[LoopAccesses] If shouldRetryWithRuntimeCheck, reset InterestingDependences
[oota-llvm.git] / lib / Analysis / BasicAliasAnalysis.cpp
index d0b6f5883e096f9595dfcefd04da4d378bf876e3..bbb74a2c454030d42daebc0233fb40a6462bba93 100644 (file)
 #include "llvm/ADT/SmallPtrSet.h"
 #include "llvm/ADT/SmallVector.h"
 #include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/AssumptionCache.h"
 #include "llvm/Analysis/CFG.h"
 #include "llvm/Analysis/CaptureTracking.h"
 #include "llvm/Analysis/InstructionSimplify.h"
 #include "llvm/Analysis/LoopInfo.h"
 #include "llvm/Analysis/MemoryBuiltins.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
 #include "llvm/Analysis/ValueTracking.h"
 #include "llvm/IR/Constants.h"
 #include "llvm/IR/DataLayout.h"
@@ -37,7 +39,6 @@
 #include "llvm/IR/Operator.h"
 #include "llvm/Pass.h"
 #include "llvm/Support/ErrorHandling.h"
-#include "llvm/Target/TargetLibraryInfo.h"
 #include <algorithm>
 using namespace llvm;
 
@@ -102,7 +103,7 @@ static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
                               const TargetLibraryInfo &TLI,
                               bool RoundToAlign = false) {
   uint64_t Size;
-  if (getObjectSize(V, Size, &DL, &TLI, RoundToAlign))
+  if (getObjectSize(V, Size, DL, &TLI, RoundToAlign))
     return Size;
   return AliasAnalysis::UnknownSize;
 }
@@ -156,36 +157,31 @@ static bool isObjectSize(const Value *V, uint64_t Size,
   return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize == Size;
 }
 
-/// isIdentifiedFunctionLocal - Return true if V is umabigously identified
-/// at the function-level. Different IdentifiedFunctionLocals can't alias.
-/// Further, an IdentifiedFunctionLocal can not alias with any function
-/// arguments other than itself, which is not necessarily true for
-/// IdentifiedObjects.
-static bool isIdentifiedFunctionLocal(const Value *V)
-{
-  return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V);
-}
-
-
 //===----------------------------------------------------------------------===//
 // GetElementPtr Instruction Decomposition and Analysis
 //===----------------------------------------------------------------------===//
 
 namespace {
-  enum ExtensionKind {
-    EK_NotExtended,
-    EK_SignExt,
-    EK_ZeroExt
-  };
 
+// A linear transformation of a Value; this class represents ZExt(SExt(V,
+// SExtBits), ZExtBits) * Scale + Offset.
   struct VariableGEPIndex {
+
+    // An opaque Value - we can't decompose this further.
     const Value *V;
-    ExtensionKind Extension;
+
+    // We need to track what extensions we've done as we consider the same Value
+    // with different extensions as different variables in a GEP's linear
+    // expression;
+    // e.g.: if V == -1, then sext(x) != zext(x).
+    unsigned ZExtBits;
+    unsigned SExtBits;
+
     int64_t Scale;
 
     bool operator==(const VariableGEPIndex &Other) const {
-      return V == Other.V && Extension == Other.Extension &&
-        Scale == Other.Scale;
+      return V == Other.V && ZExtBits == Other.ZExtBits &&
+             SExtBits == Other.SExtBits && Scale == Other.Scale;
     }
 
     bool operator!=(const VariableGEPIndex &Other) const {
@@ -203,9 +199,12 @@ namespace {
 ///
 /// Note that this looks through extends, so the high bits may not be
 /// represented in the result.
-static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset,
-                                  ExtensionKind &Extension,
-                                  const DataLayout &DL, unsigned Depth) {
+static const Value *GetLinearExpression(const Value *V, APInt &Scale,
+                                        APInt &Offset, unsigned &ZExtBits,
+                                        unsigned &SExtBits,
+                                        const DataLayout &DL, unsigned Depth,
+                                        AssumptionCache *AC, DominatorTree *DT,
+                                        bool &NSW, bool &NUW) {
   assert(V->getType()->isIntegerTy() && "Not an integer value");
 
   // Limit our recursion depth.
@@ -215,53 +214,122 @@ static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset,
     return V;
   }
 
-  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
+  if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) {
+    // if it's a constant, just convert it to an offset and remove the variable.
+    // If we've been called recursively the Offset bit width will be greater
+    // than the constant's (the Offset's always as wide as the outermost call),
+    // so we'll zext here and process any extension in the isa<SExtInst> &
+    // isa<ZExtInst> cases below.
+    Offset += Const->getValue().zextOrSelf(Offset.getBitWidth());
+    assert(Scale == 0 && "Constant values don't have a scale");
+    return V;
+  }
+
+  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
+
+      // If we've been called recursively then Offset and Scale will be wider
+      // that the BOp operands. We'll always zext it here as we'll process sign
+      // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases).
+      APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth());
+
       switch (BOp->getOpcode()) {
-      default: break;
+      default:
+        // We don't understand this instruction, so we can't decompose it any
+        // further.
+        Scale = 1;
+        Offset = 0;
+        return V;
       case Instruction::Or:
         // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
         // analyze it.
-        if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), &DL))
+        if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
+                               BOp, DT))
           break;
         // FALL THROUGH.
       case Instruction::Add:
-        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
-                                DL, Depth+1);
-        Offset += RHSC->getValue();
-        return V;
+        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
+                                SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
+        Offset += RHS;
+        break;
+      case Instruction::Sub:
+        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
+                                SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
+        Offset -= RHS;
+        break;
       case Instruction::Mul:
-        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
-                                DL, Depth+1);
-        Offset *= RHSC->getValue();
-        Scale *= RHSC->getValue();
-        return V;
+        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
+                                SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
+        Offset *= RHS;
+        Scale *= RHS;
+        break;
       case Instruction::Shl:
-        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
-                                DL, Depth+1);
-        Offset <<= RHSC->getValue().getLimitedValue();
-        Scale <<= RHSC->getValue().getLimitedValue();
+        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
+                                SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
+        Offset <<= RHS.getLimitedValue();
+        Scale <<= RHS.getLimitedValue();
+        // the semantics of nsw and nuw for left shifts don't match those of
+        // multiplications, so we won't propagate them.
+        NSW = NUW = false;
         return V;
       }
+
+      if (isa<OverflowingBinaryOperator>(BOp)) {
+        NUW &= BOp->hasNoUnsignedWrap();
+        NSW &= BOp->hasNoSignedWrap();
+      }
+      return V;
     }
   }
 
   // Since GEP indices are sign extended anyway, we don't care about the high
   // bits of a sign or zero extended value - just scales and offsets.  The
   // extensions have to be consistent though.
-  if ((isa<SExtInst>(V) && Extension != EK_ZeroExt) ||
-      (isa<ZExtInst>(V) && Extension != EK_SignExt)) {
+  if (isa<SExtInst>(V) || isa<ZExtInst>(V)) {
     Value *CastOp = cast<CastInst>(V)->getOperand(0);
-    unsigned OldWidth = Scale.getBitWidth();
+    unsigned NewWidth = V->getType()->getPrimitiveSizeInBits();
     unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
-    Scale = Scale.trunc(SmallWidth);
-    Offset = Offset.trunc(SmallWidth);
-    Extension = isa<SExtInst>(V) ? EK_SignExt : EK_ZeroExt;
-
-    Value *Result = GetLinearExpression(CastOp, Scale, Offset, Extension,
-                                        DL, Depth+1);
-    Scale = Scale.zext(OldWidth);
-    Offset = Offset.zext(OldWidth);
+    unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits;
+    const Value *Result =
+        GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL,
+                            Depth + 1, AC, DT, NSW, NUW);
+
+    // zext(zext(%x)) == zext(%x), and similiarly for sext; we'll handle this
+    // by just incrementing the number of bits we've extended by.
+    unsigned ExtendedBy = NewWidth - SmallWidth;
+
+    if (isa<SExtInst>(V) && ZExtBits == 0) {
+      // sext(sext(%x, a), b) == sext(%x, a + b)
+
+      if (NSW) {
+        // We haven't sign-wrapped, so it's valid to decompose sext(%x + c)
+        // into sext(%x) + sext(c). We'll sext the Offset ourselves:
+        unsigned OldWidth = Offset.getBitWidth();
+        Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth);
+      } else {
+        // We may have signed-wrapped, so don't decompose sext(%x + c) into
+        // sext(%x) + sext(c)
+        Scale = 1;
+        Offset = 0;
+        Result = CastOp;
+        ZExtBits = OldZExtBits;
+        SExtBits = OldSExtBits;
+      }
+      SExtBits += ExtendedBy;
+    } else {
+      // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b)
+
+      if (!NUW) {
+        // We may have unsigned-wrapped, so don't decompose zext(%x + c) into
+        // zext(%x) + zext(c)
+        Scale = 1;
+        Offset = 0;
+        Result = CastOp;
+        ZExtBits = OldZExtBits;
+        SExtBits = OldSExtBits;
+      }
+      ZExtBits += ExtendedBy;
+    }
 
     return Result;
   }
@@ -289,7 +357,8 @@ static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset,
 static const Value *
 DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
                        SmallVectorImpl<VariableGEPIndex> &VarIndices,
-                       bool &MaxLookupReached, const DataLayout *DL) {
+                       bool &MaxLookupReached, const DataLayout &DL,
+                       AssumptionCache *AC, DominatorTree *DT) {
   // Limit recursion depth to limit compile time in crazy cases.
   unsigned MaxLookup = MaxLookupSearchDepth;
   MaxLookupReached = false;
@@ -320,7 +389,10 @@ DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
       // If it's not a GEP, hand it off to SimplifyInstruction to see if it
       // can come up with something. This matches what GetUnderlyingObject does.
       if (const Instruction *I = dyn_cast<Instruction>(V))
-        // TODO: Get a DominatorTree and use it here.
+        // TODO: Get a DominatorTree and AssumptionCache and use them here
+        // (these are both now available in this function, but this should be
+        // updated when GetUnderlyingObject is updated). TLI should be
+        // provided also.
         if (const Value *Simplified =
               SimplifyInstruction(const_cast<Instruction *>(I), DL)) {
           V = Simplified;
@@ -334,52 +406,44 @@ DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
     if (!GEPOp->getOperand(0)->getType()->getPointerElementType()->isSized())
       return V;
 
-    // If we are lacking DataLayout information, we can't compute the offets of
-    // elements computed by GEPs.  However, we can handle bitcast equivalent
-    // GEPs.
-    if (!DL) {
-      if (!GEPOp->hasAllZeroIndices())
-        return V;
-      V = GEPOp->getOperand(0);
-      continue;
-    }
-
     unsigned AS = GEPOp->getPointerAddressSpace();
     // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
     gep_type_iterator GTI = gep_type_begin(GEPOp);
     for (User::const_op_iterator I = GEPOp->op_begin()+1,
          E = GEPOp->op_end(); I != E; ++I) {
-      Value *Index = *I;
+      const Value *Index = *I;
       // Compute the (potentially symbolic) offset in bytes for this index.
       if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
         // For a struct, add the member offset.
         unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
         if (FieldNo == 0) continue;
 
-        BaseOffs += DL->getStructLayout(STy)->getElementOffset(FieldNo);
+        BaseOffs += DL.getStructLayout(STy)->getElementOffset(FieldNo);
         continue;
       }
 
       // For an array/pointer, add the element offset, explicitly scaled.
-      if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
+      if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
         if (CIdx->isZero()) continue;
-        BaseOffs += DL->getTypeAllocSize(*GTI)*CIdx->getSExtValue();
+        BaseOffs += DL.getTypeAllocSize(*GTI) * CIdx->getSExtValue();
         continue;
       }
 
-      uint64_t Scale = DL->getTypeAllocSize(*GTI);
-      ExtensionKind Extension = EK_NotExtended;
+      uint64_t Scale = DL.getTypeAllocSize(*GTI);
+      unsigned ZExtBits = 0, SExtBits = 0;
 
       // If the integer type is smaller than the pointer size, it is implicitly
       // sign extended to pointer size.
       unsigned Width = Index->getType()->getIntegerBitWidth();
-      if (DL->getPointerSizeInBits(AS) > Width)
-        Extension = EK_SignExt;
+      unsigned PointerSize = DL.getPointerSizeInBits(AS);
+      if (PointerSize > Width)
+        SExtBits += PointerSize - Width;
 
       // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
       APInt IndexScale(Width, 0), IndexOffset(Width, 0);
-      Index = GetLinearExpression(Index, IndexScale, IndexOffset, Extension,
-                                  *DL, 0);
+      bool NSW = true, NUW = true;
+      Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits,
+                                  SExtBits, DL, 0, AC, DT, NSW, NUW);
 
       // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
       // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
@@ -391,8 +455,8 @@ DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
       //   A[x][x] -> x*16 + x*4 -> x*20
       // This also ensures that 'x' only appears in the index list once.
       for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) {
-        if (VarIndices[i].V == Index &&
-            VarIndices[i].Extension == Extension) {
+        if (VarIndices[i].V == Index && VarIndices[i].ZExtBits == ZExtBits &&
+            VarIndices[i].SExtBits == SExtBits) {
           Scale += VarIndices[i].Scale;
           VarIndices.erase(VarIndices.begin()+i);
           break;
@@ -401,13 +465,13 @@ DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
 
       // Make sure that we have a scale that makes sense for this target's
       // pointer size.
-      if (unsigned ShiftBits = 64 - DL->getPointerSizeInBits(AS)) {
+      if (unsigned ShiftBits = 64 - PointerSize) {
         Scale <<= ShiftBits;
         Scale = (int64_t)Scale >> ShiftBits;
       }
 
       if (Scale) {
-        VariableGEPIndex Entry = {Index, Extension,
+        VariableGEPIndex Entry = {Index, ZExtBits, SExtBits,
                                   static_cast<int64_t>(Scale)};
         VarIndices.push_back(Entry);
       }
@@ -454,21 +518,20 @@ namespace {
       initializeBasicAliasAnalysisPass(*PassRegistry::getPassRegistry());
     }
 
-    void initializePass() override {
-      InitializeAliasAnalysis(this);
-    }
+    bool doInitialization(Module &M) override;
 
     void getAnalysisUsage(AnalysisUsage &AU) const override {
       AU.addRequired<AliasAnalysis>();
-      AU.addRequired<TargetLibraryInfo>();
+      AU.addRequired<AssumptionCacheTracker>();
+      AU.addRequired<TargetLibraryInfoWrapperPass>();
     }
 
     AliasResult alias(const Location &LocA, const Location &LocB) override {
       assert(AliasCache.empty() && "AliasCache must be cleared after use!");
       assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
              "BasicAliasAnalysis doesn't support interprocedural queries.");
-      AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.TBAATag,
-                                     LocB.Ptr, LocB.Size, LocB.TBAATag);
+      AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags,
+                                     LocB.Ptr, LocB.Size, LocB.AATags);
       // AliasCache rarely has more than 1 or 2 elements, always use
       // shrink_and_clear so it quickly returns to the inline capacity of the
       // SmallDenseMap if it ever grows larger.
@@ -482,10 +545,7 @@ namespace {
                                const Location &Loc) override;
 
     ModRefResult getModRefInfo(ImmutableCallSite CS1,
-                               ImmutableCallSite CS2) override {
-      // The AliasAnalysis base class has some smarts, lets use them.
-      return AliasAnalysis::getModRefInfo(CS1, CS2);
-    }
+                               ImmutableCallSite CS2) override;
 
     /// pointsToConstantMemory - Chase pointers until we find a (constant
     /// global) or not.
@@ -545,6 +605,20 @@ namespace {
     /// is we say noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
     bool isValueEqualInPotentialCycles(const Value *V1, const Value *V2);
 
+    /// \brief A Heuristic for aliasGEP that searches for a constant offset
+    /// between the variables.
+    ///
+    /// GetLinearExpression has some limitations, as generally zext(%x + 1)
+    /// != zext(%x) + zext(1) if the arithmetic overflows. GetLinearExpression
+    /// will therefore conservatively refuse to decompose these expressions.
+    /// However, we know that, for all %x, zext(%x) != zext(%x + 1), even if
+    /// the addition overflows.
+    bool
+    constantOffsetHeuristic(const SmallVectorImpl<VariableGEPIndex> &VarIndices,
+                            uint64_t V1Size, uint64_t V2Size,
+                            int64_t BaseOffset, const DataLayout *DL,
+                            AssumptionCache *AC, DominatorTree *DT);
+
     /// \brief Dest and Src are the variable indices from two decomposed
     /// GetElementPtr instructions GEP1 and GEP2 which have common base
     /// pointers.  Subtract the GEP2 indices from GEP1 to find the symbolic
@@ -555,28 +629,28 @@ namespace {
     // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP
     // instruction against another.
     AliasResult aliasGEP(const GEPOperator *V1, uint64_t V1Size,
-                         const MDNode *V1TBAAInfo,
+                         const AAMDNodes &V1AAInfo,
                          const Value *V2, uint64_t V2Size,
-                         const MDNode *V2TBAAInfo,
+                         const AAMDNodes &V2AAInfo,
                          const Value *UnderlyingV1, const Value *UnderlyingV2);
 
     // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI
     // instruction against another.
     AliasResult aliasPHI(const PHINode *PN, uint64_t PNSize,
-                         const MDNode *PNTBAAInfo,
+                         const AAMDNodes &PNAAInfo,
                          const Value *V2, uint64_t V2Size,
-                         const MDNode *V2TBAAInfo);
+                         const AAMDNodes &V2AAInfo);
 
     /// aliasSelect - Disambiguate a Select instruction against another value.
     AliasResult aliasSelect(const SelectInst *SI, uint64_t SISize,
-                            const MDNode *SITBAAInfo,
+                            const AAMDNodes &SIAAInfo,
                             const Value *V2, uint64_t V2Size,
-                            const MDNode *V2TBAAInfo);
+                            const AAMDNodes &V2AAInfo);
 
     AliasResult aliasCheck(const Value *V1, uint64_t V1Size,
-                           const MDNode *V1TBAATag,
+                           AAMDNodes V1AATag,
                            const Value *V2, uint64_t V2Size,
-                           const MDNode *V2TBAATag);
+                           AAMDNodes V2AATag);
   };
 }  // End of anonymous namespace
 
@@ -585,7 +659,8 @@ char BasicAliasAnalysis::ID = 0;
 INITIALIZE_AG_PASS_BEGIN(BasicAliasAnalysis, AliasAnalysis, "basicaa",
                    "Basic Alias Analysis (stateless AA impl)",
                    false, true, false)
-INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
+INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
 INITIALIZE_AG_PASS_END(BasicAliasAnalysis, AliasAnalysis, "basicaa",
                    "Basic Alias Analysis (stateless AA impl)",
                    false, true, false)
@@ -606,8 +681,8 @@ BasicAliasAnalysis::pointsToConstantMemory(const Location &Loc, bool OrLocal) {
   SmallVector<const Value *, 16> Worklist;
   Worklist.push_back(Loc.Ptr);
   do {
-    const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL);
-    if (!Visited.insert(V)) {
+    const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), *DL);
+    if (!Visited.insert(V).second) {
       Visited.clear();
       return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
     }
@@ -643,8 +718,8 @@ BasicAliasAnalysis::pointsToConstantMemory(const Location &Loc, bool OrLocal) {
         Visited.clear();
         return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
       }
-      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
-        Worklist.push_back(PN->getIncomingValue(i));
+      for (Value *IncValue : PN->incoming_values())
+        Worklist.push_back(IncValue);
       continue;
     }
 
@@ -712,7 +787,8 @@ BasicAliasAnalysis::getModRefBehavior(const Function *F) {
   if (F->onlyReadsMemory())
     Min = OnlyReadsMemory;
 
-  const TargetLibraryInfo &TLI = getAnalysis<TargetLibraryInfo>();
+  const TargetLibraryInfo &TLI =
+      getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
   if (isMemsetPattern16(F, TLI))
     Min = OnlyAccessesArgumentPointees;
 
@@ -724,7 +800,8 @@ AliasAnalysis::Location
 BasicAliasAnalysis::getArgLocation(ImmutableCallSite CS, unsigned ArgIdx,
                                    ModRefResult &Mask) {
   Location Loc = AliasAnalysis::getArgLocation(CS, ArgIdx, Mask);
-  const TargetLibraryInfo &TLI = getAnalysis<TargetLibraryInfo>();
+  const TargetLibraryInfo &TLI =
+      getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
   const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
   if (II != nullptr)
     switch (II->getIntrinsicID()) {
@@ -799,6 +876,19 @@ BasicAliasAnalysis::getArgLocation(ImmutableCallSite CS, unsigned ArgIdx,
   return Loc;
 }
 
+static bool isAssumeIntrinsic(ImmutableCallSite CS) {
+  const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
+  if (II && II->getIntrinsicID() == Intrinsic::assume)
+    return true;
+
+  return false;
+}
+
+bool BasicAliasAnalysis::doInitialization(Module &M) {
+  InitializeAliasAnalysis(this, &M.getDataLayout());
+  return true;
+}
+
 /// getModRefInfo - Check to see if the specified callsite can clobber the
 /// specified memory object.  Since we only look at local properties of this
 /// function, we really can't say much about this query.  We do, however, use
@@ -809,7 +899,7 @@ BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
   assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) &&
          "AliasAnalysis query involving multiple functions!");
 
-  const Value *Object = GetUnderlyingObject(Loc.Ptr, DL);
+  const Value *Object = GetUnderlyingObject(Loc.Ptr, *DL);
 
   // If this is a tail call and Loc.Ptr points to a stack location, we know that
   // the tail call cannot access or modify the local stack.
@@ -851,10 +941,176 @@ BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
       return NoModRef;
   }
 
+  // While the assume intrinsic is marked as arbitrarily writing so that
+  // proper control dependencies will be maintained, it never aliases any
+  // particular memory location.
+  if (isAssumeIntrinsic(CS))
+    return NoModRef;
+
   // The AliasAnalysis base class has some smarts, lets use them.
   return AliasAnalysis::getModRefInfo(CS, Loc);
 }
 
+AliasAnalysis::ModRefResult
+BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS1,
+                                  ImmutableCallSite CS2) {
+  // While the assume intrinsic is marked as arbitrarily writing so that
+  // proper control dependencies will be maintained, it never aliases any
+  // particular memory location.
+  if (isAssumeIntrinsic(CS1) || isAssumeIntrinsic(CS2))
+    return NoModRef;
+
+  // The AliasAnalysis base class has some smarts, lets use them.
+  return AliasAnalysis::getModRefInfo(CS1, CS2);
+}
+
+/// \brief Provide ad-hoc rules to disambiguate accesses through two GEP
+/// operators, both having the exact same pointer operand.
+static AliasAnalysis::AliasResult
+aliasSameBasePointerGEPs(const GEPOperator *GEP1, uint64_t V1Size,
+                         const GEPOperator *GEP2, uint64_t V2Size,
+                         const DataLayout &DL) {
+
+  assert(GEP1->getPointerOperand() == GEP2->getPointerOperand() &&
+         "Expected GEPs with the same pointer operand");
+
+  // Try to determine whether GEP1 and GEP2 index through arrays, into structs,
+  // such that the struct field accesses provably cannot alias.
+  // We also need at least two indices (the pointer, and the struct field).
+  if (GEP1->getNumIndices() != GEP2->getNumIndices() ||
+      GEP1->getNumIndices() < 2)
+    return AliasAnalysis::MayAlias;
+
+  // If we don't know the size of the accesses through both GEPs, we can't
+  // determine whether the struct fields accessed can't alias.
+  if (V1Size == AliasAnalysis::UnknownSize ||
+      V2Size == AliasAnalysis::UnknownSize)
+    return AliasAnalysis::MayAlias;
+
+  ConstantInt *C1 =
+      dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1));
+  ConstantInt *C2 =
+      dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1));
+
+  // If the last (struct) indices aren't constants, we can't say anything.
+  // If they're identical, the other indices might be also be dynamically
+  // equal, so the GEPs can alias.
+  if (!C1 || !C2 || C1 == C2)
+    return AliasAnalysis::MayAlias;
+
+  // Find the last-indexed type of the GEP, i.e., the type you'd get if
+  // you stripped the last index.
+  // On the way, look at each indexed type.  If there's something other
+  // than an array, different indices can lead to different final types.
+  SmallVector<Value *, 8> IntermediateIndices;
+
+  // Insert the first index; we don't need to check the type indexed
+  // through it as it only drops the pointer indirection.
+  assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine");
+  IntermediateIndices.push_back(GEP1->getOperand(1));
+
+  // Insert all the remaining indices but the last one.
+  // Also, check that they all index through arrays.
+  for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) {
+    if (!isa<ArrayType>(GetElementPtrInst::getIndexedType(
+            GEP1->getSourceElementType(), IntermediateIndices)))
+      return AliasAnalysis::MayAlias;
+    IntermediateIndices.push_back(GEP1->getOperand(i + 1));
+  }
+
+  StructType *LastIndexedStruct =
+      dyn_cast<StructType>(GetElementPtrInst::getIndexedType(
+          GEP1->getSourceElementType(), IntermediateIndices));
+
+  if (!LastIndexedStruct)
+    return AliasAnalysis::MayAlias;
+
+  // We know that:
+  // - both GEPs begin indexing from the exact same pointer;
+  // - the last indices in both GEPs are constants, indexing into a struct;
+  // - said indices are different, hence, the pointed-to fields are different;
+  // - both GEPs only index through arrays prior to that.
+  //
+  // This lets us determine that the struct that GEP1 indexes into and the
+  // struct that GEP2 indexes into must either precisely overlap or be
+  // completely disjoint.  Because they cannot partially overlap, indexing into
+  // different non-overlapping fields of the struct will never alias.
+
+  // Therefore, the only remaining thing needed to show that both GEPs can't
+  // alias is that the fields are not overlapping.
+  const StructLayout *SL = DL.getStructLayout(LastIndexedStruct);
+  const uint64_t StructSize = SL->getSizeInBytes();
+  const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue());
+  const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue());
+
+  auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size,
+                                      uint64_t V2Off, uint64_t V2Size) {
+    return V1Off < V2Off && V1Off + V1Size <= V2Off &&
+           ((V2Off + V2Size <= StructSize) ||
+            (V2Off + V2Size - StructSize <= V1Off));
+  };
+
+  if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) ||
+      EltsDontOverlap(V2Off, V2Size, V1Off, V1Size))
+    return AliasAnalysis::NoAlias;
+
+  return AliasAnalysis::MayAlias;
+}
+
+bool BasicAliasAnalysis::constantOffsetHeuristic(
+    const SmallVectorImpl<VariableGEPIndex> &VarIndices, uint64_t V1Size,
+    uint64_t V2Size, int64_t BaseOffset, const DataLayout *DL,
+    AssumptionCache *AC, DominatorTree *DT) {
+  if (VarIndices.size() != 2 || V1Size == UnknownSize ||
+      V2Size == UnknownSize || !DL)
+    return false;
+
+  const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1];
+
+  if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits ||
+      Var0.Scale != -Var1.Scale)
+    return false;
+
+  unsigned Width = Var1.V->getType()->getIntegerBitWidth();
+
+  // We'll strip off the Extensions of Var0 and Var1 and do another round
+  // of GetLinearExpression decomposition. In the example above, if Var0
+  // is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
+
+  APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 1),
+      V1Offset(Width, 1);
+  bool NSW = true, NUW = true;
+  unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0;
+  const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits,
+                                        V0SExtBits, *DL, 0, AC, DT, NSW, NUW);
+  NSW = true, NUW = true;
+  const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits,
+                                        V1SExtBits, *DL, 0, AC, DT, NSW, NUW);
+
+  if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits ||
+      V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1))
+    return false;
+
+  // We have a hit - Var0 and Var1 only differ by a constant offset!
+
+  // If we've been sext'ed then zext'd the maximum difference between Var0 and
+  // Var1 is possible to calculate, but we're just interested in the absolute
+  // minumum difference between the two. The minimum distance may occur due to
+  // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
+  // the minimum distance between %i and %i + 5 is 3.
+  APInt MinDiff = V0Offset - V1Offset,
+        Wrapped = APInt::getMaxValue(Width) - MinDiff + APInt(Width, 1);
+  MinDiff = APIntOps::umin(MinDiff, Wrapped);
+  uint64_t MinDiffBytes = MinDiff.getZExtValue() * std::abs(Var0.Scale);
+
+  // We can't definitely say whether GEP1 is before or after V2 due to wrapping
+  // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
+  // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
+  // V2Size can fit in the MinDiffBytes gap.
+  return V1Size + std::abs(BaseOffset) <= MinDiffBytes &&
+         V2Size + std::abs(BaseOffset) <= MinDiffBytes;
+}
+
 /// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
 /// against another pointer.  We know that V1 is a GEP, but we don't know
 /// anything about V2.  UnderlyingV1 is GetUnderlyingObject(GEP1, DL),
@@ -862,30 +1118,50 @@ BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
 ///
 AliasAnalysis::AliasResult
 BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
-                             const MDNode *V1TBAAInfo,
+                             const AAMDNodes &V1AAInfo,
                              const Value *V2, uint64_t V2Size,
-                             const MDNode *V2TBAAInfo,
+                             const AAMDNodes &V2AAInfo,
                              const Value *UnderlyingV1,
                              const Value *UnderlyingV2) {
   int64_t GEP1BaseOffset;
   bool GEP1MaxLookupReached;
   SmallVector<VariableGEPIndex, 4> GEP1VariableIndices;
 
+  // We have to get two AssumptionCaches here because GEP1 and V2 may be from
+  // different functions.
+  // FIXME: This really doesn't make any sense. We get a dominator tree below
+  // that can only refer to a single function. But this function (aliasGEP) is
+  // a method on an immutable pass that can be called when there *isn't*
+  // a single function. The old pass management layer makes this "work", but
+  // this isn't really a clean solution.
+  AssumptionCacheTracker &ACT = getAnalysis<AssumptionCacheTracker>();
+  AssumptionCache *AC1 = nullptr, *AC2 = nullptr;
+  if (auto *GEP1I = dyn_cast<Instruction>(GEP1))
+    AC1 = &ACT.getAssumptionCache(
+        const_cast<Function &>(*GEP1I->getParent()->getParent()));
+  if (auto *I2 = dyn_cast<Instruction>(V2))
+    AC2 = &ACT.getAssumptionCache(
+        const_cast<Function &>(*I2->getParent()->getParent()));
+
+  DominatorTreeWrapperPass *DTWP =
+      getAnalysisIfAvailable<DominatorTreeWrapperPass>();
+  DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
+
   // If we have two gep instructions with must-alias or not-alias'ing base
   // pointers, figure out if the indexes to the GEP tell us anything about the
   // derived pointer.
   if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
     // Do the base pointers alias?
-    AliasResult BaseAlias = aliasCheck(UnderlyingV1, UnknownSize, nullptr,
-                                       UnderlyingV2, UnknownSize, nullptr);
+    AliasResult BaseAlias = aliasCheck(UnderlyingV1, UnknownSize, AAMDNodes(),
+                                       UnderlyingV2, UnknownSize, AAMDNodes());
 
     // Check for geps of non-aliasing underlying pointers where the offsets are
     // identical.
     if ((BaseAlias == MayAlias) && V1Size == V2Size) {
       // Do the base pointers alias assuming type and size.
       AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size,
-                                                V1TBAAInfo, UnderlyingV2,
-                                                V2Size, V2TBAAInfo);
+                                                V1AAInfo, UnderlyingV2,
+                                                V2Size, V2AAInfo);
       if (PreciseBaseAlias == NoAlias) {
         // See if the computed offset from the common pointer tells us about the
         // relation of the resulting pointer.
@@ -893,11 +1169,11 @@ BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
         bool GEP2MaxLookupReached;
         SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
         const Value *GEP2BasePtr =
-          DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices,
-                                 GEP2MaxLookupReached, DL);
+            DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices,
+                                   GEP2MaxLookupReached, *DL, AC2, DT);
         const Value *GEP1BasePtr =
-          DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
-                                 GEP1MaxLookupReached, DL);
+            DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
+                                   GEP1MaxLookupReached, *DL, AC1, DT);
         // DecomposeGEPExpression and GetUnderlyingObject should return the
         // same result except when DecomposeGEPExpression has no DataLayout.
         if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
@@ -925,15 +1201,15 @@ BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
     // exactly, see if the computed offset from the common pointer tells us
     // about the relation of the resulting pointer.
     const Value *GEP1BasePtr =
-      DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
-                             GEP1MaxLookupReached, DL);
+        DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
+                               GEP1MaxLookupReached, *DL, AC1, DT);
 
     int64_t GEP2BaseOffset;
     bool GEP2MaxLookupReached;
     SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
     const Value *GEP2BasePtr =
-      DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices,
-                             GEP2MaxLookupReached, DL);
+        DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices,
+                               GEP2MaxLookupReached, *DL, AC2, DT);
 
     // DecomposeGEPExpression and GetUnderlyingObject should return the
     // same result except when DecomposeGEPExpression has no DataLayout.
@@ -942,6 +1218,17 @@ BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
              "DecomposeGEPExpression and GetUnderlyingObject disagree!");
       return MayAlias;
     }
+
+    // If we know the two GEPs are based off of the exact same pointer (and not
+    // just the same underlying object), see if that tells us anything about
+    // the resulting pointers.
+    if (DL && GEP1->getPointerOperand() == GEP2->getPointerOperand()) {
+      AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, *DL);
+      // If we couldn't find anything interesting, don't abandon just yet.
+      if (R != MayAlias)
+        return R;
+    }
+
     // If the max search depth is reached the result is undefined
     if (GEP2MaxLookupReached || GEP1MaxLookupReached)
       return MayAlias;
@@ -960,8 +1247,8 @@ BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
     if (V1Size == UnknownSize && V2Size == UnknownSize)
       return MayAlias;
 
-    AliasResult R = aliasCheck(UnderlyingV1, UnknownSize, nullptr,
-                               V2, V2Size, V2TBAAInfo);
+    AliasResult R = aliasCheck(UnderlyingV1, UnknownSize, AAMDNodes(),
+                               V2, V2Size, V2AAInfo);
     if (R != MustAlias)
       // If V2 may alias GEP base pointer, conservatively returns MayAlias.
       // If V2 is known not to alias GEP base pointer, then the two values
@@ -971,8 +1258,8 @@ BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
       return R;
 
     const Value *GEP1BasePtr =
-      DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
-                             GEP1MaxLookupReached, DL);
+        DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
+                               GEP1MaxLookupReached, *DL, AC1, DT);
 
     // DecomposeGEPExpression and GetUnderlyingObject should return the
     // same result except when DecomposeGEPExpression has no DataLayout.
@@ -1023,12 +1310,43 @@ BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
     }
   }
 
-  // Try to distinguish something like &A[i][1] against &A[42][0].
-  // Grab the least significant bit set in any of the scales.
   if (!GEP1VariableIndices.empty()) {
     uint64_t Modulo = 0;
-    for (unsigned i = 0, e = GEP1VariableIndices.size(); i != e; ++i)
-      Modulo |= (uint64_t)GEP1VariableIndices[i].Scale;
+    bool AllPositive = true;
+    for (unsigned i = 0, e = GEP1VariableIndices.size(); i != e; ++i) {
+
+      // Try to distinguish something like &A[i][1] against &A[42][0].
+      // Grab the least significant bit set in any of the scales. We
+      // don't need std::abs here (even if the scale's negative) as we'll
+      // be ^'ing Modulo with itself later.
+      Modulo |= (uint64_t) GEP1VariableIndices[i].Scale;
+
+      if (AllPositive) {
+        // If the Value could change between cycles, then any reasoning about
+        // the Value this cycle may not hold in the next cycle. We'll just
+        // give up if we can't determine conditions that hold for every cycle:
+        const Value *V = GEP1VariableIndices[i].V;
+
+        bool SignKnownZero, SignKnownOne;
+        ComputeSignBit(const_cast<Value *>(V), SignKnownZero, SignKnownOne, *DL,
+                       0, AC1, nullptr, DT);
+
+        // Zero-extension widens the variable, and so forces the sign
+        // bit to zero.
+        bool IsZExt = GEP1VariableIndices[i].ZExtBits > 0 || isa<ZExtInst>(V);
+        SignKnownZero |= IsZExt;
+        SignKnownOne &= !IsZExt;
+
+        // If the variable begins with a zero then we know it's
+        // positive, regardless of whether the value is signed or
+        // unsigned.
+        int64_t Scale = GEP1VariableIndices[i].Scale;
+        AllPositive =
+          (SignKnownZero && Scale >= 0) ||
+          (SignKnownOne && Scale < 0);
+      }
+    }
+
     Modulo = Modulo ^ (Modulo & (Modulo - 1));
 
     // We can compute the difference between the two addresses
@@ -1038,6 +1356,16 @@ BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
     if (V1Size != UnknownSize && V2Size != UnknownSize &&
         ModOffset >= V2Size && V1Size <= Modulo - ModOffset)
       return NoAlias;
+
+    // If we know all the variables are positive, then GEP1 >= GEP1BasePtr.
+    // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers
+    // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr.
+    if (AllPositive && GEP1BaseOffset > 0 && V2Size <= (uint64_t) GEP1BaseOffset)
+      return NoAlias;
+
+    if (constantOffsetHeuristic(GEP1VariableIndices, V1Size, V2Size,
+                                GEP1BaseOffset, DL, AC1, DT))
+      return NoAlias;
   }
 
   // Statically, we can see that the base objects are the same, but the
@@ -1067,33 +1395,33 @@ MergeAliasResults(AliasAnalysis::AliasResult A, AliasAnalysis::AliasResult B) {
 /// instruction against another.
 AliasAnalysis::AliasResult
 BasicAliasAnalysis::aliasSelect(const SelectInst *SI, uint64_t SISize,
-                                const MDNode *SITBAAInfo,
+                                const AAMDNodes &SIAAInfo,
                                 const Value *V2, uint64_t V2Size,
-                                const MDNode *V2TBAAInfo) {
+                                const AAMDNodes &V2AAInfo) {
   // If the values are Selects with the same condition, we can do a more precise
   // check: just check for aliases between the values on corresponding arms.
   if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
     if (SI->getCondition() == SI2->getCondition()) {
       AliasResult Alias =
-        aliasCheck(SI->getTrueValue(), SISize, SITBAAInfo,
-                   SI2->getTrueValue(), V2Size, V2TBAAInfo);
+        aliasCheck(SI->getTrueValue(), SISize, SIAAInfo,
+                   SI2->getTrueValue(), V2Size, V2AAInfo);
       if (Alias == MayAlias)
         return MayAlias;
       AliasResult ThisAlias =
-        aliasCheck(SI->getFalseValue(), SISize, SITBAAInfo,
-                   SI2->getFalseValue(), V2Size, V2TBAAInfo);
+        aliasCheck(SI->getFalseValue(), SISize, SIAAInfo,
+                   SI2->getFalseValue(), V2Size, V2AAInfo);
       return MergeAliasResults(ThisAlias, Alias);
     }
 
   // If both arms of the Select node NoAlias or MustAlias V2, then returns
   // NoAlias / MustAlias. Otherwise, returns MayAlias.
   AliasResult Alias =
-    aliasCheck(V2, V2Size, V2TBAAInfo, SI->getTrueValue(), SISize, SITBAAInfo);
+    aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(), SISize, SIAAInfo);
   if (Alias == MayAlias)
     return MayAlias;
 
   AliasResult ThisAlias =
-    aliasCheck(V2, V2Size, V2TBAAInfo, SI->getFalseValue(), SISize, SITBAAInfo);
+    aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), SISize, SIAAInfo);
   return MergeAliasResults(ThisAlias, Alias);
 }
 
@@ -1101,9 +1429,9 @@ BasicAliasAnalysis::aliasSelect(const SelectInst *SI, uint64_t SISize,
 // against another.
 AliasAnalysis::AliasResult
 BasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize,
-                             const MDNode *PNTBAAInfo,
+                             const AAMDNodes &PNAAInfo,
                              const Value *V2, uint64_t V2Size,
-                             const MDNode *V2TBAAInfo) {
+                             const AAMDNodes &V2AAInfo) {
   // Track phi nodes we have visited. We use this information when we determine
   // value equivalence.
   VisitedPhiBBs.insert(PN->getParent());
@@ -1113,8 +1441,8 @@ BasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize,
   // on corresponding edges.
   if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
     if (PN2->getParent() == PN->getParent()) {
-      LocPair Locs(Location(PN, PNSize, PNTBAAInfo),
-                   Location(V2, V2Size, V2TBAAInfo));
+      LocPair Locs(Location(PN, PNSize, PNAAInfo),
+                   Location(V2, V2Size, V2AAInfo));
       if (PN > V2)
         std::swap(Locs.first, Locs.second);
       // Analyse the PHIs' inputs under the assumption that the PHIs are
@@ -1132,9 +1460,9 @@ BasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize,
 
       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
         AliasResult ThisAlias =
-          aliasCheck(PN->getIncomingValue(i), PNSize, PNTBAAInfo,
+          aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo,
                      PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
-                     V2Size, V2TBAAInfo);
+                     V2Size, V2AAInfo);
         Alias = MergeAliasResults(ThisAlias, Alias);
         if (Alias == MayAlias)
           break;
@@ -1149,20 +1477,19 @@ BasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize,
 
   SmallPtrSet<Value*, 4> UniqueSrc;
   SmallVector<Value*, 4> V1Srcs;
-  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
-    Value *PV1 = PN->getIncomingValue(i);
+  for (Value *PV1 : PN->incoming_values()) {
     if (isa<PHINode>(PV1))
       // If any of the source itself is a PHI, return MayAlias conservatively
       // to avoid compile time explosion. The worst possible case is if both
       // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
       // and 'n' are the number of PHI sources.
       return MayAlias;
-    if (UniqueSrc.insert(PV1))
+    if (UniqueSrc.insert(PV1).second)
       V1Srcs.push_back(PV1);
   }
 
-  AliasResult Alias = aliasCheck(V2, V2Size, V2TBAAInfo,
-                                 V1Srcs[0], PNSize, PNTBAAInfo);
+  AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo,
+                                 V1Srcs[0], PNSize, PNAAInfo);
   // Early exit if the check of the first PHI source against V2 is MayAlias.
   // Other results are not possible.
   if (Alias == MayAlias)
@@ -1173,8 +1500,8 @@ BasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize,
   for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
     Value *V = V1Srcs[i];
 
-    AliasResult ThisAlias = aliasCheck(V2, V2Size, V2TBAAInfo,
-                                       V, PNSize, PNTBAAInfo);
+    AliasResult ThisAlias = aliasCheck(V2, V2Size, V2AAInfo,
+                                       V, PNSize, PNAAInfo);
     Alias = MergeAliasResults(ThisAlias, Alias);
     if (Alias == MayAlias)
       break;
@@ -1188,9 +1515,9 @@ BasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize,
 //
 AliasAnalysis::AliasResult
 BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size,
-                               const MDNode *V1TBAAInfo,
+                               AAMDNodes V1AAInfo,
                                const Value *V2, uint64_t V2Size,
-                               const MDNode *V2TBAAInfo) {
+                               AAMDNodes V2AAInfo) {
   // If either of the memory references is empty, it doesn't matter what the
   // pointer values are.
   if (V1Size == 0 || V2Size == 0)
@@ -1200,6 +1527,11 @@ BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size,
   V1 = V1->stripPointerCasts();
   V2 = V2->stripPointerCasts();
 
+  // If V1 or V2 is undef, the result is NoAlias because we can always pick a
+  // value for undef that aliases nothing in the program.
+  if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
+    return NoAlias;
+
   // Are we checking for alias of the same value?
   // Because we look 'through' phi nodes we could look at "Value" pointers from
   // different iterations. We must therefore make sure that this is not the
@@ -1213,8 +1545,8 @@ BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size,
     return NoAlias;  // Scalars cannot alias each other
 
   // Figure out what objects these things are pointing to if we can.
-  const Value *O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth);
-  const Value *O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth);
+  const Value *O1 = GetUnderlyingObject(V1, *DL, MaxLookupSearchDepth);
+  const Value *O2 = GetUnderlyingObject(V2, *DL, MaxLookupSearchDepth);
 
   // Null values in the default address space don't point to any object, so they
   // don't alias any other pointer.
@@ -1270,8 +1602,8 @@ BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size,
 
   // Check the cache before climbing up use-def chains. This also terminates
   // otherwise infinitely recursive queries.
-  LocPair Locs(Location(V1, V1Size, V1TBAAInfo),
-               Location(V2, V2Size, V2TBAAInfo));
+  LocPair Locs(Location(V1, V1Size, V1AAInfo),
+               Location(V2, V2Size, V2AAInfo));
   if (V1 > V2)
     std::swap(Locs.first, Locs.second);
   std::pair<AliasCacheTy::iterator, bool> Pair =
@@ -1285,32 +1617,32 @@ BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size,
     std::swap(V1, V2);
     std::swap(V1Size, V2Size);
     std::swap(O1, O2);
-    std::swap(V1TBAAInfo, V2TBAAInfo);
+    std::swap(V1AAInfo, V2AAInfo);
   }
   if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
-    AliasResult Result = aliasGEP(GV1, V1Size, V1TBAAInfo, V2, V2Size, V2TBAAInfo, O1, O2);
+    AliasResult Result = aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2);
     if (Result != MayAlias) return AliasCache[Locs] = Result;
   }
 
   if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
     std::swap(V1, V2);
     std::swap(V1Size, V2Size);
-    std::swap(V1TBAAInfo, V2TBAAInfo);
+    std::swap(V1AAInfo, V2AAInfo);
   }
   if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
-    AliasResult Result = aliasPHI(PN, V1Size, V1TBAAInfo,
-                                  V2, V2Size, V2TBAAInfo);
+    AliasResult Result = aliasPHI(PN, V1Size, V1AAInfo,
+                                  V2, V2Size, V2AAInfo);
     if (Result != MayAlias) return AliasCache[Locs] = Result;
   }
 
   if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
     std::swap(V1, V2);
     std::swap(V1Size, V2Size);
-    std::swap(V1TBAAInfo, V2TBAAInfo);
+    std::swap(V1AAInfo, V2AAInfo);
   }
   if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
-    AliasResult Result = aliasSelect(S1, V1Size, V1TBAAInfo,
-                                     V2, V2Size, V2TBAAInfo);
+    AliasResult Result = aliasSelect(S1, V1Size, V1AAInfo,
+                                     V2, V2Size, V2AAInfo);
     if (Result != MayAlias) return AliasCache[Locs] = Result;
   }
 
@@ -1323,8 +1655,8 @@ BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size,
       return AliasCache[Locs] = PartialAlias;
 
   AliasResult Result =
-    AliasAnalysis::alias(Location(V1, V1Size, V1TBAAInfo),
-                         Location(V2, V2Size, V2TBAAInfo));
+    AliasAnalysis::alias(Location(V1, V1Size, V1AAInfo),
+                         Location(V2, V2Size, V2AAInfo));
   return AliasCache[Locs] = Result;
 }
 
@@ -1337,6 +1669,9 @@ bool BasicAliasAnalysis::isValueEqualInPotentialCycles(const Value *V,
   if (!Inst)
     return true;
 
+  if (VisitedPhiBBs.empty())
+    return true;
+
   if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
     return false;
 
@@ -1344,15 +1679,14 @@ bool BasicAliasAnalysis::isValueEqualInPotentialCycles(const Value *V,
   DominatorTreeWrapperPass *DTWP =
       getAnalysisIfAvailable<DominatorTreeWrapperPass>();
   DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
-  LoopInfo *LI = getAnalysisIfAvailable<LoopInfo>();
+  auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
+  LoopInfo *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
 
   // Make sure that the visited phis cannot reach the Value. This ensures that
   // the Values cannot come from different iterations of a potential cycle the
   // phi nodes could be involved in.
-  for (SmallPtrSet<const BasicBlock *, 8>::iterator PI = VisitedPhiBBs.begin(),
-                                                    PE = VisitedPhiBBs.end();
-       PI != PE; ++PI)
-    if (isPotentiallyReachable((*PI)->begin(), Inst, DT, LI))
+  for (auto *P : VisitedPhiBBs)
+    if (isPotentiallyReachable(P->begin(), Inst, DT, LI))
       return false;
 
   return true;
@@ -1370,14 +1704,14 @@ void BasicAliasAnalysis::GetIndexDifference(
 
   for (unsigned i = 0, e = Src.size(); i != e; ++i) {
     const Value *V = Src[i].V;
-    ExtensionKind Extension = Src[i].Extension;
+    unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits;
     int64_t Scale = Src[i].Scale;
 
     // Find V in Dest.  This is N^2, but pointer indices almost never have more
     // than a few variable indexes.
     for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
       if (!isValueEqualInPotentialCycles(Dest[j].V, V) ||
-          Dest[j].Extension != Extension)
+          Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits)
         continue;
 
       // If we found it, subtract off Scale V's from the entry in Dest.  If it
@@ -1392,7 +1726,7 @@ void BasicAliasAnalysis::GetIndexDifference(
 
     // If we didn't consume this entry, add it to the end of the Dest list.
     if (Scale) {
-      VariableGEPIndex Entry = { V, Extension, -Scale };
+      VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale};
       Dest.push_back(Entry);
     }
   }