[cleanup] Move the Dominators.h and Verifier.h headers into the IR
[oota-llvm.git] / include / llvm / Analysis / DominatorInternals.h
diff --git a/include/llvm/Analysis/DominatorInternals.h b/include/llvm/Analysis/DominatorInternals.h
deleted file mode 100644 (file)
index c0f95cb..0000000
+++ /dev/null
@@ -1,289 +0,0 @@
-//=== llvm/Analysis/DominatorInternals.h - Dominator Calculation -*- C++ -*-==//
-//
-//                     The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_ANALYSIS_DOMINATOR_INTERNALS_H
-#define LLVM_ANALYSIS_DOMINATOR_INTERNALS_H
-
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/Analysis/Dominators.h"
-
-//===----------------------------------------------------------------------===//
-//
-// DominatorTree construction - This pass constructs immediate dominator
-// information for a flow-graph based on the algorithm described in this
-// document:
-//
-//   A Fast Algorithm for Finding Dominators in a Flowgraph
-//   T. Lengauer & R. Tarjan, ACM TOPLAS July 1979, pgs 121-141.
-//
-// This implements the O(n*log(n)) versions of EVAL and LINK, because it turns
-// out that the theoretically slower O(n*log(n)) implementation is actually
-// faster than the almost-linear O(n*alpha(n)) version, even for large CFGs.
-//
-//===----------------------------------------------------------------------===//
-
-namespace llvm {
-
-template<class GraphT>
-unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT,
-                 typename GraphT::NodeType* V, unsigned N) {
-  // This is more understandable as a recursive algorithm, but we can't use the
-  // recursive algorithm due to stack depth issues.  Keep it here for
-  // documentation purposes.
-#if 0
-  InfoRec &VInfo = DT.Info[DT.Roots[i]];
-  VInfo.DFSNum = VInfo.Semi = ++N;
-  VInfo.Label = V;
-
-  Vertex.push_back(V);        // Vertex[n] = V;
-
-  for (succ_iterator SI = succ_begin(V), E = succ_end(V); SI != E; ++SI) {
-    InfoRec &SuccVInfo = DT.Info[*SI];
-    if (SuccVInfo.Semi == 0) {
-      SuccVInfo.Parent = V;
-      N = DTDFSPass(DT, *SI, N);
-    }
-  }
-#else
-  bool IsChildOfArtificialExit = (N != 0);
-
-  SmallVector<std::pair<typename GraphT::NodeType*,
-                        typename GraphT::ChildIteratorType>, 32> Worklist;
-  Worklist.push_back(std::make_pair(V, GraphT::child_begin(V)));
-  while (!Worklist.empty()) {
-    typename GraphT::NodeType* BB = Worklist.back().first;
-    typename GraphT::ChildIteratorType NextSucc = Worklist.back().second;
-
-    typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &BBInfo =
-                                                                    DT.Info[BB];
-
-    // First time we visited this BB?
-    if (NextSucc == GraphT::child_begin(BB)) {
-      BBInfo.DFSNum = BBInfo.Semi = ++N;
-      BBInfo.Label = BB;
-
-      DT.Vertex.push_back(BB);       // Vertex[n] = V;
-
-      if (IsChildOfArtificialExit)
-        BBInfo.Parent = 1;
-
-      IsChildOfArtificialExit = false;
-    }
-
-    // store the DFS number of the current BB - the reference to BBInfo might
-    // get invalidated when processing the successors.
-    unsigned BBDFSNum = BBInfo.DFSNum;
-
-    // If we are done with this block, remove it from the worklist.
-    if (NextSucc == GraphT::child_end(BB)) {
-      Worklist.pop_back();
-      continue;
-    }
-
-    // Increment the successor number for the next time we get to it.
-    ++Worklist.back().second;
-    
-    // Visit the successor next, if it isn't already visited.
-    typename GraphT::NodeType* Succ = *NextSucc;
-
-    typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &SuccVInfo =
-                                                                  DT.Info[Succ];
-    if (SuccVInfo.Semi == 0) {
-      SuccVInfo.Parent = BBDFSNum;
-      Worklist.push_back(std::make_pair(Succ, GraphT::child_begin(Succ)));
-    }
-  }
-#endif
-    return N;
-}
-
-template<class GraphT>
-typename GraphT::NodeType* 
-Eval(DominatorTreeBase<typename GraphT::NodeType>& DT,
-     typename GraphT::NodeType *VIn, unsigned LastLinked) {
-  typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VInInfo =
-                                                                  DT.Info[VIn];
-  if (VInInfo.DFSNum < LastLinked)
-    return VIn;
-
-  SmallVector<typename GraphT::NodeType*, 32> Work;
-  SmallPtrSet<typename GraphT::NodeType*, 32> Visited;
-
-  if (VInInfo.Parent >= LastLinked)
-    Work.push_back(VIn);
-  
-  while (!Work.empty()) {
-    typename GraphT::NodeType* V = Work.back();
-    typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VInfo =
-                                                                     DT.Info[V];
-    typename GraphT::NodeType* VAncestor = DT.Vertex[VInfo.Parent];
-
-    // Process Ancestor first
-    if (Visited.insert(VAncestor) && VInfo.Parent >= LastLinked) {
-      Work.push_back(VAncestor);
-      continue;
-    } 
-    Work.pop_back(); 
-
-    // Update VInfo based on Ancestor info
-    if (VInfo.Parent < LastLinked)
-      continue;
-
-    typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VAInfo =
-                                                             DT.Info[VAncestor];
-    typename GraphT::NodeType* VAncestorLabel = VAInfo.Label;
-    typename GraphT::NodeType* VLabel = VInfo.Label;
-    if (DT.Info[VAncestorLabel].Semi < DT.Info[VLabel].Semi)
-      VInfo.Label = VAncestorLabel;
-    VInfo.Parent = VAInfo.Parent;
-  }
-
-  return VInInfo.Label;
-}
-
-template<class FuncT, class NodeT>
-void Calculate(DominatorTreeBase<typename GraphTraits<NodeT>::NodeType>& DT,
-               FuncT& F) {
-  typedef GraphTraits<NodeT> GraphT;
-
-  unsigned N = 0;
-  bool MultipleRoots = (DT.Roots.size() > 1);
-  if (MultipleRoots) {
-    typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &BBInfo =
-        DT.Info[NULL];
-    BBInfo.DFSNum = BBInfo.Semi = ++N;
-    BBInfo.Label = NULL;
-
-    DT.Vertex.push_back(NULL);       // Vertex[n] = V;
-  }
-
-  // Step #1: Number blocks in depth-first order and initialize variables used
-  // in later stages of the algorithm.
-  for (unsigned i = 0, e = static_cast<unsigned>(DT.Roots.size());
-       i != e; ++i)
-    N = DFSPass<GraphT>(DT, DT.Roots[i], N);
-
-  // it might be that some blocks did not get a DFS number (e.g., blocks of 
-  // infinite loops). In these cases an artificial exit node is required.
-  MultipleRoots |= (DT.isPostDominator() && N != GraphTraits<FuncT*>::size(&F));
-
-  // When naively implemented, the Lengauer-Tarjan algorithm requires a separate
-  // bucket for each vertex. However, this is unnecessary, because each vertex
-  // is only placed into a single bucket (that of its semidominator), and each
-  // vertex's bucket is processed before it is added to any bucket itself.
-  //
-  // Instead of using a bucket per vertex, we use a single array Buckets that
-  // has two purposes. Before the vertex V with preorder number i is processed,
-  // Buckets[i] stores the index of the first element in V's bucket. After V's
-  // bucket is processed, Buckets[i] stores the index of the next element in the
-  // bucket containing V, if any.
-  SmallVector<unsigned, 32> Buckets;
-  Buckets.resize(N + 1);
-  for (unsigned i = 1; i <= N; ++i)
-    Buckets[i] = i;
-
-  for (unsigned i = N; i >= 2; --i) {
-    typename GraphT::NodeType* W = DT.Vertex[i];
-    typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &WInfo =
-                                                                     DT.Info[W];
-
-    // Step #2: Implicitly define the immediate dominator of vertices
-    for (unsigned j = i; Buckets[j] != i; j = Buckets[j]) {
-      typename GraphT::NodeType* V = DT.Vertex[Buckets[j]];
-      typename GraphT::NodeType* U = Eval<GraphT>(DT, V, i + 1);
-      DT.IDoms[V] = DT.Info[U].Semi < i ? U : W;
-    }
-
-    // Step #3: Calculate the semidominators of all vertices
-
-    // initialize the semi dominator to point to the parent node
-    WInfo.Semi = WInfo.Parent;
-    typedef GraphTraits<Inverse<NodeT> > InvTraits;
-    for (typename InvTraits::ChildIteratorType CI =
-         InvTraits::child_begin(W),
-         E = InvTraits::child_end(W); CI != E; ++CI) {
-      typename InvTraits::NodeType *N = *CI;
-      if (DT.Info.count(N)) {  // Only if this predecessor is reachable!
-        unsigned SemiU = DT.Info[Eval<GraphT>(DT, N, i + 1)].Semi;
-        if (SemiU < WInfo.Semi)
-          WInfo.Semi = SemiU;
-      }
-    }
-
-    // If V is a non-root vertex and sdom(V) = parent(V), then idom(V) is
-    // necessarily parent(V). In this case, set idom(V) here and avoid placing
-    // V into a bucket.
-    if (WInfo.Semi == WInfo.Parent) {
-      DT.IDoms[W] = DT.Vertex[WInfo.Parent];
-    } else {
-      Buckets[i] = Buckets[WInfo.Semi];
-      Buckets[WInfo.Semi] = i;
-    }
-  }
-
-  if (N >= 1) {
-    typename GraphT::NodeType* Root = DT.Vertex[1];
-    for (unsigned j = 1; Buckets[j] != 1; j = Buckets[j]) {
-      typename GraphT::NodeType* V = DT.Vertex[Buckets[j]];
-      DT.IDoms[V] = Root;
-    }
-  }
-
-  // Step #4: Explicitly define the immediate dominator of each vertex
-  for (unsigned i = 2; i <= N; ++i) {
-    typename GraphT::NodeType* W = DT.Vertex[i];
-    typename GraphT::NodeType*& WIDom = DT.IDoms[W];
-    if (WIDom != DT.Vertex[DT.Info[W].Semi])
-      WIDom = DT.IDoms[WIDom];
-  }
-
-  if (DT.Roots.empty()) return;
-
-  // Add a node for the root.  This node might be the actual root, if there is
-  // one exit block, or it may be the virtual exit (denoted by (BasicBlock *)0)
-  // which postdominates all real exits if there are multiple exit blocks, or
-  // an infinite loop.
-  typename GraphT::NodeType* Root = !MultipleRoots ? DT.Roots[0] : 0;
-
-  DT.DomTreeNodes[Root] = DT.RootNode =
-                        new DomTreeNodeBase<typename GraphT::NodeType>(Root, 0);
-
-  // Loop over all of the reachable blocks in the function...
-  for (unsigned i = 2; i <= N; ++i) {
-    typename GraphT::NodeType* W = DT.Vertex[i];
-
-    DomTreeNodeBase<typename GraphT::NodeType> *BBNode = DT.DomTreeNodes[W];
-    if (BBNode) continue;  // Haven't calculated this node yet?
-
-    typename GraphT::NodeType* ImmDom = DT.getIDom(W);
-
-    assert(ImmDom || DT.DomTreeNodes[NULL]);
-
-    // Get or calculate the node for the immediate dominator
-    DomTreeNodeBase<typename GraphT::NodeType> *IDomNode =
-                                                     DT.getNodeForBlock(ImmDom);
-
-    // Add a new tree node for this BasicBlock, and link it as a child of
-    // IDomNode
-    DomTreeNodeBase<typename GraphT::NodeType> *C =
-                    new DomTreeNodeBase<typename GraphT::NodeType>(W, IDomNode);
-    DT.DomTreeNodes[W] = IDomNode->addChild(C);
-  }
-
-  // Free temporary memory used to construct idom's
-  DT.IDoms.clear();
-  DT.Info.clear();
-  std::vector<typename GraphT::NodeType*>().swap(DT.Vertex);
-
-  DT.updateDFSNumbers();
-}
-
-}
-
-#endif