocalLI.
+  SmallVector<SUnit*,8> GlobalUses;
+  MachineInstr *FirstLocalDef =
+    LIS->getInstructionFromIndex(LocalLI->beginIndex());
+  SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
+  for (SUnit::const_pred_iterator
+         I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) {
+    if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg)
+      continue;
+    if (I->getSUnit() == FirstLocalSU)
+      continue;
+    if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit()))
+      return;
+    GlobalUses.push_back(I->getSUnit());
+  }
+  DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
+  // Add the weak edges.
+  for (SmallVectorImpl<SUnit*>::const_iterator
+         I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) {
+    DEBUG(dbgs() << "  Local use SU(" << (*I)->NodeNum << ") -> SU("
+          << GlobalSU->NodeNum << ")\n");
+    DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak));
+  }
+  for (SmallVectorImpl<SUnit*>::const_iterator
+         I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) {
+    DEBUG(dbgs() << "  Global use SU(" << (*I)->NodeNum << ") -> SU("
+          << FirstLocalSU->NodeNum << ")\n");
+    DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak));
   }
-  Top.releaseNode(SU, SU->TopReadyCycle);
 }
 
-void ConvergingScheduler::releaseBottomNode(SUnit *SU) {
-  if (SU->isScheduled)
+/// \brief Callback from DAG postProcessing to create weak edges to encourage
+/// copy elimination.
+void CopyConstrain::apply(ScheduleDAGMI *DAG) {
+  assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");
+
+  MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
+  if (FirstPos == DAG->end())
     return;
+  RegionBeginIdx = DAG->getLIS()->getInstructionIndex(&*FirstPos);
+  RegionEndIdx = DAG->getLIS()->getInstructionIndex(
+    &*priorNonDebug(DAG->end(), DAG->begin()));
 
-  assert(SU->getInstr() && "Scheduled SUnit must have instr");
+  for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
+    SUnit *SU = &DAG->SUnits[Idx];
+    if (!SU->getInstr()->isCopy())
+      continue;
 
-  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
-       I != E; ++I) {
-    unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle;
-    unsigned Latency =
-      DAG->computeOperandLatency(SU, I->getSUnit(), *I, /*FindMin=*/true);
+    constrainLocalCopy(SU, static_cast<ScheduleDAGMILive*>(DAG));
+  }
+}
+
+//===----------------------------------------------------------------------===//
+// MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
+// and possibly other custom schedulers.
+//===----------------------------------------------------------------------===//
+
+static const unsigned InvalidCycle = ~0U;
+
+SchedBoundary::~SchedBoundary() { delete HazardRec; }
+
+void SchedBoundary::reset() {
+  // A new HazardRec is created for each DAG and owned by SchedBoundary.
+  // Destroying and reconstructing it is very expensive though. So keep
+  // invalid, placeholder HazardRecs.
+  if (HazardRec && HazardRec->isEnabled()) {
+    delete HazardRec;
+    HazardRec = nullptr;
+  }
+  Available.clear();
+  Pending.clear();
+  CheckPending = false;
+  NextSUs.clear();
+  CurrCycle = 0;
+  CurrMOps = 0;
+  MinReadyCycle = UINT_MAX;
+  ExpectedLatency = 0;
+  DependentLatency = 0;
+  RetiredMOps = 0;
+  MaxExecutedResCount = 0;
+  ZoneCritResIdx = 0;
+  IsResourceLimited = false;
+  ReservedCycles.clear();
 #ifndef NDEBUG
-    Bot.MaxMinLatency = std::max(Latency, Bot.MaxMinLatency);
+  // Track the maximum number of stall cycles that could arise either from the
+  // latency of a DAG edge or the number of cycles that a processor resource is
+  // reserved (SchedBoundary::ReservedCycles).
+  MaxObservedStall = 0;
 #endif
-    if (SU->BotReadyCycle < SuccReadyCycle + Latency)
-      SU->BotReadyCycle = SuccReadyCycle + Latency;
+  // Reserve a zero-count for invalid CritResIdx.
+  ExecutedResCounts.resize(1);
+  assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
+}
+
+void SchedRemainder::
+init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
+  reset();
+  if (!SchedModel->hasInstrSchedModel())
+    return;
+  RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
+  for (std::vector<SUnit>::iterator
+         I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) {
+    const MCSchedClassDesc *SC = DAG->getSchedClass(&*I);
+    RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC)
+      * SchedModel->getMicroOpFactor();
+    for (TargetSchedModel::ProcResIter
+           PI = SchedModel->getWriteProcResBegin(SC),
+           PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
+      unsigned PIdx = PI->ProcResourceIdx;
+      unsigned Factor = SchedModel->getResourceFactor(PIdx);
+      RemainingCounts[PIdx] += (Factor * PI->Cycles);
+    }
+  }
+}
+
+void SchedBoundary::
+init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
+  reset();
+  DAG = dag;
+  SchedModel = smodel;
+  Rem = rem;
+  if (SchedModel->hasInstrSchedModel()) {
+    ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds());
+    ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle);
   }
-  Bot.releaseNode(SU, SU->BotReadyCycle);
+}
+
+/// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
+/// these "soft stalls" differently than the hard stall cycles based on CPU
+/// resources and computed by checkHazard(). A fully in-order model
+/// (MicroOpBufferSize==0) will not make use of this since instructions are not
+/// available for scheduling until they are ready. However, a weaker in-order
+/// model may use this for heuristics. For example, if a processor has in-order
+/// behavior when reading certain resources, this may come into play.
+unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
+  if (!SU->isUnbuffered)
+    return 0;
+
+  unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
+  if (ReadyCycle > CurrCycle)
+    return ReadyCycle - CurrCycle;
+  return 0;
+}
+
+/// Compute the next cycle at which the given processor resource can be
+/// scheduled.
+unsigned SchedBoundary::
+getNextResourceCycle(unsigned PIdx, unsigned Cycles) {
+  unsigned NextUnreserved = ReservedCycles[PIdx];
+  // If this resource has never been used, always return cycle zero.
+  if (NextUnreserved == InvalidCycle)
+    return 0;
+  // For bottom-up scheduling add the cycles needed for the current operation.
+  if (!isTop())
+    NextUnreserved += Cycles;
+  return NextUnreserved;
 }
 
 /// Does this SU have a hazard within the current instruction group.
@@ -948,36 +1765,142 @@ void ConvergingScheduler::releaseBottomNode(SUnit *SU) {
 /// can dispatch per cycle.
 ///
 /// TODO: Also check whether the SU must start a new group.
-bool ConvergingScheduler::SchedBoundary::checkHazard(SUnit *SU) {
-  if (HazardRec->isEnabled())
-    return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard;
-
-  if (IssueCount + DAG->getNumMicroOps(SU->getInstr()) > DAG->getIssueWidth())
+bool SchedBoundary::checkHazard(SUnit *SU) {
+  if (HazardRec->isEnabled()
+      && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) {
     return true;
-
+  }
+  unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
+  if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
+    DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") uops="
+          << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
+    return true;
+  }
+  if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) {
+    const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
+    for (TargetSchedModel::ProcResIter
+           PI = SchedModel->getWriteProcResBegin(SC),
+           PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
+      unsigned NRCycle = getNextResourceCycle(PI->ProcResourceIdx, PI->Cycles);
+      if (NRCycle > CurrCycle) {
+#ifndef NDEBUG
+        MaxObservedStall = std::max(PI->Cycles, MaxObservedStall);
+#endif
+        DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") "
+              << SchedModel->getResourceName(PI->ProcResourceIdx)
+              << "=" << NRCycle << "c\n");
+        return true;
+      }
+    }
+  }
   return false;
 }
 
-void ConvergingScheduler::SchedBoundary::releaseNode(SUnit *SU,
-                                                     unsigned ReadyCycle) {
+// Find the unscheduled node in ReadySUs with the highest latency.
+unsigned SchedBoundary::
+findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
+  SUnit *LateSU = nullptr;
+  unsigned RemLatency = 0;
+  for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end();
+       I != E; ++I) {
+    unsigned L = getUnscheduledLatency(*I);
+    if (L > RemLatency) {
+      RemLatency = L;
+      LateSU = *I;
+    }
+  }
+  if (LateSU) {
+    DEBUG(dbgs() << Available.getName() << " RemLatency SU("
+          << LateSU->NodeNum << ") " << RemLatency << "c\n");
+  }
+  return RemLatency;
+}
+
+// Count resources in this zone and the remaining unscheduled
+// instruction. Return the max count, scaled. Set OtherCritIdx to the critical
+// resource index, or zero if the zone is issue limited.
+unsigned SchedBoundary::
+getOtherResourceCount(unsigned &OtherCritIdx) {
+  OtherCritIdx = 0;
+  if (!SchedModel->hasInstrSchedModel())
+    return 0;
+
+  unsigned OtherCritCount = Rem->RemIssueCount
+    + (RetiredMOps * SchedModel->getMicroOpFactor());
+  DEBUG(dbgs() << "  " << Available.getName() << " + Remain MOps: "
+        << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
+  for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
+       PIdx != PEnd; ++PIdx) {
+    unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
+    if (OtherCount > OtherCritCount) {
+      OtherCritCount = OtherCount;
+      OtherCritIdx = PIdx;
+    }
+  }
+  if (OtherCritIdx) {
+    DEBUG(dbgs() << "  " << Available.getName() << " + Remain CritRes: "
+          << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
+          << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
+  }
+  return OtherCritCount;
+}
+
+void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) {
+  assert(SU->getInstr() && "Scheduled SUnit must have instr");
+
+#ifndef NDEBUG
+  // ReadyCycle was been bumped up to the CurrCycle when this node was
+  // scheduled, but CurrCycle may have been eagerly advanced immediately after
+  // scheduling, so may now be greater than ReadyCycle.
+  if (ReadyCycle > CurrCycle)
+    MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
+#endif
+
   if (ReadyCycle < MinReadyCycle)
     MinReadyCycle = ReadyCycle;
 
   // Check for interlocks first. For the purpose of other heuristics, an
   // instruction that cannot issue appears as if it's not in the ReadyQueue.
-  if (ReadyCycle > CurrCycle || checkHazard(SU))
+  bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
+  if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU))
     Pending.push(SU);
   else
     Available.push(SU);
+
+  // Record this node as an immediate dependent of the scheduled node.
+  NextSUs.insert(SU);
+}
+
+void SchedBoundary::releaseTopNode(SUnit *SU) {
+  if (SU->isScheduled)
+    return;
+
+  releaseNode(SU, SU->TopReadyCycle);
+}
+
+void SchedBoundary::releaseBottomNode(SUnit *SU) {
+  if (SU->isScheduled)
+    return;
+
+  releaseNode(SU, SU->BotReadyCycle);
 }
 
 /// Move the boundary of scheduled code by one cycle.
-void ConvergingScheduler::SchedBoundary::bumpCycle() {
-  unsigned Width = DAG->getIssueWidth();
-  IssueCount = (IssueCount <= Width) ? 0 : IssueCount - Width;
+void SchedBoundary::bumpCycle(unsigned NextCycle) {
+  if (SchedModel->getMicroOpBufferSize() == 0) {
+    assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
+    if (MinReadyCycle > NextCycle)
+      NextCycle = MinReadyCycle;
+  }
+  // Update the current micro-ops, which will issue in the next cycle.
+  unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
+  CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
 
-  assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
-  unsigned NextCycle = std::max(CurrCycle + 1, MinReadyCycle);
+  // Decrement DependentLatency based on the next cycle.
+  if ((NextCycle - CurrCycle) > DependentLatency)
+    DependentLatency = 0;
+  else
+    DependentLatency -= (NextCycle - CurrCycle);
 
   if (!HazardRec->isEnabled()) {
     // Bypass HazardRec virtual calls.
@@ -993,13 +1916,59 @@ void ConvergingScheduler::SchedBoundary::bumpCycle() {
     }
   }
   CheckPending = true;
+  unsigned LFactor = SchedModel->getLatencyFactor();
+  IsResourceLimited =
+    (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
+    > (int)LFactor;
+
+  DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n');
+}
+
+void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
+  ExecutedResCounts[PIdx] += Count;
+  if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
+    MaxExecutedResCount = ExecutedResCounts[PIdx];
+}
 
-  DEBUG(dbgs() << "*** " << Available.getName() << " cycle "
-        << CurrCycle << '\n');
+/// Add the given processor resource to this scheduled zone.
+///
+/// \param Cycles indicates the number of consecutive (non-pipelined) cycles
+/// during which this resource is consumed.
+///
+/// \return the next cycle at which the instruction may execute without
+/// oversubscribing resources.
+unsigned SchedBoundary::
+countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) {
+  unsigned Factor = SchedModel->getResourceFactor(PIdx);
+  unsigned Count = Factor * Cycles;
+  DEBUG(dbgs() << "  " << SchedModel->getResourceName(PIdx)
+        << " +" << Cycles << "x" << Factor << "u\n");
+
+  // Update Executed resources counts.
+  incExecutedResources(PIdx, Count);
+  assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
+  Rem->RemainingCounts[PIdx] -= Count;
+
+  // Check if this resource exceeds the current critical resource. If so, it
+  // becomes the critical resource.
+  if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
+    ZoneCritResIdx = PIdx;
+    DEBUG(dbgs() << "  *** Critical resource "
+          << SchedModel->getResourceName(PIdx) << ": "
+          << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n");
+  }
+  // For reserved resources, record the highest cycle using the resource.
+  unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles);
+  if (NextAvailable > CurrCycle) {
+    DEBUG(dbgs() << "  Resource conflict: "
+          << SchedModel->getProcResource(PIdx)->Name << " reserved until @"
+          << NextAvailable << "\n");
+  }
+  return NextAvailable;
 }
 
 /// Move the boundary of scheduled code by one SUnit.
-void ConvergingScheduler::SchedBoundary::bumpNode(SUnit *SU) {
+void SchedBoundary::bumpNode(SUnit *SU) {
   // Update the reservation table.
   if (HazardRec->isEnabled()) {
     if (!isTop() && SU->isCall) {
@@ -1009,212 +1978,868 @@ void ConvergingScheduler::SchedBoundary::bumpNode(SUnit *SU) {
     }
     HazardRec->EmitInstruction(SU);
   }
-  // Check the instruction group dispatch limit.
-  // TODO: Check if this SU must end a dispatch group.
-  IssueCount += DAG->getNumMicroOps(SU->getInstr());
-  if (IssueCount >= DAG->getIssueWidth()) {
-    DEBUG(dbgs() << "*** Max instrs at cycle " << CurrCycle << '\n');
-    bumpCycle();
+  // checkHazard should prevent scheduling multiple instructions per cycle that
+  // exceed the issue width.
+  const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
+  unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
+  assert(
+      (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
+      "Cannot schedule this instruction's MicroOps in the current cycle.");
+
+  unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
+  DEBUG(dbgs() << "  Ready @" << ReadyCycle << "c\n");
+
+  unsigned NextCycle = CurrCycle;
+  switch (SchedModel->getMicroOpBufferSize()) {
+  case 0:
+    assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
+    break;
+  case 1:
+    if (ReadyCycle > NextCycle) {
+      NextCycle = ReadyCycle;
+      DEBUG(dbgs() << "  *** Stall until: " << ReadyCycle << "\n");
+    }
+    break;
+  default:
+    // We don't currently model the OOO reorder buffer, so consider all
+    // scheduled MOps to be "retired". We do loosely model in-order resource
+    // latency. If this instruction uses an in-order resource, account for any
+    // likely stall cycles.
+    if (SU->isUnbuffered && ReadyCycle > NextCycle)
+      NextCycle = ReadyCycle;
+    break;
   }
+  RetiredMOps += IncMOps;
+
+  // Update resource counts and critical resource.
+  if (SchedModel->hasInstrSchedModel()) {
+    unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
+    assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
+    Rem->RemIssueCount -= DecRemIssue;
+    if (ZoneCritResIdx) {
+      // Scale scheduled micro-ops for comparing with the critical resource.
+      unsigned ScaledMOps =
+        RetiredMOps * SchedModel->getMicroOpFactor();
+
+      // If scaled micro-ops are now more than the previous critical resource by
+      // a full cycle, then micro-ops issue becomes critical.
+      if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
+          >= (int)SchedModel->getLatencyFactor()) {
+        ZoneCritResIdx = 0;
+        DEBUG(dbgs() << "  *** Critical resource NumMicroOps: "
+              << ScaledMOps / SchedModel->getLatencyFactor() << "c\n");
+      }
+    }
+    for (TargetSchedModel::ProcResIter
+           PI = SchedModel->getWriteProcResBegin(SC),
+           PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
+      unsigned RCycle =
+        countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle);
+      if (RCycle > NextCycle)
+        NextCycle = RCycle;
+    }
+    if (SU->hasReservedResource) {
+      // For reserved resources, record the highest cycle using the resource.
+      // For top-down scheduling, this is the cycle in which we schedule this
+      // instruction plus the number of cycles the operations reserves the
+      // resource. For bottom-up is it simply the instruction's cycle.
+      for (TargetSchedModel::ProcResIter
+             PI = SchedModel->getWriteProcResBegin(SC),
+             PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
+        unsigned PIdx = PI->ProcResourceIdx;
+        if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
+          if (isTop()) {
+            ReservedCycles[PIdx] =
+              std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles);
+          }
+          else
+            ReservedCycles[PIdx] = NextCycle;
+        }
+      }
+    }
+  }
+  // Update ExpectedLatency and DependentLatency.
+  unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
+  unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
+  if (SU->getDepth() > TopLatency) {
+    TopLatency = SU->getDepth();
+    DEBUG(dbgs() << "  " << Available.getName()
+          << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n");
+  }
+  if (SU->getHeight() > BotLatency) {
+    BotLatency = SU->getHeight();
+    DEBUG(dbgs() << "  " << Available.getName()
+          << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n");
+  }
+  // If we stall for any reason, bump the cycle.
+  if (NextCycle > CurrCycle) {
+    bumpCycle(NextCycle);
+  }
+  else {
+    // After updating ZoneCritResIdx and ExpectedLatency, check if we're
+    // resource limited. If a stall occurred, bumpCycle does this.
+    unsigned LFactor = SchedModel->getLatencyFactor();
+    IsResourceLimited =
+      (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
+      > (int)LFactor;
+  }
+  // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
+  // resets CurrMOps. Loop to handle instructions with more MOps than issue in
+  // one cycle.  Since we commonly reach the max MOps here, opportunistically
+  // bump the cycle to avoid uselessly checking everything in the readyQ.
+  CurrMOps += IncMOps;
+  while (CurrMOps >= SchedModel->getIssueWidth()) {
+    DEBUG(dbgs() << "  *** Max MOps " << CurrMOps
+          << " at cycle " << CurrCycle << '\n');
+    bumpCycle(++NextCycle);
+  }
+  DEBUG(dumpScheduledState());
 }
 
 /// Release pending ready nodes in to the available queue. This makes them
 /// visible to heuristics.
-void ConvergingScheduler::SchedBoundary::releasePending() {
+void SchedBoundary::releasePending() {
   // If the available queue is empty, it is safe to reset MinReadyCycle.
   if (Available.empty())
     MinReadyCycle = UINT_MAX;
 
-  // Check to see if any of the pending instructions are ready to issue.  If
-  // so, add them to the available queue.
-  for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
-    SUnit *SU = *(Pending.begin()+i);
-    unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
+  // Check to see if any of the pending instructions are ready to issue.  If
+  // so, add them to the available queue.
+  bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
+  for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
+    SUnit *SU = *(Pending.begin()+i);
+    unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
+
+    if (ReadyCycle < MinReadyCycle)
+      MinReadyCycle = ReadyCycle;
+
+    if (!IsBuffered && ReadyCycle > CurrCycle)
+      continue;
+
+    if (checkHazard(SU))
+      continue;
+
+    Available.push(SU);
+    Pending.remove(Pending.begin()+i);
+    --i; --e;
+  }
+  DEBUG(if (!Pending.empty()) Pending.dump());
+  CheckPending = false;
+}
+
+/// Remove SU from the ready set for this boundary.
+void SchedBoundary::removeReady(SUnit *SU) {
+  if (Available.isInQueue(SU))
+    Available.remove(Available.find(SU));
+  else {
+    assert(Pending.isInQueue(SU) && "bad ready count");
+    Pending.remove(Pending.find(SU));
+  }
+}
+
+/// If this queue only has one ready candidate, return it. As a side effect,
+/// defer any nodes that now hit a hazard, and advance the cycle until at least
+/// one node is ready. If multiple instructions are ready, return NULL.
+SUnit *SchedBoundary::pickOnlyChoice() {
+  if (CheckPending)
+    releasePending();
+
+  if (CurrMOps > 0) {
+    // Defer any ready instrs that now have a hazard.
+    for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
+      if (checkHazard(*I)) {
+        Pending.push(*I);
+        I = Available.remove(I);
+        continue;
+      }
+      ++I;
+    }
+  }
+  for (unsigned i = 0; Available.empty(); ++i) {
+//  FIXME: Re-enable assert once PR20057 is resolved.
+//    assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) &&
+//           "permanent hazard");
+    (void)i;
+    bumpCycle(CurrCycle + 1);
+    releasePending();
+  }
+  if (Available.size() == 1)
+    return *Available.begin();
+  return nullptr;
+}
+
+#ifndef NDEBUG
+// This is useful information to dump after bumpNode.
+// Note that the Queue contents are more useful before pickNodeFromQueue.
+void SchedBoundary::dumpScheduledState() {
+  unsigned ResFactor;
+  unsigned ResCount;
+  if (ZoneCritResIdx) {
+    ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
+    ResCount = getResourceCount(ZoneCritResIdx);
+  }
+  else {
+    ResFactor = SchedModel->getMicroOpFactor();
+    ResCount = RetiredMOps * SchedModel->getMicroOpFactor();
+  }
+  unsigned LFactor = SchedModel->getLatencyFactor();
+  dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
+         << "  Retired: " << RetiredMOps;
+  dbgs() << "\n  Executed: " << getExecutedCount() / LFactor << "c";
+  dbgs() << "\n  Critical: " << ResCount / LFactor << "c, "
+         << ResCount / ResFactor << " "
+         << SchedModel->getResourceName(ZoneCritResIdx)
+         << "\n  ExpectedLatency: " << ExpectedLatency << "c\n"
+         << (IsResourceLimited ? "  - Resource" : "  - Latency")
+         << " limited.\n";
+}
+#endif
+
+//===----------------------------------------------------------------------===//
+// GenericScheduler - Generic implementation of MachineSchedStrategy.
+//===----------------------------------------------------------------------===//
+
+void GenericSchedulerBase::SchedCandidate::
+initResourceDelta(const ScheduleDAGMI *DAG,
+                  const TargetSchedModel *SchedModel) {
+  if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
+    return;
+
+  const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
+  for (TargetSchedModel::ProcResIter
+         PI = SchedModel->getWriteProcResBegin(SC),
+         PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
+    if (PI->ProcResourceIdx == Policy.ReduceResIdx)
+      ResDelta.CritResources += PI->Cycles;
+    if (PI->ProcResourceIdx == Policy.DemandResIdx)
+      ResDelta.DemandedResources += PI->Cycles;
+  }
+}
+
+/// Set the CandPolicy given a scheduling zone given the current resources and
+/// latencies inside and outside the zone.
+void GenericSchedulerBase::setPolicy(CandPolicy &Policy,
+                                     bool IsPostRA,
+                                     SchedBoundary &CurrZone,
+                                     SchedBoundary *OtherZone) {
+  // Apply preemptive heuristics based on the total latency and resources
+  // inside and outside this zone. Potential stalls should be considered before
+  // following this policy.
+
+  // Compute remaining latency. We need this both to determine whether the
+  // overall schedule has become latency-limited and whether the instructions
+  // outside this zone are resource or latency limited.
+  //
+  // The "dependent" latency is updated incrementally during scheduling as the
+  // max height/depth of scheduled nodes minus the cycles since it was
+  // scheduled:
+  //   DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
+  //
+  // The "independent" latency is the max ready queue depth:
+  //   ILat = max N.depth for N in Available|Pending
+  //
+  // RemainingLatency is the greater of independent and dependent latency.
+  unsigned RemLatency = CurrZone.getDependentLatency();
+  RemLatency = std::max(RemLatency,
+                        CurrZone.findMaxLatency(CurrZone.Available.elements()));
+  RemLatency = std::max(RemLatency,
+                        CurrZone.findMaxLatency(CurrZone.Pending.elements()));
+
+  // Compute the critical resource outside the zone.
+  unsigned OtherCritIdx = 0;
+  unsigned OtherCount =
+    OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;
+
+  bool OtherResLimited = false;
+  if (SchedModel->hasInstrSchedModel()) {
+    unsigned LFactor = SchedModel->getLatencyFactor();
+    OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor;
+  }
+  // Schedule aggressively for latency in PostRA mode. We don't check for
+  // acyclic latency during PostRA, and highly out-of-order processors will
+  // skip PostRA scheduling.
+  if (!OtherResLimited) {
+    if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) {
+      Policy.ReduceLatency |= true;
+      DEBUG(dbgs() << "  " << CurrZone.Available.getName()
+            << " RemainingLatency " << RemLatency << " + "
+            << CurrZone.getCurrCycle() << "c > CritPath "
+            << Rem.CriticalPath << "\n");
+    }
+  }
+  // If the same resource is limiting inside and outside the zone, do nothing.
+  if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
+    return;
+
+  DEBUG(
+    if (CurrZone.isResourceLimited()) {
+      dbgs() << "  " << CurrZone.Available.getName() << " ResourceLimited: "
+             << SchedModel->getResourceName(CurrZone.getZoneCritResIdx())
+             << "\n";
+    }
+    if (OtherResLimited)
+      dbgs() << "  RemainingLimit: "
+             << SchedModel->getResourceName(OtherCritIdx) << "\n";
+    if (!CurrZone.isResourceLimited() && !OtherResLimited)
+      dbgs() << "  Latency limited both directions.\n");
+
+  if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
+    Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();
+
+  if (OtherResLimited)
+    Policy.DemandResIdx = OtherCritIdx;
+}
+
+#ifndef NDEBUG
+const char *GenericSchedulerBase::getReasonStr(
+  GenericSchedulerBase::CandReason Reason) {
+  switch (Reason) {
+  case NoCand:         return "NOCAND    ";
+  case PhysRegCopy:    return "PREG-COPY";
+  case RegExcess:      return "REG-EXCESS";
+  case RegCritical:    return "REG-CRIT  ";
+  case Stall:          return "STALL     ";
+  case Cluster:        return "CLUSTER   ";
+  case Weak:           return "WEAK      ";
+  case RegMax:         return "REG-MAX   ";
+  case ResourceReduce: return "RES-REDUCE";
+  case ResourceDemand: return "RES-DEMAND";
+  case TopDepthReduce: return "TOP-DEPTH ";
+  case TopPathReduce:  return "TOP-PATH  ";
+  case BotHeightReduce:return "BOT-HEIGHT";
+  case BotPathReduce:  return "BOT-PATH  ";
+  case NextDefUse:     return "DEF-USE   ";
+  case NodeOrder:      return "ORDER     ";
+  };
+  llvm_unreachable("Unknown reason!");
+}
+
+void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) {
+  PressureChange P;
+  unsigned ResIdx = 0;
+  unsigned Latency = 0;
+  switch (Cand.Reason) {
+  default:
+    break;
+  case RegExcess:
+    P = Cand.RPDelta.Excess;
+    break;
+  case RegCritical:
+    P = Cand.RPDelta.CriticalMax;
+    break;
+  case RegMax:
+    P = Cand.RPDelta.CurrentMax;
+    break;
+  case ResourceReduce:
+    ResIdx = Cand.Policy.ReduceResIdx;
+    break;
+  case ResourceDemand:
+    ResIdx = Cand.Policy.DemandResIdx;
+    break;
+  case TopDepthReduce:
+    Latency = Cand.SU->getDepth();
+    break;
+  case TopPathReduce:
+    Latency = Cand.SU->getHeight();
+    break;
+  case BotHeightReduce:
+    Latency = Cand.SU->getHeight();
+    break;
+  case BotPathReduce:
+    Latency = Cand.SU->getDepth();
+    break;
+  }
+  dbgs() << "  Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
+  if (P.isValid())
+    dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
+           << ":" << P.getUnitInc() << " ";
+  else
+    dbgs() << "      ";
+  if (ResIdx)
+    dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
+  else
+    dbgs() << "         ";
+  if (Latency)
+    dbgs() << " " << Latency << " cycles ";
+  else
+    dbgs() << "          ";
+  dbgs() << '\n';
+}
+#endif
+
+/// Return true if this heuristic determines order.
+static bool tryLess(int TryVal, int CandVal,
+                    GenericSchedulerBase::SchedCandidate &TryCand,
+                    GenericSchedulerBase::SchedCandidate &Cand,
+                    GenericSchedulerBase::CandReason Reason) {
+  if (TryVal < CandVal) {
+    TryCand.Reason = Reason;
+    return true;
+  }
+  if (TryVal > CandVal) {
+    if (Cand.Reason > Reason)
+      Cand.Reason = Reason;
+    return true;
+  }
+  Cand.setRepeat(Reason);
+  return false;
+}
+
+static bool tryGreater(int TryVal, int CandVal,
+                       GenericSchedulerBase::SchedCandidate &TryCand,
+                       GenericSchedulerBase::SchedCandidate &Cand,
+                       GenericSchedulerBase::CandReason Reason) {
+  if (TryVal > CandVal) {
+    TryCand.Reason = Reason;
+    return true;
+  }
+  if (TryVal < CandVal) {
+    if (Cand.Reason > Reason)
+      Cand.Reason = Reason;
+    return true;
+  }
+  Cand.setRepeat(Reason);
+  return false;
+}
+
+static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
+                       GenericSchedulerBase::SchedCandidate &Cand,
+                       SchedBoundary &Zone) {
+  if (Zone.isTop()) {
+    if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
+      if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
+                  TryCand, Cand, GenericSchedulerBase::TopDepthReduce))
+        return true;
+    }
+    if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
+                   TryCand, Cand, GenericSchedulerBase::TopPathReduce))
+      return true;
+  }
+  else {
+    if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
+      if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
+                  TryCand, Cand, GenericSchedulerBase::BotHeightReduce))
+        return true;
+    }
+    if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
+                   TryCand, Cand, GenericSchedulerBase::BotPathReduce))
+      return true;
+  }
+  return false;
+}
+
+static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand,
+                      bool IsTop) {
+  DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
+        << GenericSchedulerBase::getReasonStr(Cand.Reason) << '\n');
+}
+
+void GenericScheduler::initialize(ScheduleDAGMI *dag) {
+  assert(dag->hasVRegLiveness() &&
+         "(PreRA)GenericScheduler needs vreg liveness");
+  DAG = static_cast<ScheduleDAGMILive*>(dag);
+  SchedModel = DAG->getSchedModel();
+  TRI = DAG->TRI;
+
+  Rem.init(DAG, SchedModel);
+  Top.init(DAG, SchedModel, &Rem);
+  Bot.init(DAG, SchedModel, &Rem);
+
+  // Initialize resource counts.
+
+  // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
+  // are disabled, then these HazardRecs will be disabled.
+  const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
+  if (!Top.HazardRec) {
+    Top.HazardRec =
+        DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
+            Itin, DAG);
+  }
+  if (!Bot.HazardRec) {
+    Bot.HazardRec =
+        DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
+            Itin, DAG);
+  }
+}
+
+/// Initialize the per-region scheduling policy.
+void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
+                                  MachineBasicBlock::iterator End,
+                                  unsigned NumRegionInstrs) {
+  const MachineFunction &MF = *Begin->getParent()->getParent();
+  const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
+
+  // Avoid setting up the register pressure tracker for small regions to save
+  // compile time. As a rough heuristic, only track pressure when the number of
+  // schedulable instructions exceeds half the integer register file.
+  RegionPolicy.ShouldTrackPressure = true;
+  for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) {
+    MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT;
+    if (TLI->isTypeLegal(LegalIntVT)) {
+      unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
+        TLI->getRegClassFor(LegalIntVT));
+      RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
+    }
+  }
+
+  // For generic targets, we default to bottom-up, because it's simpler and more
+  // compile-time optimizations have been implemented in that direction.
+  RegionPolicy.OnlyBottomUp = true;
+
+  // Allow the subtarget to override default policy.
+  MF.getSubtarget().overrideSchedPolicy(RegionPolicy, Begin, End,
+                                        NumRegionInstrs);
+
+  // After subtarget overrides, apply command line options.
+  if (!EnableRegPressure)
+    RegionPolicy.ShouldTrackPressure = false;
+
+  // Check -misched-topdown/bottomup can force or unforce scheduling direction.
+  // e.g. -misched-bottomup=false allows scheduling in both directions.
+  assert((!ForceTopDown || !ForceBottomUp) &&
+         "-misched-topdown incompatible with -misched-bottomup");
+  if (ForceBottomUp.getNumOccurrences() > 0) {
+    RegionPolicy.OnlyBottomUp = ForceBottomUp;
+    if (RegionPolicy.OnlyBottomUp)
+      RegionPolicy.OnlyTopDown = false;
+  }
+  if (ForceTopDown.getNumOccurrences() > 0) {
+    RegionPolicy.OnlyTopDown = ForceTopDown;
+    if (RegionPolicy.OnlyTopDown)
+      RegionPolicy.OnlyBottomUp = false;
+  }
+}
+
+void GenericScheduler::dumpPolicy() {
+  dbgs() << "GenericScheduler RegionPolicy: "
+         << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure
+         << " OnlyTopDown=" << RegionPolicy.OnlyTopDown
+         << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp
+         << "\n";
+}
+
+/// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
+/// critical path by more cycles than it takes to drain the instruction buffer.
+/// We estimate an upper bounds on in-flight instructions as:
+///
+/// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
+/// InFlightIterations = AcyclicPath / CyclesPerIteration
+/// InFlightResources = InFlightIterations * LoopResources
+///
+/// TODO: Check execution resources in addition to IssueCount.
+void GenericScheduler::checkAcyclicLatency() {
+  if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
+    return;
 
-    if (ReadyCycle < MinReadyCycle)
-      MinReadyCycle = ReadyCycle;
+  // Scaled number of cycles per loop iteration.
+  unsigned IterCount =
+    std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
+             Rem.RemIssueCount);
+  // Scaled acyclic critical path.
+  unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
+  // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
+  unsigned InFlightCount =
+    (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
+  unsigned BufferLimit =
+    SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
+
+  Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
+
+  DEBUG(dbgs() << "IssueCycles="
+        << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
+        << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
+        << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount
+        << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
+        << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
+        if (Rem.IsAcyclicLatencyLimited)
+          dbgs() << "  ACYCLIC LATENCY LIMIT\n");
+}
 
-    if (ReadyCycle > CurrCycle)
-      continue;
+void GenericScheduler::registerRoots() {
+  Rem.CriticalPath = DAG->ExitSU.getDepth();
 
-    if (checkHazard(SU))
-      continue;
+  // Some roots may not feed into ExitSU. Check all of them in case.
+  for (std::vector<SUnit*>::const_iterator
+         I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) {
+    if ((*I)->getDepth() > Rem.CriticalPath)
+      Rem.CriticalPath = (*I)->getDepth();
+  }
+  DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n');
+  if (DumpCriticalPathLength) {
+    errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n";
+  }
 
-    Available.push(SU);
-    Pending.remove(Pending.begin()+i);
-    --i; --e;
+  if (EnableCyclicPath) {
+    Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
+    checkAcyclicLatency();
   }
-  CheckPending = false;
 }
 
-/// Remove SU from the ready set for this boundary.
-void ConvergingScheduler::SchedBoundary::removeReady(SUnit *SU) {
-  if (Available.isInQueue(SU))
-    Available.remove(Available.find(SU));
-  else {
-    assert(Pending.isInQueue(SU) && "bad ready count");
-    Pending.remove(Pending.find(SU));
+static bool tryPressure(const PressureChange &TryP,
+                        const PressureChange &CandP,
+                        GenericSchedulerBase::SchedCandidate &TryCand,
+                        GenericSchedulerBase::SchedCandidate &Cand,
+                        GenericSchedulerBase::CandReason Reason,
+                        const TargetRegisterInfo *TRI,
+                        const MachineFunction &MF) {
+  unsigned TryPSet = TryP.getPSetOrMax();
+  unsigned CandPSet = CandP.getPSetOrMax();
+  // If both candidates affect the same set, go with the smallest increase.
+  if (TryPSet == CandPSet) {
+    return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
+                   Reason);
+  }
+  // If one candidate decreases and the other increases, go with it.
+  // Invalid candidates have UnitInc==0.
+  if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
+                 Reason)) {
+    return true;
   }
-}
 
-/// If this queue only has one ready candidate, return it. As a side effect,
-/// advance the cycle until at least one node is ready. If multiple instructions
-/// are ready, return NULL.
-SUnit *ConvergingScheduler::SchedBoundary::pickOnlyChoice() {
-  if (CheckPending)
-    releasePending();
+  int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) :
+                                 std::numeric_limits<int>::max();
 
-  for (unsigned i = 0; Available.empty(); ++i) {
-    assert(i <= (HazardRec->getMaxLookAhead() + MaxMinLatency) &&
-           "permanent hazard"); (void)i;
-    bumpCycle();
-    releasePending();
-  }
-  if (Available.size() == 1)
-    return *Available.begin();
-  return NULL;
+  int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) :
+                                   std::numeric_limits<int>::max();
+
+  // If the candidates are decreasing pressure, reverse priority.
+  if (TryP.getUnitInc() < 0)
+    std::swap(TryRank, CandRank);
+  return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
 }
 
-#ifndef NDEBUG
-void ConvergingScheduler::traceCandidate(const char *Label, const ReadyQueue &Q,
-                                         SUnit *SU, PressureElement P) {
-  dbgs() << Label << " " << Q.getName() << " ";
-  if (P.isValid())
-    dbgs() << TRI->getRegPressureSetName(P.PSetID) << ":" << P.UnitIncrease
-           << " ";
-  else
-    dbgs() << "     ";
-  SU->dump(DAG);
+static unsigned getWeakLeft(const SUnit *SU, bool isTop) {
+  return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
 }
-#endif
 
-/// pickNodeFromQueue helper that returns true if the LHS reg pressure effect is
-/// more desirable than RHS from scheduling standpoint.
-static bool compareRPDelta(const RegPressureDelta &LHS,
-                           const RegPressureDelta &RHS) {
-  // Compare each component of pressure in decreasing order of importance
-  // without checking if any are valid. Invalid PressureElements are assumed to
-  // have UnitIncrease==0, so are neutral.
+/// Minimize physical register live ranges. Regalloc wants them adjacent to
+/// their physreg def/use.
+///
+/// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
+/// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
+/// with the operation that produces or consumes the physreg. We'll do this when
+/// regalloc has support for parallel copies.
+static int biasPhysRegCopy(const SUnit *SU, bool isTop) {
+  const MachineInstr *MI = SU->getInstr();
+  if (!MI->isCopy())
+    return 0;
+
+  unsigned ScheduledOper = isTop ? 1 : 0;
+  unsigned UnscheduledOper = isTop ? 0 : 1;
+  // If we have already scheduled the physreg produce/consumer, immediately
+  // schedule the copy.
+  if (TargetRegisterInfo::isPhysicalRegister(
+        MI->getOperand(ScheduledOper).getReg()))
+    return 1;
+  // If the physreg is at the boundary, defer it. Otherwise schedule it
+  // immediately to free the dependent. We can hoist the copy later.
+  bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
+  if (TargetRegisterInfo::isPhysicalRegister(
+        MI->getOperand(UnscheduledOper).getReg()))
+    return AtBoundary ? -1 : 1;
+  return 0;
+}
 
-  // Avoid increasing the max critical pressure in the scheduled region.
-  if (LHS.Excess.UnitIncrease != RHS.Excess.UnitIncrease)
-    return LHS.Excess.UnitIncrease < RHS.Excess.UnitIncrease;
+/// Apply a set of heursitics to a new candidate. Heuristics are currently
+/// hierarchical. This may be more efficient than a graduated cost model because
+/// we don't need to evaluate all aspects of the model for each node in the
+/// queue. But it's really done to make the heuristics easier to debug and
+/// statistically analyze.
+///
+/// \param Cand provides the policy and current best candidate.
+/// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
+/// \param Zone describes the scheduled zone that we are extending.
+/// \param RPTracker describes reg pressure within the scheduled zone.
+/// \param TempTracker is a scratch pressure tracker to reuse in queries.
+void GenericScheduler::tryCandidate(SchedCandidate &Cand,
+                                    SchedCandidate &TryCand,
+                                    SchedBoundary &Zone,
+                                    const RegPressureTracker &RPTracker,
+                                    RegPressureTracker &TempTracker) {
+
+  if (DAG->isTrackingPressure()) {
+    // Always initialize TryCand's RPDelta.
+    if (Zone.isTop()) {
+      TempTracker.getMaxDownwardPressureDelta(
+        TryCand.SU->getInstr(),
+        TryCand.RPDelta,
+        DAG->getRegionCriticalPSets(),
+        DAG->getRegPressure().MaxSetPressure);
+    }
+    else {
+      if (VerifyScheduling) {
+        TempTracker.getMaxUpwardPressureDelta(
+          TryCand.SU->getInstr(),
+          &DAG->getPressureDiff(TryCand.SU),
+          TryCand.RPDelta,
+          DAG->getRegionCriticalPSets(),
+          DAG->getRegPressure().MaxSetPressure);
+      }
+      else {
+        RPTracker.getUpwardPressureDelta(
+          TryCand.SU->getInstr(),
+          DAG->getPressureDiff(TryCand.SU),
+          TryCand.RPDelta,
+          DAG->getRegionCriticalPSets(),
+          DAG->getRegPressure().MaxSetPressure);
+      }
+    }
+  }
+  DEBUG(if (TryCand.RPDelta.Excess.isValid())
+          dbgs() << "  Try  SU(" << TryCand.SU->NodeNum << ") "
+                 << TRI->getRegPressureSetName(TryCand.RPDelta.Excess.getPSet())
+                 << ":" << TryCand.RPDelta.Excess.getUnitInc() << "\n");
+
+  // Initialize the candidate if needed.
+  if (!Cand.isValid()) {
+    TryCand.Reason = NodeOrder;
+    return;
+  }
+
+  if (tryGreater(biasPhysRegCopy(TryCand.SU, Zone.isTop()),
+                 biasPhysRegCopy(Cand.SU, Zone.isTop()),
+                 TryCand, Cand, PhysRegCopy))
+    return;
+
+  // Avoid exceeding the target's limit.
+  if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
+                                               Cand.RPDelta.Excess,
+                                               TryCand, Cand, RegExcess, TRI,
+                                               DAG->MF))
+    return;
 
   // Avoid increasing the max critical pressure in the scheduled region.
-  if (LHS.CriticalMax.UnitIncrease != RHS.CriticalMax.UnitIncrease)
-    return LHS.CriticalMax.UnitIncrease < RHS.CriticalMax.UnitIncrease;
+  if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
+                                               Cand.RPDelta.CriticalMax,
+                                               TryCand, Cand, RegCritical, TRI,
+                                               DAG->MF))
+    return;
+
+  // For loops that are acyclic path limited, aggressively schedule for latency.
+  // This can result in very long dependence chains scheduled in sequence, so
+  // once every cycle (when CurrMOps == 0), switch to normal heuristics.
+  if (Rem.IsAcyclicLatencyLimited && !Zone.getCurrMOps()
+      && tryLatency(TryCand, Cand, Zone))
+    return;
 
+  // Prioritize instructions that read unbuffered resources by stall cycles.
+  if (tryLess(Zone.getLatencyStallCycles(TryCand.SU),
+              Zone.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
+    return;
+
+  // Keep clustered nodes together to encourage downstream peephole
+  // optimizations which may reduce resource requirements.
+  //
+  // This is a best effort to set things up for a post-RA pass. Optimizations
+  // like generating loads of multiple registers should ideally be done within
+  // the scheduler pass by combining the loads during DAG postprocessing.
+  const SUnit *NextClusterSU =
+    Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
+  if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU,
+                 TryCand, Cand, Cluster))
+    return;
+
+  // Weak edges are for clustering and other constraints.
+  if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()),
+              getWeakLeft(Cand.SU, Zone.isTop()),
+              TryCand, Cand, Weak)) {
+    return;
+  }
   // Avoid increasing the max pressure of the entire region.
-  if (LHS.CurrentMax.UnitIncrease != RHS.CurrentMax.UnitIncrease)
-    return LHS.CurrentMax.UnitIncrease < RHS.CurrentMax.UnitIncrease;
+  if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
+                                               Cand.RPDelta.CurrentMax,
+                                               TryCand, Cand, RegMax, TRI,
+                                               DAG->MF))
+    return;
 
-  return false;
+  // Avoid critical resource consumption and balance the schedule.
+  TryCand.initResourceDelta(DAG, SchedModel);
+  if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
+              TryCand, Cand, ResourceReduce))
+    return;
+  if (tryGreater(TryCand.ResDelta.DemandedResources,
+                 Cand.ResDelta.DemandedResources,
+                 TryCand, Cand, ResourceDemand))
+    return;
+
+  // Avoid serializing long latency dependence chains.
+  // For acyclic path limited loops, latency was already checked above.
+  if (!RegionPolicy.DisableLatencyHeuristic && Cand.Policy.ReduceLatency &&
+      !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, Zone)) {
+    return;
+  }
+
+  // Prefer immediate defs/users of the last scheduled instruction. This is a
+  // local pressure avoidance strategy that also makes the machine code
+  // readable.
+  if (tryGreater(Zone.isNextSU(TryCand.SU), Zone.isNextSU(Cand.SU),
+                 TryCand, Cand, NextDefUse))
+    return;
+
+  // Fall through to original instruction order.
+  if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
+      || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
+    TryCand.Reason = NodeOrder;
+  }
 }
 
-/// Pick the best candidate from the top queue.
+/// Pick the best candidate from the queue.
 ///
 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
 /// DAG building. To adjust for the current scheduling location we need to
 /// maintain the number of vreg uses remaining to be top-scheduled.
-ConvergingScheduler::CandResult ConvergingScheduler::
-pickNodeFromQueue(ReadyQueue &Q, const RegPressureTracker &RPTracker,
-                  SchedCandidate &Candidate) {
+void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
+                                         const RegPressureTracker &RPTracker,
+                                         SchedCandidate &Cand) {
+  ReadyQueue &Q = Zone.Available;
+
   DEBUG(Q.dump());
 
   // getMaxPressureDelta temporarily modifies the tracker.
   RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
 
-  // BestSU remains NULL if no top candidates beat the best existing candidate.
-  CandResult FoundCandidate = NoCand;
   for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
-    RegPressureDelta RPDelta;
-    TempTracker.getMaxPressureDelta((*I)->getInstr(), RPDelta,
-                                    DAG->getRegionCriticalPSets(),
-                                    DAG->getRegPressure().MaxSetPressure);
-
-    // Initialize the candidate if needed.
-    if (!Candidate.SU) {
-      Candidate.SU = *I;
-      Candidate.RPDelta = RPDelta;
-      FoundCandidate = NodeOrder;
-      continue;
-    }
-    // Avoid exceeding the target's limit.
-    if (RPDelta.Excess.UnitIncrease < Candidate.RPDelta.Excess.UnitIncrease) {
-      DEBUG(traceCandidate("ECAND", Q, *I, RPDelta.Excess));
-      Candidate.SU = *I;
-      Candidate.RPDelta = RPDelta;
-      FoundCandidate = SingleExcess;
-      continue;
-    }
-    if (RPDelta.Excess.UnitIncrease > Candidate.RPDelta.Excess.UnitIncrease)
-      continue;
-    if (FoundCandidate == SingleExcess)
-      FoundCandidate = MultiPressure;
-
-    // Avoid increasing the max critical pressure in the scheduled region.
-    if (RPDelta.CriticalMax.UnitIncrease
-        < Candidate.RPDelta.CriticalMax.UnitIncrease) {
-      DEBUG(traceCandidate("PCAND", Q, *I, RPDelta.CriticalMax));
-      Candidate.SU = *I;
-      Candidate.RPDelta = RPDelta;
-      FoundCandidate = SingleCritical;
-      continue;
-    }
-    if (RPDelta.CriticalMax.UnitIncrease
-        > Candidate.RPDelta.CriticalMax.UnitIncrease)
-      continue;
-    if (FoundCandidate == SingleCritical)
-      FoundCandidate = MultiPressure;
-
-    // Avoid increasing the max pressure of the entire region.
-    if (RPDelta.CurrentMax.UnitIncrease
-        < Candidate.RPDelta.CurrentMax.UnitIncrease) {
-      DEBUG(traceCandidate("MCAND", Q, *I, RPDelta.CurrentMax));
-      Candidate.SU = *I;
-      Candidate.RPDelta = RPDelta;
-      FoundCandidate = SingleMax;
-      continue;
-    }
-    if (RPDelta.CurrentMax.UnitIncrease
-        > Candidate.RPDelta.CurrentMax.UnitIncrease)
-      continue;
-    if (FoundCandidate == SingleMax)
-      FoundCandidate = MultiPressure;
-
-    // Fall through to original instruction order.
-    // Only consider node order if Candidate was chosen from this Q.
-    if (FoundCandidate == NoCand)
-      continue;
 
-    if ((Q.getID() == TopQID && (*I)->NodeNum < Candidate.SU->NodeNum)
-        || (Q.getID() == BotQID && (*I)->NodeNum > Candidate.SU->NodeNum)) {
-      DEBUG(traceCandidate("NCAND", Q, *I));
-      Candidate.SU = *I;
-      Candidate.RPDelta = RPDelta;
-      FoundCandidate = NodeOrder;
+    SchedCandidate TryCand(Cand.Policy);
+    TryCand.SU = *I;
+    tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker);
+    if (TryCand.Reason != NoCand) {
+      // Initialize resource delta if needed in case future heuristics query it.
+      if (TryCand.ResDelta == SchedResourceDelta())
+        TryCand.initResourceDelta(DAG, SchedModel);
+      Cand.setBest(TryCand);
+      DEBUG(traceCandidate(Cand));
     }
   }
-  return FoundCandidate;
 }
 
 /// Pick the best candidate node from either the top or bottom queue.
-SUnit *ConvergingScheduler::pickNodeBidrectional(bool &IsTopNode) {
+SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
   // Schedule as far as possible in the direction of no choice. This is most
   // efficient, but also provides the best heuristics for CriticalPSets.
   if (SUnit *SU = Bot.pickOnlyChoice()) {
     IsTopNode = false;
+    DEBUG(dbgs() << "Pick Bot ONLY1\n");
     return SU;
   }
   if (SUnit *SU = Top.pickOnlyChoice()) {
     IsTopNode = true;
+    DEBUG(dbgs() << "Pick Top ONLY1\n");
     return SU;
   }
-  SchedCandidate BotCand;
+  CandPolicy NoPolicy;
+  SchedCandidate BotCand(NoPolicy);
+  SchedCandidate TopCand(NoPolicy);
+  // Set the bottom-up policy based on the state of the current bottom zone and
+  // the instructions outside the zone, including the top zone.
+  setPolicy(BotCand.Policy, /*IsPostRA=*/false, Bot, &Top);
+  // Set the top-down policy based on the state of the current top zone and
+  // the instructions outside the zone, including the bottom zone.
+  setPolicy(TopCand.Policy, /*IsPostRA=*/false, Top, &Bot);
+
   // Prefer bottom scheduling when heuristics are silent.
-  CandResult BotResult = pickNodeFromQueue(Bot.Available,
-                                           DAG->getBotRPTracker(), BotCand);
-  assert(BotResult != NoCand && "failed to find the first candidate");
+  pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
+  assert(BotCand.Reason != NoCand && "failed to find the first candidate");
 
   // If either Q has a single candidate that provides the least increase in
   // Excess pressure, we can immediately schedule from that Q.
@@ -1223,111 +2848,390 @@ SUnit *ConvergingScheduler::pickNodeBidrectional(bool &IsTopNode) {
   // affects picking from either Q. If scheduling in one direction must
   // increase pressure for one of the excess PSets, then schedule in that
   // direction first to provide more freedom in the other direction.
-  if (BotResult == SingleExcess || BotResult == SingleCritical) {
+  if ((BotCand.Reason == RegExcess && !BotCand.isRepeat(RegExcess))
+      || (BotCand.Reason == RegCritical
+          && !BotCand.isRepeat(RegCritical)))
+  {
     IsTopNode = false;
+    tracePick(BotCand, IsTopNode);
     return BotCand.SU;
   }
   // Check if the top Q has a better candidate.
-  SchedCandidate TopCand;
-  CandResult TopResult = pickNodeFromQueue(Top.Available,
-                                           DAG->getTopRPTracker(), TopCand);
-  assert(TopResult != NoCand && "failed to find the first candidate");
+  pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
+  assert(TopCand.Reason != NoCand && "failed to find the first candidate");
 
-  if (TopResult == SingleExcess || TopResult == SingleCritical) {
-    IsTopNode = true;
-    return TopCand.SU;
-  }
-  // If either Q has a single candidate that minimizes pressure above the
-  // original region's pressure pick it.
-  if (BotResult == SingleMax) {
-    IsTopNode = false;
-    return BotCand.SU;
-  }
-  if (TopResult == SingleMax) {
-    IsTopNode = true;
-    return TopCand.SU;
-  }
-  // Check for a salient pressure difference and pick the best from either side.
-  if (compareRPDelta(TopCand.RPDelta, BotCand.RPDelta)) {
+  // Choose the queue with the most important (lowest enum) reason.
+  if (TopCand.Reason < BotCand.Reason) {
     IsTopNode = true;
+    tracePick(TopCand, IsTopNode);
     return TopCand.SU;
   }
-  // Otherwise prefer the bottom candidate in node order.
+  // Otherwise prefer the bottom candidate, in node order if all else failed.
   IsTopNode = false;
+  tracePick(BotCand, IsTopNode);
   return BotCand.SU;
 }
 
 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
-SUnit *ConvergingScheduler::pickNode(bool &IsTopNode) {
+SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
   if (DAG->top() == DAG->bottom()) {
     assert(Top.Available.empty() && Top.Pending.empty() &&
            Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
-    return NULL;
+    return nullptr;
   }
   SUnit *SU;
-  if (ForceTopDown) {
-    SU = Top.pickOnlyChoice();
-    if (!SU) {
-      SchedCandidate TopCand;
-      CandResult TopResult =
-        pickNodeFromQueue(Top.Available, DAG->getTopRPTracker(), TopCand);
-      assert(TopResult != NoCand && "failed to find the first candidate");
-      (void)TopResult;
-      SU = TopCand.SU;
+  do {
+    if (RegionPolicy.OnlyTopDown) {
+      SU = Top.pickOnlyChoice();
+      if (!SU) {
+        CandPolicy NoPolicy;
+        SchedCandidate TopCand(NoPolicy);
+        pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
+        assert(TopCand.Reason != NoCand && "failed to find a candidate");
+        tracePick(TopCand, true);
+        SU = TopCand.SU;
+      }
+      IsTopNode = true;
     }
-    IsTopNode = true;
-  }
-  else if (ForceBottomUp) {
-    SU = Bot.pickOnlyChoice();
-    if (!SU) {
-      SchedCandidate BotCand;
-      CandResult BotResult =
-        pickNodeFromQueue(Bot.Available, DAG->getBotRPTracker(), BotCand);
-      assert(BotResult != NoCand && "failed to find the first candidate");
-      (void)BotResult;
-      SU = BotCand.SU;
+    else if (RegionPolicy.OnlyBottomUp) {
+      SU = Bot.pickOnlyChoice();
+      if (!SU) {
+        CandPolicy NoPolicy;
+        SchedCandidate BotCand(NoPolicy);
+        pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
+        assert(BotCand.Reason != NoCand && "failed to find a candidate");
+        tracePick(BotCand, false);
+        SU = BotCand.SU;
+      }
+      IsTopNode = false;
     }
-    IsTopNode = false;
-  }
-  else {
-    SU = pickNodeBidrectional(IsTopNode);
-  }
+    else {
+      SU = pickNodeBidirectional(IsTopNode);
+    }
+  } while (SU->isScheduled);
+
   if (SU->isTopReady())
     Top.removeReady(SU);
   if (SU->isBottomReady())
     Bot.removeReady(SU);
 
-  DEBUG(dbgs() << "*** " << (IsTopNode ? "Top" : "Bottom")
-        << " Scheduling Instruction in cycle "
-        << (IsTopNode ? Top.CurrCycle : Bot.CurrCycle) << '\n';
-        SU->dump(DAG));
+  DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
   return SU;
 }
 
+void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) {
+
+  MachineBasicBlock::iterator InsertPos = SU->getInstr();
+  if (!isTop)
+    ++InsertPos;
+  SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
+
+  // Find already scheduled copies with a single physreg dependence and move
+  // them just above the scheduled instruction.
+  for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end();
+       I != E; ++I) {
+    if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg()))
+      continue;
+    SUnit *DepSU = I->getSUnit();
+    if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
+      continue;
+    MachineInstr *Copy = DepSU->getInstr();
+    if (!Copy->isCopy())
+      continue;
+    DEBUG(dbgs() << "  Rescheduling physreg copy ";
+          I->getSUnit()->dump(DAG));
+    DAG->moveInstruction(Copy, InsertPos);
+  }
+}
+
 /// Update the scheduler's state after scheduling a node. This is the same node
-/// that was just returned by pickNode(). However, ScheduleDAGMI needs to update
-/// it's state based on the current cycle before MachineSchedStrategy does.
-void ConvergingScheduler::schedNode(SUnit *SU, bool IsTopNode) {
+/// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
+/// update it's state based on the current cycle before MachineSchedStrategy
+/// does.
+///
+/// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
+/// them here. See comments in biasPhysRegCopy.
+void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
   if (IsTopNode) {
-    SU->TopReadyCycle = Top.CurrCycle;
+    SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
     Top.bumpNode(SU);
+    if (SU->hasPhysRegUses)
+      reschedulePhysRegCopies(SU, true);
   }
   else {
-    SU->BotReadyCycle = Bot.CurrCycle;
+    SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
     Bot.bumpNode(SU);
+    if (SU->hasPhysRegDefs)
+      reschedulePhysRegCopies(SU, false);
   }
 }
 
 /// Create the standard converging machine scheduler. This will be used as the
 /// default scheduler if the target does not set a default.
-static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) {
-  assert((!ForceTopDown || !ForceBottomUp) &&
-         "-misched-topdown incompatible with -misched-bottomup");
-  return new ScheduleDAGMI(C, new ConvergingScheduler());
+static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C) {
+  ScheduleDAGMILive *DAG = new ScheduleDAGMILive(C, make_unique<GenericScheduler>(C));
+  // Register DAG post-processors.
+  //
+  // FIXME: extend the mutation API to allow earlier mutations to instantiate
+  // data and pass it to later mutations. Have a single mutation that gathers
+  // the interesting nodes in one pass.
+  DAG->addMutation(make_unique<CopyConstrain>(DAG->TII, DAG->TRI));
+  if (EnableLoadCluster && DAG->TII->enableClusterLoads())
+    DAG->addMutation(make_unique<LoadClusterMutation>(DAG->TII, DAG->TRI));
+  if (EnableMacroFusion)
+    DAG->addMutation(make_unique<MacroFusion>(*DAG->TII, *DAG->TRI));
+  return DAG;
 }
+
 static MachineSchedRegistry
-ConvergingSchedRegistry("converge", "Standard converging scheduler.",
-                        createConvergingSched);
+GenericSchedRegistry("converge", "Standard converging scheduler.",
+                     createGenericSchedLive);
+
+//===----------------------------------------------------------------------===//
+// PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
+//===----------------------------------------------------------------------===//
+
+void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) {
+  DAG = Dag;
+  SchedModel = DAG->getSchedModel();
+  TRI = DAG->TRI;
+
+  Rem.init(DAG, SchedModel);
+  Top.init(DAG, SchedModel, &Rem);
+  BotRoots.clear();
+
+  // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
+  // or are disabled, then these HazardRecs will be disabled.
+  const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
+  if (!Top.HazardRec) {
+    Top.HazardRec =
+        DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
+            Itin, DAG);
+  }
+}
+
+
+void PostGenericScheduler::registerRoots() {
+  Rem.CriticalPath = DAG->ExitSU.getDepth();
+
+  // Some roots may not feed into ExitSU. Check all of them in case.
+  for (SmallVectorImpl<SUnit*>::const_iterator
+         I = BotRoots.begin(), E = BotRoots.end(); I != E; ++I) {
+    if ((*I)->getDepth() > Rem.CriticalPath)
+      Rem.CriticalPath = (*I)->getDepth();
+  }
+  DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n');
+  if (DumpCriticalPathLength) {
+    errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n";
+  }
+}
+
+/// Apply a set of heursitics to a new candidate for PostRA scheduling.
+///
+/// \param Cand provides the policy and current best candidate.
+/// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
+void PostGenericScheduler::tryCandidate(SchedCandidate &Cand,
+                                        SchedCandidate &TryCand) {
+
+  // Initialize the candidate if needed.
+  if (!Cand.isValid()) {
+    TryCand.Reason = NodeOrder;
+    return;
+  }
+
+  // Prioritize instructions that read unbuffered resources by stall cycles.
+  if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
+              Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
+    return;
+
+  // Avoid critical resource consumption and balance the schedule.
+  if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
+              TryCand, Cand, ResourceReduce))
+    return;
+  if (tryGreater(TryCand.ResDelta.DemandedResources,
+                 Cand.ResDelta.DemandedResources,
+                 TryCand, Cand, ResourceDemand))
+    return;
+
+  // Avoid serializing long latency dependence chains.
+  if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
+    return;
+  }
+
+  // Fall through to original instruction order.
+  if (TryCand.SU->NodeNum < Cand.SU->NodeNum)
+    TryCand.Reason = NodeOrder;
+}
+
+void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) {
+  ReadyQueue &Q = Top.Available;
+
+  DEBUG(Q.dump());
+
+  for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
+    SchedCandidate TryCand(Cand.Policy);
+    TryCand.SU = *I;
+    TryCand.initResourceDelta(DAG, SchedModel);
+    tryCandidate(Cand, TryCand);
+    if (TryCand.Reason != NoCand) {
+      Cand.setBest(TryCand);
+      DEBUG(traceCandidate(Cand));
+    }
+  }
+}
+
+/// Pick the next node to schedule.
+SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) {
+  if (DAG->top() == DAG->bottom()) {
+    assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage");
+    return nullptr;
+  }
+  SUnit *SU;
+  do {
+    SU = Top.pickOnlyChoice();
+    if (!SU) {
+      CandPolicy NoPolicy;
+      SchedCandidate TopCand(NoPolicy);
+      // Set the top-down policy based on the state of the current top zone and
+      // the instructions outside the zone, including the bottom zone.
+      setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr);
+      pickNodeFromQueue(TopCand);
+      assert(TopCand.Reason != NoCand && "failed to find a candidate");
+      tracePick(TopCand, true);
+      SU = TopCand.SU;
+    }
+  } while (SU->isScheduled);
+
+  IsTopNode = true;
+  Top.removeReady(SU);
+
+  DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
+  return SU;
+}
+
+/// Called after ScheduleDAGMI has scheduled an instruction and updated
+/// scheduled/remaining flags in the DAG nodes.
+void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
+  SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
+  Top.bumpNode(SU);
+}
+
+/// Create a generic scheduler with no vreg liveness or DAG mutation passes.
+static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C) {
+  return new ScheduleDAGMI(C, make_unique<PostGenericScheduler>(C), /*IsPostRA=*/true);
+}
+
+//===----------------------------------------------------------------------===//
+// ILP Scheduler. Currently for experimental analysis of heuristics.
+//===----------------------------------------------------------------------===//
+
+namespace {
+/// \brief Order nodes by the ILP metric.
+struct ILPOrder {
+  const SchedDFSResult *DFSResult;
+  const BitVector *ScheduledTrees;
+  bool MaximizeILP;
+
+  ILPOrder(bool MaxILP)
+    : DFSResult(nullptr), ScheduledTrees(nullptr), MaximizeILP(MaxILP) {}
+
+  /// \brief Apply a less-than relation on node priority.
+  ///
+  /// (Return true if A comes after B in the Q.)
+  bool operator()(const SUnit *A, const SUnit *B) const {
+    unsigned SchedTreeA = DFSResult->getSubtreeID(A);
+    unsigned SchedTreeB = DFSResult->getSubtreeID(B);
+    if (SchedTreeA != SchedTreeB) {
+      // Unscheduled trees have lower priority.
+      if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
+        return ScheduledTrees->test(SchedTreeB);
+
+      // Trees with shallower connections have have lower priority.
+      if (DFSResult->getSubtreeLevel(SchedTreeA)
+          != DFSResult->getSubtreeLevel(SchedTreeB)) {
+        return DFSResult->getSubtreeLevel(SchedTreeA)
+          < DFSResult->getSubtreeLevel(SchedTreeB);
+      }
+    }
+    if (MaximizeILP)
+      return DFSResult->getILP(A) < DFSResult->getILP(B);
+    else
+      return DFSResult->getILP(A) > DFSResult->getILP(B);
+  }
+};
+
+/// \brief Schedule based on the ILP metric.
+class ILPScheduler : public MachineSchedStrategy {
+  ScheduleDAGMILive *DAG;
+  ILPOrder Cmp;
+
+  std::vector<SUnit*> ReadyQ;
+public:
+  ILPScheduler(bool MaximizeILP): DAG(nullptr), Cmp(MaximizeILP) {}
+
+  void initialize(ScheduleDAGMI *dag) override {
+    assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
+    DAG = static_cast<ScheduleDAGMILive*>(dag);
+    DAG->computeDFSResult();
+    Cmp.DFSResult = DAG->getDFSResult();
+    Cmp.ScheduledTrees = &DAG->getScheduledTrees();
+    ReadyQ.clear();
+  }
+
+  void registerRoots() override {
+    // Restore the heap in ReadyQ with the updated DFS results.
+    std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
+  }
+
+  /// Implement MachineSchedStrategy interface.
+  /// -----------------------------------------
+
+  /// Callback to select the highest priority node from the ready Q.
+  SUnit *pickNode(bool &IsTopNode) override {
+    if (ReadyQ.empty()) return nullptr;
+    std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
+    SUnit *SU = ReadyQ.back();
+    ReadyQ.pop_back();
+    IsTopNode = false;
+    DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") "
+          << " ILP: " << DAG->getDFSResult()->getILP(SU)
+          << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @"
+          << DAG->getDFSResult()->getSubtreeLevel(
+            DAG->getDFSResult()->getSubtreeID(SU)) << '\n'
+          << "Scheduling " << *SU->getInstr());
+    return SU;
+  }
+
+  /// \brief Scheduler callback to notify that a new subtree is scheduled.
+  void scheduleTree(unsigned SubtreeID) override {
+    std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
+  }
+
+  /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
+  /// DFSResults, and resort the priority Q.
+  void schedNode(SUnit *SU, bool IsTopNode) override {
+    assert(!IsTopNode && "SchedDFSResult needs bottom-up");
+  }
+
+  void releaseTopNode(SUnit *) override { /*only called for top roots*/ }
+
+  void releaseBottomNode(SUnit *SU) override {
+    ReadyQ.push_back(SU);
+    std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
+  }
+};
+} // namespace
+
+static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
+  return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(true));
+}
+static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
+  return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(false));
+}
+static MachineSchedRegistry ILPMaxRegistry(
+  "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
+static MachineSchedRegistry ILPMinRegistry(
+  "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
 
 //===----------------------------------------------------------------------===//
 // Machine Instruction Shuffler for Correctness Testing
@@ -1364,7 +3268,7 @@ public:
   InstructionShuffler(bool alternate, bool topdown)
     : IsAlternating(alternate), IsTopDown(topdown) {}
 
-  virtual void initialize(ScheduleDAGMI *) {
+  void initialize(ScheduleDAGMI*) override {
     TopQ.clear();
     BottomQ.clear();
   }
@@ -1372,11 +3276,11 @@ public:
   /// Implement MachineSchedStrategy interface.
   /// -----------------------------------------
 
-  virtual SUnit *pickNode(bool &IsTopNode) {
+  SUnit *pickNode(bool &IsTopNode) override {
     SUnit *SU;
     if (IsTopDown) {
       do {
-        if (TopQ.empty()) return NULL;
+        if (TopQ.empty()) return nullptr;
         SU = TopQ.top();
         TopQ.pop();
       } while (SU->isScheduled);
@@ -1384,7 +3288,7 @@ public:
     }
     else {
       do {
-        if (BottomQ.empty()) return NULL;
+        if (BottomQ.empty()) return nullptr;
         SU = BottomQ.top();
         BottomQ.pop();
       } while (SU->isScheduled);
@@ -1395,12 +3299,12 @@ public:
     return SU;
   }
 
-  virtual void schedNode(SUnit *SU, bool IsTopNode) {}
+  void schedNode(SUnit *SU, bool IsTopNode) override {}
 
-  virtual void releaseTopNode(SUnit *SU) {
+  void releaseTopNode(SUnit *SU) override {
     TopQ.push(SU);
   }
-  virtual void releaseBottomNode(SUnit *SU) {
+  void releaseBottomNode(SUnit *SU) override {
     BottomQ.push(SU);
   }
 };
@@ -1411,9 +3315,99 @@ static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
   bool TopDown = !ForceBottomUp;
   assert((TopDown || !ForceTopDown) &&
          "-misched-topdown incompatible with -misched-bottomup");
-  return new ScheduleDAGMI(C, new InstructionShuffler(Alternate, TopDown));
+  return new ScheduleDAGMILive(C, make_unique<InstructionShuffler>(Alternate, TopDown));
 }
 static MachineSchedRegistry ShufflerRegistry(
   "shuffle", "Shuffle machine instructions alternating directions",
   createInstructionShuffler);
 #endif // !NDEBUG
+
+//===----------------------------------------------------------------------===//
+// GraphWriter support for ScheduleDAGMILive.
+//===----------------------------------------------------------------------===//
+
+#ifndef NDEBUG
+namespace llvm {
+
+template<> struct GraphTraits<
+  ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
+
+template<>
+struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
+
+  DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
+
+  static std::string getGraphName(const ScheduleDAG *G) {
+    return G->MF.getName();
+  }
+
+  static bool renderGraphFromBottomUp() {
+    return true;
+  }
+
+  static bool isNodeHidden(const SUnit *Node) {
+    if (ViewMISchedCutoff == 0)
+      return false;
+    return (Node->Preds.size() > ViewMISchedCutoff
+         || Node->Succs.size() > ViewMISchedCutoff);
+  }
+
+  /// If you want to override the dot attributes printed for a particular
+  /// edge, override this method.
+  static std::string getEdgeAttributes(const SUnit *Node,
+                                       SUnitIterator EI,
+                                       const ScheduleDAG *Graph) {
+    if (EI.isArtificialDep())
+      return "color=cyan,style=dashed";
+    if (EI.isCtrlDep())
+      return "color=blue,style=dashed";
+    return "";
+  }
+
+  static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
+    std::string Str;
+    raw_string_ostream SS(Str);
+    const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
+    const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
+      static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
+    SS << "SU:" << SU->NodeNum;
+    if (DFS)
+      SS << " I:" << DFS->getNumInstrs(SU);
+    return SS.str();
+  }
+  static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
+    return G->getGraphNodeLabel(SU);
+  }
+
+  static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
+    std::string Str("shape=Mrecord");
+    const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
+    const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
+      static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
+    if (DFS) {
+      Str += ",style=filled,fillcolor=\"#";
+      Str += DOT::getColorString(DFS->getSubtreeID(N));
+      Str += '"';
+    }
+    return Str;
+  }
+};
+} // namespace llvm
+#endif // NDEBUG
+
+/// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
+/// rendered using 'dot'.
+///
+void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
+#ifndef NDEBUG
+  ViewGraph(this, Name, false, Title);
+#else
+  errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
+         << "systems with Graphviz or gv!\n";
+#endif  // NDEBUG
+}
+
+/// Out-of-line implementation with no arguments is handy for gdb.
+void ScheduleDAGMI::viewGraph() {
+  viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
+}