Prevented ExceptionDemo example being built on WINDOWS via if( NOT WIN32 )
[oota-llvm.git] / docs / tutorial / LangImpl3.html
index 020cf925d9cc13020759cf36451706c13304fc88..39ec62852a8ba715a2be82a09f7bdc5693f064a0 100644 (file)
 
 <div class="doc_title">Kaleidoscope: Code generation to LLVM IR</div>
 
+<ul>
+<li><a href="index.html">Up to Tutorial Index</a></li>
+<li>Chapter 3
+  <ol>
+    <li><a href="#intro">Chapter 3 Introduction</a></li>
+    <li><a href="#basics">Code Generation Setup</a></li>
+    <li><a href="#exprs">Expression Code Generation</a></li>
+    <li><a href="#funcs">Function Code Generation</a></li>
+    <li><a href="#driver">Driver Changes and Closing Thoughts</a></li>
+    <li><a href="#code">Full Code Listing</a></li>
+  </ol>
+</li>
+<li><a href="LangImpl4.html">Chapter 4</a>: Adding JIT and Optimizer 
+Support</li>
+</ul>
+
 <div class="doc_author">
   <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a></p>
 </div>
 
 <!-- *********************************************************************** -->
-<div class="doc_section"><a name="intro">Part 3 Introduction</a></div>
+<div class="doc_section"><a name="intro">Chapter 3 Introduction</a></div>
 <!-- *********************************************************************** -->
 
 <div class="doc_text">
 
-<p>Welcome to part 3 of the "<a href="index.html">Implementing a language with
-LLVM</a>" tutorial.  This chapter shows you how to transform the <a 
-href="LangImpl2.html">Abstract Syntax Tree built in Chapter 2</a> into LLVM IR.
+<p>Welcome to Chapter 3 of the "<a href="index.html">Implementing a language
+with LLVM</a>" tutorial.  This chapter shows you how to transform the <a 
+href="LangImpl2.html">Abstract Syntax Tree</a>, built in Chapter 2, into LLVM IR.
 This will teach you a little bit about how LLVM does things, as well as
 demonstrate how easy it is to use.  It's much more work to build a lexer and
-parser than it is to generate LLVM IR code.
+parser than it is to generate LLVM IR code. :)
 </p>
 
+<p><b>Please note</b>: the code in this chapter and later require LLVM 2.2 or
+later.  LLVM 2.1 and before will not work with it.  Also note that you need
+to use a version of this tutorial that matches your LLVM release: If you are
+using an official LLVM release, use the version of the documentation included
+with your release or on the <a href="http://llvm.org/releases/">llvm.org 
+releases page</a>.</p>
+
 </div>
 
 <!-- *********************************************************************** -->
-<div class="doc_section"><a name="basics">Code Generation setup</a></div>
+<div class="doc_section"><a name="basics">Code Generation Setup</a></div>
 <!-- *********************************************************************** -->
 
 <div class="doc_text">
 
 <p>
-In order to generate LLVM IR, we want some simple setup to get started.  First,
-we define virtual codegen methods in each AST class:</p>
+In order to generate LLVM IR, we want some simple setup to get started.  First
+we define virtual code generation (codegen) methods in each AST class:</p>
 
 <div class="doc_code">
 <pre>
@@ -49,34 +72,41 @@ we define virtual codegen methods in each AST class:</p>
 class ExprAST {
 public:
   virtual ~ExprAST() {}
-  virtual Value *Codegen() = 0;
+  <b>virtual Value *Codegen() = 0;</b>
 };
 
 /// NumberExprAST - Expression class for numeric literals like "1.0".
 class NumberExprAST : public ExprAST {
   double Val;
 public:
-  explicit NumberExprAST(double val) : Val(val) {}
-  virtual Value *Codegen();
+  NumberExprAST(double val) : Val(val) {}
+  <b>virtual Value *Codegen();</b>
 };
 ...
 </pre>
 </div>
 
-<p>The Codegen() method says to emit IR for that AST node and all things it
+<p>The Codegen() method says to emit IR for that AST node along with all the things it
 depends on, and they all return an LLVM Value object. 
 "Value" is the class used to represent a "<a 
 href="http://en.wikipedia.org/wiki/Static_single_assignment_form">Static Single
 Assignment (SSA)</a> register" or "SSA value" in LLVM.  The most distinct aspect
 of SSA values is that their value is computed as the related instruction
 executes, and it does not get a new value until (and if) the instruction
-re-executes.  In order words, there is no way to "change" an SSA value.  For
+re-executes.  In other words, there is no way to "change" an SSA value.  For
 more information, please read up on <a 
 href="http://en.wikipedia.org/wiki/Static_single_assignment_form">Static Single
 Assignment</a> - the concepts are really quite natural once you grok them.</p>
 
+<p>Note that instead of adding virtual methods to the ExprAST class hierarchy,
+it could also make sense to use a <a
+href="http://en.wikipedia.org/wiki/Visitor_pattern">visitor pattern</a> or some
+other way to model this.  Again, this tutorial won't dwell on good software
+engineering practices: for our purposes, adding a virtual method is
+simplest.</p>
+
 <p>The
-second thing we want is an "Error" method like we used for parser, which will
+second thing we want is an "Error" method like we used for the parser, which will
 be used to report errors found during code generation (for example, use of an
 undeclared parameter):</p>
 
@@ -85,7 +115,7 @@ undeclared parameter):</p>
 Value *ErrorV(const char *Str) { Error(Str); return 0; }
 
 static Module *TheModule;
-static LLVMBuilder Builder;
+static IRBuilder&lt;&gt; Builder(getGlobalContext());
 static std::map&lt;std::string, Value*&gt; NamedValues;
 </pre>
 </div>
@@ -96,14 +126,16 @@ a chunk of code.  In many ways, it is the top-level structure that the LLVM IR
 uses to contain code.</p>
 
 <p>The <tt>Builder</tt> object is a helper object that makes it easy to generate
-LLVM instructions.  The <tt>Builder</tt> keeps track of the current place to
-insert instructions and has methods to create new instructions.</p>
+LLVM instructions.  Instances of the <a 
+href="http://llvm.org/doxygen/IRBuilder_8h-source.html"><tt>IRBuilder</tt></a> 
+class template keep track of the current place to insert instructions and has
+methods to create new instructions.</p>
 
 <p>The <tt>NamedValues</tt> map keeps track of which values are defined in the
-current scope and what their LLVM representation is.  In this form of
-Kaleidoscope, the only things that can be referenced are function parameters.
-As such, function parameters will be in this map when generating code for their
-function body.</p>
+current scope and what their LLVM representation is.  (In other words, it is a
+symbol table for the code).  In this form of Kaleidoscope, the only things that
+can be referenced are function parameters.  As such, function parameters will
+be in this map when generating code for their function body.</p>
 
 <p>
 With these basics in place, we can start talking about how to generate code for
@@ -120,14 +152,14 @@ has already been done, and we'll just use it to emit code.
 
 <div class="doc_text">
 
-<p>Generating LLVM code for expression nodes is very straight-forward: less
-than 45 lines of commented code for all four of our expression nodes.  First,
+<p>Generating LLVM code for expression nodes is very straightforward: less
+than 45 lines of commented code for all four of our expression nodes.  First
 we'll do numeric literals:</p>
 
 <div class="doc_code">
 <pre>
 Value *NumberExprAST::Codegen() {
-  return ConstantFP::get(Type::DoubleTy, APFloat(Val));
+  return ConstantFP::get(getGlobalContext(), APFloat(Val));
 }
 </pre>
 </div>
@@ -138,7 +170,7 @@ internally (<tt>APFloat</tt> has the capability of holding floating point
 constants of <em>A</em>rbitrary <em>P</em>recision).  This code basically just
 creates and returns a <tt>ConstantFP</tt>.  Note that in the LLVM IR
 that constants are all uniqued together and shared.  For this reason, the API
-uses "the foo::get(..)" idiom instead of "new foo(..)" or "foo::create(..).</p>
+uses "the Context.get..." idiom instead of "new foo(..)" or "foo::Create(..)".</p>
 
 <div class="doc_code">
 <pre>
@@ -150,12 +182,15 @@ Value *VariableExprAST::Codegen() {
 </pre>
 </div>
 
-<p>References to variables is also quite simple here.  In the simple version
-of Kaleidoscope, we assume that the variable has already been emited somewhere
+<p>References to variables are also quite simple using LLVM.  In the simple version
+of Kaleidoscope, we assume that the variable has already been emitted somewhere
 and its value is available.  In practice, the only values that can be in the
 <tt>NamedValues</tt> map are function arguments.  This
 code simply checks to see that the specified name is in the map (if not, an 
-unknown variable is being referenced) and returns the value for it.</p>
+unknown variable is being referenced) and returns the value for it.  In future
+chapters, we'll add support for <a href="LangImpl5.html#for">loop induction 
+variables</a> in the symbol table, and for <a 
+href="LangImpl7.html#localvars">local variables</a>.</p>
 
 <div class="doc_code">
 <pre>
@@ -169,9 +204,10 @@ Value *BinaryExprAST::Codegen() {
   case '-': return Builder.CreateSub(L, R, "subtmp");
   case '*': return Builder.CreateMul(L, R, "multmp");
   case '&lt;':
-    L = Builder.CreateFCmpULT(L, R, "multmp");
+    L = Builder.CreateFCmpULT(L, R, "cmptmp");
     // Convert bool 0/1 to double 0.0 or 1.0
-    return Builder.CreateUIToFP(L, Type::DoubleTy, "booltmp");
+    return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
+                                "booltmp");
   default: return ErrorV("invalid binary operator");
   }
 }
@@ -184,31 +220,32 @@ right-hand side, then we compute the result of the binary expression.  In this
 code, we do a simple switch on the opcode to create the right LLVM instruction.
 </p>
 
-<p>In this example, the LLVM builder class is starting to show its value.  
-Because it knows where to insert the newly created instruction, you just have to
-specificy what instruction to create (e.g. with <tt>CreateAdd</tt>), which
+<p>In the example above, the LLVM builder class is starting to show its value.  
+IRBuilder knows where to insert the newly created instruction, all you have to
+do is specify what instruction to create (e.g. with <tt>CreateAdd</tt>), which
 operands to use (<tt>L</tt> and <tt>R</tt> here) and optionally provide a name
-for the generated instruction.  One nice thing about LLVM is that the name is 
-just a hint: if there are multiple additions in a single function, the first
-will be named "addtmp" and the second will be "autorenamed" by adding a suffix,
-giving it a name like "addtmp42".  Local value names for instructions are purely
-optional, but it makes it much easier to read the IR dumps.</p>
-
-<p><a href="../LangRef.html#instref">LLVM instructions</a> are constrained to
-have very strict type properties: for example, the Left and Right operators of
-an <a href="../LangRef.html#i_add">add instruction</a> have to have the same
-type, and that the result of the add matches the operands.  Because all values
-in Kaleidoscope are doubles, this makes for very simple code for add, sub and
-mul.</p>
+for the generated instruction.</p>
+
+<p>One nice thing about LLVM is that the name is just a hint.  For instance, if
+the code above emits multiple "addtmp" variables, LLVM will automatically
+provide each one with an increasing, unique numeric suffix.  Local value names
+for instructions are purely optional, but it makes it much easier to read the
+IR dumps.</p>
+
+<p><a href="../LangRef.html#instref">LLVM instructions</a> are constrained by
+strict rules: for example, the Left and Right operators of
+an <a href="../LangRef.html#i_add">add instruction</a> must have the same
+type, and the result type of the add must match the operand types.  Because
+all values in Kaleidoscope are doubles, this makes for very simple code for add,
+sub and mul.</p>
 
 <p>On the other hand, LLVM specifies that the <a 
 href="../LangRef.html#i_fcmp">fcmp instruction</a> always returns an 'i1' value
-(a one bit integer).  However, Kaleidoscope wants the value to be a 0.0 or 1.0
-value.  In order to get these semantics, we combine the fcmp instruction with
+(a one bit integer).  The problem with this is that Kaleidoscope wants the value to be a 0.0 or 1.0 value.  In order to get these semantics, we combine the fcmp instruction with
 a <a href="../LangRef.html#i_uitofp">uitofp instruction</a>.  This instruction
 converts its input integer into a floating point value by treating the input
 as an unsigned value.  In contrast, if we used the <a 
-href="../LangRef.html#i_sitofp">sitofp instruction</a>, the Kaleidoscope '<'
+href="../LangRef.html#i_sitofp">sitofp instruction</a>, the Kaleidoscope '&lt;'
 operator would return 0.0 and -1.0, depending on the input value.</p>
 
 <div class="doc_code">
@@ -234,8 +271,8 @@ Value *CallExprAST::Codegen() {
 </pre>
 </div>
 
-<p>Code generation for function calls is quite straight-forward with LLVM.  The
-code above first looks the name of the function up in the LLVM Module's symbol
+<p>Code generation for function calls is quite straightforward with LLVM.  The
+code above initially does a function name lookup in the LLVM Module's symbol
 table.  Recall that the LLVM Module is the container that holds all of the
 functions we are JIT'ing.  By giving each function the same name as what the
 user specifies, we can use the LLVM symbol table to resolve function names for
@@ -244,8 +281,8 @@ us.</p>
 <p>Once we have the function to call, we recursively codegen each argument that
 is to be passed in, and create an LLVM <a href="../LangRef.html#i_call">call
 instruction</a>.  Note that LLVM uses the native C calling conventions by
-default, allowing these calls to call into standard library functions like
-"sin" and "cos" with no additional effort.</p>
+default, allowing these calls to also call into standard library functions like
+"sin" and "cos", with no additional effort.</p>
 
 <p>This wraps up our handling of the four basic expressions that we have so far
 in Kaleidoscope.  Feel free to go in and add some more.  For example, by 
@@ -256,22 +293,403 @@ basic framework.</p>
 </div>
 
 <!-- *********************************************************************** -->
-<div class="doc_section"><a name="code">Conclusions and the Full Code</a></div>
+<div class="doc_section"><a name="funcs">Function Code Generation</a></div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>Code generation for prototypes and functions must handle a number of
+details, which make their code less beautiful than expression code
+generation, but allows us to  illustrate some important points.  First, lets
+talk about code generation for prototypes: they are used both for function 
+bodies and external function declarations.  The code starts with:</p>
+
+<div class="doc_code">
+<pre>
+Function *PrototypeAST::Codegen() {
+  // Make the function type:  double(double,double) etc.
+  std::vector&lt;const Type*&gt; Doubles(Args.size(),
+                                   Type::getDoubleTy(getGlobalContext()));
+  FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
+                                       Doubles, false);
+  
+  Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
+</pre>
+</div>
+
+<p>This code packs a lot of power into a few lines.  Note first that this 
+function returns a "Function*" instead of a "Value*".  Because a "prototype"
+really talks about the external interface for a function (not the value computed
+by an expression), it makes sense for it to return the LLVM Function it
+corresponds to when codegen'd.</p>
+
+<p>The call to <tt>Context.get</tt> creates
+the <tt>FunctionType</tt> that should be used for a given Prototype.  Since all
+function arguments in Kaleidoscope are of type double, the first line creates
+a vector of "N" LLVM double types.  It then uses the <tt>Context.get</tt>
+method to create a function type that takes "N" doubles as arguments, returns
+one double as a result, and that is not vararg (the false parameter indicates
+this).  Note that Types in LLVM are uniqued just like Constants are, so you
+don't "new" a type, you "get" it.</p>
+
+<p>The final line above actually creates the function that the prototype will
+correspond to.  This indicates the type, linkage and name to use, as well as which
+module to insert into.  "<a href="../LangRef.html#linkage">external linkage</a>"
+means that the function may be defined outside the current module and/or that it
+is callable by functions outside the module.  The Name passed in is the name the
+user specified: since "<tt>TheModule</tt>" is specified, this name is registered
+in "<tt>TheModule</tt>"s symbol table, which is used by the function call code
+above.</p>
+
+<div class="doc_code">
+<pre>
+  // If F conflicted, there was already something named 'Name'.  If it has a
+  // body, don't allow redefinition or reextern.
+  if (F-&gt;getName() != Name) {
+    // Delete the one we just made and get the existing one.
+    F-&gt;eraseFromParent();
+    F = TheModule-&gt;getFunction(Name);
+</pre>
+</div>
+
+<p>The Module symbol table works just like the Function symbol table when it
+comes to name conflicts: if a new function is created with a name was previously
+added to the symbol table, it will get implicitly renamed when added to the
+Module.  The code above exploits this fact to determine if there was a previous
+definition of this function.</p>
+
+<p>In Kaleidoscope, I choose to allow redefinitions of functions in two cases:
+first, we want to allow 'extern'ing a function more than once, as long as the
+prototypes for the externs match (since all arguments have the same type, we
+just have to check that the number of arguments match).  Second, we want to
+allow 'extern'ing a function and then defining a body for it.  This is useful
+when defining mutually recursive functions.</p>
+
+<p>In order to implement this, the code above first checks to see if there is
+a collision on the name of the function.  If so, it deletes the function we just
+created (by calling <tt>eraseFromParent</tt>) and then calling 
+<tt>getFunction</tt> to get the existing function with the specified name.  Note
+that many APIs in LLVM have "erase" forms and "remove" forms.  The "remove" form
+unlinks the object from its parent (e.g. a Function from a Module) and returns
+it.  The "erase" form unlinks the object and then deletes it.</p>
+   
+<div class="doc_code">
+<pre>
+    // If F already has a body, reject this.
+    if (!F-&gt;empty()) {
+      ErrorF("redefinition of function");
+      return 0;
+    }
+    
+    // If F took a different number of args, reject.
+    if (F-&gt;arg_size() != Args.size()) {
+      ErrorF("redefinition of function with different # args");
+      return 0;
+    }
+  }
+</pre>
+</div>
+
+<p>In order to verify the logic above, we first check to see if the pre-existing
+function is "empty".  In this case, empty means that it has no basic blocks in
+it, which means it has no body.  If it has no body, it is a forward 
+declaration.  Since we don't allow anything after a full definition of the
+function, the code rejects this case.  If the previous reference to a function
+was an 'extern', we simply verify that the number of arguments for that
+definition and this one match up.  If not, we emit an error.</p>
+
+<div class="doc_code">
+<pre>
+  // Set names for all arguments.
+  unsigned Idx = 0;
+  for (Function::arg_iterator AI = F-&gt;arg_begin(); Idx != Args.size();
+       ++AI, ++Idx) {
+    AI-&gt;setName(Args[Idx]);
+    
+    // Add arguments to variable symbol table.
+    NamedValues[Args[Idx]] = AI;
+  }
+  return F;
+}
+</pre>
+</div>
+
+<p>The last bit of code for prototypes loops over all of the arguments in the
+function, setting the name of the LLVM Argument objects to match, and registering
+the arguments in the <tt>NamedValues</tt> map for future use by the
+<tt>VariableExprAST</tt> AST node.  Once this is set up, it returns the Function
+object to the caller.  Note that we don't check for conflicting 
+argument names here (e.g. "extern foo(a b a)").  Doing so would be very
+straight-forward with the mechanics we have already used above.</p>
+
+<div class="doc_code">
+<pre>
+Function *FunctionAST::Codegen() {
+  NamedValues.clear();
+  
+  Function *TheFunction = Proto-&gt;Codegen();
+  if (TheFunction == 0)
+    return 0;
+</pre>
+</div>
+
+<p>Code generation for function definitions starts out simply enough: we just
+codegen the prototype (Proto) and verify that it is ok.  We then clear out the
+<tt>NamedValues</tt> map to make sure that there isn't anything in it from the
+last function we compiled.  Code generation of the prototype ensures that there
+is an LLVM Function object that is ready to go for us.</p>
+
+<div class="doc_code">
+<pre>
+  // Create a new basic block to start insertion into.
+  BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
+  Builder.SetInsertPoint(BB);
+  
+  if (Value *RetVal = Body-&gt;Codegen()) {
+</pre>
+</div>
+
+<p>Now we get to the point where the <tt>Builder</tt> is set up.  The first
+line creates a new <a href="http://en.wikipedia.org/wiki/Basic_block">basic
+block</a> (named "entry"), which is inserted into <tt>TheFunction</tt>.  The
+second line then tells the builder that new instructions should be inserted into
+the end of the new basic block.  Basic blocks in LLVM are an important part
+of functions that define the <a 
+href="http://en.wikipedia.org/wiki/Control_flow_graph">Control Flow Graph</a>.
+Since we don't have any control flow, our functions will only contain one 
+block at this point.  We'll fix this in <a href="LangImpl5.html">Chapter 5</a> :).</p>
+
+<div class="doc_code">
+<pre>
+  if (Value *RetVal = Body-&gt;Codegen()) {
+    // Finish off the function.
+    Builder.CreateRet(RetVal);
+
+    // Validate the generated code, checking for consistency.
+    verifyFunction(*TheFunction);
+
+    return TheFunction;
+  }
+</pre>
+</div>
+
+<p>Once the insertion point is set up, we call the <tt>CodeGen()</tt> method for
+the root expression of the function.  If no error happens, this emits code to
+compute the expression into the entry block and returns the value that was
+computed.  Assuming no error, we then create an LLVM <a 
+href="../LangRef.html#i_ret">ret instruction</a>, which completes the function.
+Once the function is built, we call <tt>verifyFunction</tt>, which
+is provided by LLVM.  This function does a variety of consistency checks on the
+generated code, to determine if our compiler is doing everything right.  Using
+this is important: it can catch a lot of bugs.  Once the function is finished
+and validated, we return it.</p>
+  
+<div class="doc_code">
+<pre>
+  // Error reading body, remove function.
+  TheFunction-&gt;eraseFromParent();
+  return 0;
+}
+</pre>
+</div>
+
+<p>The only piece left here is handling of the error case.  For simplicity, we
+handle this by merely deleting the function we produced with the 
+<tt>eraseFromParent</tt> method.  This allows the user to redefine a function
+that they incorrectly typed in before: if we didn't delete it, it would live in
+the symbol table, with a body, preventing future redefinition.</p>
+
+<p>This code does have a bug, though.  Since the <tt>PrototypeAST::Codegen</tt>
+can return a previously defined forward declaration, our code can actually delete
+a forward declaration.  There are a number of ways to fix this bug, see what you
+can come up with!  Here is a testcase:</p>
+
+<div class="doc_code">
+<pre>
+extern foo(a b);     # ok, defines foo.
+def foo(a b) c;      # error, 'c' is invalid.
+def bar() foo(1, 2); # error, unknown function "foo"
+</pre>
+</div>
+
+</div>
+
+<!-- *********************************************************************** -->
+<div class="doc_section"><a name="driver">Driver Changes and 
+Closing Thoughts</a></div>
 <!-- *********************************************************************** -->
 
 <div class="doc_text">
 
+<p>
+For now, code generation to LLVM doesn't really get us much, except that we can
+look at the pretty IR calls.  The sample code inserts calls to Codegen into the
+"<tt>HandleDefinition</tt>", "<tt>HandleExtern</tt>" etc functions, and then
+dumps out the LLVM IR.  This gives a nice way to look at the LLVM IR for simple
+functions.  For example:
+</p>
+
+<div class="doc_code">
+<pre>
+ready> <b>4+5</b>;
+Read top-level expression:
+define double @""() {
+entry:
+        %addtmp = add double 4.000000e+00, 5.000000e+00
+        ret double %addtmp
+}
+</pre>
+</div>
+
+<p>Note how the parser turns the top-level expression into anonymous functions
+for us.  This will be handy when we add <a href="LangImpl4.html#jit">JIT 
+support</a> in the next chapter.  Also note that the code is very literally
+transcribed, no optimizations are being performed.  We will 
+<a href="LangImpl4.html#trivialconstfold">add optimizations</a> explicitly in
+the next chapter.</p>
+
+<div class="doc_code">
+<pre>
+ready&gt; <b>def foo(a b) a*a + 2*a*b + b*b;</b>
+Read function definition:
+define double @foo(double %a, double %b) {
+entry:
+        %multmp = mul double %a, %a
+        %multmp1 = mul double 2.000000e+00, %a
+        %multmp2 = mul double %multmp1, %b
+        %addtmp = add double %multmp, %multmp2
+        %multmp3 = mul double %b, %b
+        %addtmp4 = add double %addtmp, %multmp3
+        ret double %addtmp4
+}
+</pre>
+</div>
+
+<p>This shows some simple arithmetic. Notice the striking similarity to the
+LLVM builder calls that we use to create the instructions.</p>
+
+<div class="doc_code">
+<pre>
+ready&gt; <b>def bar(a) foo(a, 4.0) + bar(31337);</b>
+Read function definition:
+define double @bar(double %a) {
+entry:
+        %calltmp = call double @foo( double %a, double 4.000000e+00 )
+        %calltmp1 = call double @bar( double 3.133700e+04 )
+        %addtmp = add double %calltmp, %calltmp1
+        ret double %addtmp
+}
+</pre>
+</div>
+
+<p>This shows some function calls.  Note that this function will take a long
+time to execute if you call it.  In the future we'll add conditional control 
+flow to actually make recursion useful :).</p>
+
+<div class="doc_code">
+<pre>
+ready&gt; <b>extern cos(x);</b>
+Read extern: 
+declare double @cos(double)
+
+ready&gt; <b>cos(1.234);</b>
+Read top-level expression:
+define double @""() {
+entry:
+        %calltmp = call double @cos( double 1.234000e+00 )
+        ret double %calltmp
+}
+</pre>
+</div>
+
+<p>This shows an extern for the libm "cos" function, and a call to it.</p>
+
+
+<div class="doc_code">
+<pre>
+ready&gt; <b>^D</b>
+; ModuleID = 'my cool jit'
+
+define double @""() {
+entry:
+        %addtmp = add double 4.000000e+00, 5.000000e+00
+        ret double %addtmp
+}
+
+define double @foo(double %a, double %b) {
+entry:
+        %multmp = mul double %a, %a
+        %multmp1 = mul double 2.000000e+00, %a
+        %multmp2 = mul double %multmp1, %b
+        %addtmp = add double %multmp, %multmp2
+        %multmp3 = mul double %b, %b
+        %addtmp4 = add double %addtmp, %multmp3
+        ret double %addtmp4
+}
+
+define double @bar(double %a) {
+entry:
+        %calltmp = call double @foo( double %a, double 4.000000e+00 )
+        %calltmp1 = call double @bar( double 3.133700e+04 )
+        %addtmp = add double %calltmp, %calltmp1
+        ret double %addtmp
+}
+
+declare double @cos(double)
+
+define double @""() {
+entry:
+        %calltmp = call double @cos( double 1.234000e+00 )
+        ret double %calltmp
+}
+</pre>
+</div>
+
+<p>When you quit the current demo, it dumps out the IR for the entire module
+generated.  Here you can see the big picture with all the functions referencing
+each other.</p>
+
+<p>This wraps up the third chapter of the Kaleidoscope tutorial.  Up next, we'll
+describe how to <a href="LangImpl4.html">add JIT codegen and optimizer
+support</a> to this so we can actually start running code!</p>
+
+</div>
+
+
+<!-- *********************************************************************** -->
+<div class="doc_section"><a name="code">Full Code Listing</a></div>
+<!-- *********************************************************************** -->
+
+<div class="doc_text">
+
+<p>
+Here is the complete code listing for our running example, enhanced with the
+LLVM code generator.    Because this uses the LLVM libraries, we need to link
+them in.  To do this, we use the <a 
+href="http://llvm.org/cmds/llvm-config.html">llvm-config</a> tool to inform
+our makefile/command line about which options to use:</p>
+
+<div class="doc_code">
+<pre>
+   # Compile
+   g++ -g -O3 toy.cpp `llvm-config --cppflags --ldflags --libs core` -o toy
+   # Run
+   ./toy
+</pre>
+</div>
+
+<p>Here is the code:</p>
+
 <div class="doc_code">
 <pre>
 // To build this:
-//  g++ -g toy.cpp `llvm-config --cppflags` `llvm-config --ldflags` \
-//                `llvm-config --libs core` -I ~/llvm/include/
-//  ./a.out 
 // See example below.
 
 #include "llvm/DerivedTypes.h"
+#include "llvm/LLVMContext.h"
 #include "llvm/Module.h"
-#include "llvm/Support/LLVMBuilder.h"
+#include "llvm/Analysis/Verifier.h"
+#include "llvm/Support/IRBuilder.h"
 #include &lt;cstdio&gt;
 #include &lt;string&gt;
 #include &lt;map&gt;
@@ -291,7 +709,7 @@ enum Token {
   tok_def = -2, tok_extern = -3,
 
   // primary
-  tok_identifier = -4, tok_number = -5,
+  tok_identifier = -4, tok_number = -5
 };
 
 static std::string IdentifierStr;  // Filled in if tok_identifier
@@ -329,7 +747,7 @@ static int gettok() {
   if (LastChar == '#') {
     // Comment until end of line.
     do LastChar = getchar();
-    while (LastChar != EOF &amp;&amp; LastChar != '\n' &amp; LastChar != '\r');
+    while (LastChar != EOF &amp;&amp; LastChar != '\n' &amp;&amp; LastChar != '\r');
     
     if (LastChar != EOF)
       return gettok();
@@ -360,7 +778,7 @@ public:
 class NumberExprAST : public ExprAST {
   double Val;
 public:
-  explicit NumberExprAST(double val) : Val(val) {}
+  NumberExprAST(double val) : Val(val) {}
   virtual Value *Codegen();
 };
 
@@ -368,7 +786,7 @@ public:
 class VariableExprAST : public ExprAST {
   std::string Name;
 public:
-  explicit VariableExprAST(const std::string &amp;name) : Name(name) {}
+  VariableExprAST(const std::string &amp;name) : Name(name) {}
   virtual Value *Codegen();
 };
 
@@ -393,7 +811,8 @@ public:
 };
 
 /// PrototypeAST - This class represents the "prototype" for a function,
-/// which captures its argument names as well as if it is an operator.
+/// which captures its name, and its argument names (thus implicitly the number
+/// of arguments the function takes).
 class PrototypeAST {
   std::string Name;
   std::vector&lt;std::string&gt; Args;
@@ -420,7 +839,7 @@ public:
 //===----------------------------------------------------------------------===//
 
 /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
-/// token the parser it looking at.  getNextToken reads another token from the
+/// token the parser is looking at.  getNextToken reads another token from the
 /// lexer and updates CurTok with its results.
 static int CurTok;
 static int getNextToken() {
@@ -450,12 +869,12 @@ FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
 static ExprAST *ParseExpression();
 
 /// identifierexpr
-///   ::= identifer
-///   ::= identifer '(' expression* ')'
+///   ::= identifier
+///   ::= identifier '(' expression* ')'
 static ExprAST *ParseIdentifierExpr() {
   std::string IdName = IdentifierStr;
   
-  getNextToken();  // eat identifer.
+  getNextToken();  // eat identifier.
   
   if (CurTok != '(') // Simple variable ref.
     return new VariableExprAST(IdName);
@@ -463,16 +882,18 @@ static ExprAST *ParseIdentifierExpr() {
   // Call.
   getNextToken();  // eat (
   std::vector&lt;ExprAST*&gt; Args;
-  while (1) {
-    ExprAST *Arg = ParseExpression();
-    if (!Arg) return 0;
-    Args.push_back(Arg);
-    
-    if (CurTok == ')') break;
-    
-    if (CurTok != ',')
-      return Error("Expected ')'");
-    getNextToken();
+  if (CurTok != ')') {
+    while (1) {
+      ExprAST *Arg = ParseExpression();
+      if (!Arg) return 0;
+      Args.push_back(Arg);
+
+      if (CurTok == ')') break;
+
+      if (CurTok != ',')
+        return Error("Expected ')' or ',' in argument list");
+      getNextToken();
+    }
   }
 
   // Eat the ')'.
@@ -612,13 +1033,13 @@ static PrototypeAST *ParseExtern() {
 //===----------------------------------------------------------------------===//
 
 static Module *TheModule;
-static LLVMBuilder Builder;
+static IRBuilder&lt;&gt; Builder(getGlobalContext());
 static std::map&lt;std::string, Value*&gt; NamedValues;
 
 Value *ErrorV(const char *Str) { Error(Str); return 0; }
 
 Value *NumberExprAST::Codegen() {
-  return ConstantFP::get(Type::DoubleTy, APFloat(Val));
+  return ConstantFP::get(getGlobalContext(), APFloat(Val));
 }
 
 Value *VariableExprAST::Codegen() {
@@ -637,9 +1058,10 @@ Value *BinaryExprAST::Codegen() {
   case '-': return Builder.CreateSub(L, R, "subtmp");
   case '*': return Builder.CreateMul(L, R, "multmp");
   case '&lt;':
-    L = Builder.CreateFCmpULT(L, R, "multmp");
+    L = Builder.CreateFCmpULT(L, R, "cmptmp");
     // Convert bool 0/1 to double 0.0 or 1.0
-    return Builder.CreateUIToFP(L, Type::DoubleTy, "booltmp");
+    return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
+                                "booltmp");
   default: return ErrorV("invalid binary operator");
   }
 }
@@ -665,12 +1087,12 @@ Value *CallExprAST::Codegen() {
 
 Function *PrototypeAST::Codegen() {
   // Make the function type:  double(double,double) etc.
-  FunctionType *FT = 
-    FunctionType::get(Type::DoubleTy, std::vector&lt;const Type*&gt;(Args.size(),
-                                                               Type::DoubleTy),
-                      false);
+  std::vector&lt;const Type*&gt; Doubles(Args.size(),
+                                   Type::getDoubleTy(getGlobalContext()));
+  FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
+                                       Doubles, false);
   
-  Function *F = new Function(FT, Function::ExternalLinkage, Name, TheModule);
+  Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
   
   // If F conflicted, there was already something named 'Name'.  If it has a
   // body, don't allow redefinition or reextern.
@@ -713,11 +1135,16 @@ Function *FunctionAST::Codegen() {
     return 0;
   
   // Create a new basic block to start insertion into.
-  Builder.SetInsertPoint(new BasicBlock("entry", TheFunction));
+  BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
+  Builder.SetInsertPoint(BB);
   
   if (Value *RetVal = Body-&gt;Codegen()) {
     // Finish off the function.
     Builder.CreateRet(RetVal);
+
+    // Validate the generated code, checking for consistency.
+    verifyFunction(*TheFunction);
+
     return TheFunction;
   }
   
@@ -755,7 +1182,7 @@ static void HandleExtern() {
 }
 
 static void HandleTopLevelExpression() {
-  // Evaluate a top level expression into an anonymous function.
+  // Evaluate a top-level expression into an anonymous function.
   if (FunctionAST *F = ParseTopLevelExpr()) {
     if (Function *LF = F-&gt;Codegen()) {
       fprintf(stderr, "Read top-level expression:");
@@ -773,7 +1200,7 @@ static void MainLoop() {
     fprintf(stderr, "ready&gt; ");
     switch (CurTok) {
     case tok_eof:    return;
-    case ';':        getNextToken(); break;  // ignore top level semicolons.
+    case ';':        getNextToken(); break;  // ignore top-level semicolons.
     case tok_def:    HandleDefinition(); break;
     case tok_extern: HandleExtern(); break;
     default:         HandleTopLevelExpression(); break;
@@ -781,8 +1208,6 @@ static void MainLoop() {
   }
 }
 
-
-
 //===----------------------------------------------------------------------===//
 // "Library" functions that can be "extern'd" from user code.
 //===----------------------------------------------------------------------===//
@@ -799,7 +1224,7 @@ double putchard(double X) {
 //===----------------------------------------------------------------------===//
 
 int main() {
-  TheModule = new Module("my cool jit");
+  LLVMContext &amp;Context = getGlobalContext();
 
   // Install standard binary operators.
   // 1 is lowest precedence.
@@ -812,24 +1237,20 @@ int main() {
   fprintf(stderr, "ready&gt; ");
   getNextToken();
 
+  // Make the module, which holds all the code.
+  TheModule = new Module("my cool jit", Context);
+
+  // Run the main "interpreter loop" now.
   MainLoop();
+
+  // Print out all of the generated code.
   TheModule-&gt;dump();
+
   return 0;
 }
-
-/* Examples:
-
-def fib(x)
-  if (x &lt; 3) then
-    1
-  else
-    fib(x-1)+fib(x-2);
-
-fib(10);
-
-*/
 </pre>
 </div>
+<a href="LangImpl4.html">Next: Adding JIT and Optimizer Support</a>
 </div>
 
 <!-- *********************************************************************** -->
@@ -838,11 +1259,11 @@ fib(10);
   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
   src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
   <a href="http://validator.w3.org/check/referer"><img
-  src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!" /></a>
+  src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
 
   <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
   <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
-  Last modified: $Date: 2007-10-17 11:05:13 -0700 (Wed, 17 Oct 2007) $
+  Last modified: $Date$
 </address>
 </body>
 </html>