edits for chapter 7
[oota-llvm.git] / docs / LangRef.html
index e7c3b1fade8772ce78771498f1cbdc0cfe861910..46ec87eed267820ae843632f02452cb26b38b1c3 100644 (file)
           <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
           <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
           <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
+          <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
+          <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
+          <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
         </ol>
       </li>
       <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
       </li>
       <li><a href="#int_debugger">Debugger intrinsics</a></li>
       <li><a href="#int_eh">Exception Handling intrinsics</a></li>
-      <li><a href="#int_atomics">Atomic Operations and Synchronization Intrinsics</a>
-        <ol>
-          <li><a href="#int_lcs">'<tt>llvm.atomic.lcs.*</tt>' Intrinsic</a></li>
-          <li><a href="#int_ls">'<tt>llvm.atomic.ls.*</tt>' Intrinsic</a></li>
-          <li><a href="#int_las">'<tt>llvm.atomic.las.*</tt>' Intrinsic</a></li>
-          <li><a href="#int_lss">'<tt>llvm.atomic.lss.*</tt>' Intrinsic</a></li>
-          <li><a href="#int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a></li>
-        </ol>
-      </li>
       <li><a href="#int_trampoline">Trampoline Intrinsic</a>
         <ol>
           <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
@@ -1305,7 +1299,7 @@ be any integer or floating point type.</p>
 <h5>Overview:</h5>
 
 <p>Opaque types are used to represent unknown types in the system.  This
-corresponds (for example) to the C notion of a foward declared structure type.
+corresponds (for example) to the C notion of a forward declared structure type.
 In LLVM, opaque types can eventually be resolved to any type (not just a
 structure type).</p>
 
@@ -2099,7 +2093,8 @@ unsigned division of its two arguments.</p>
 <h5>Arguments:</h5>
 <p>The two arguments to the '<tt>urem</tt>' instruction must be
 <a href="#t_integer">integer</a> values. Both arguments must have identical
-types.</p>
+types. This instruction can also take <a href="#t_vector">vector</a> versions 
+of the values in which case the elements must be integers.</p>
 <h5>Semantics:</h5>
 <p>This instruction returns the unsigned integer <i>remainder</i> of a division.
 This instruction always performs an unsigned division to get the remainder,
@@ -2118,7 +2113,10 @@ Instruction</a> </div>
 </pre>
 <h5>Overview:</h5>
 <p>The '<tt>srem</tt>' instruction returns the remainder from the
-signed division of its two operands.</p>
+signed division of its two operands. This instruction can also take
+<a href="#t_vector">vector</a> versions of the values in which case
+the elements must be integers.</p>
+</p>
 <h5>Arguments:</h5>
 <p>The two arguments to the '<tt>srem</tt>' instruction must be 
 <a href="#t_integer">integer</a> values.  Both arguments must have identical 
@@ -2150,7 +2148,8 @@ division of its two operands.</p>
 <h5>Arguments:</h5>
 <p>The two arguments to the '<tt>frem</tt>' instruction must be
 <a href="#t_floating">floating point</a> values.  Both arguments must have 
-identical types.</p>
+identical types.  This instruction can also take <a href="#t_vector">vector</a>
+versions of floating point values.</p>
 <h5>Semantics:</h5>
 <p>This instruction returns the <i>remainder</i> of a division.</p>
 <h5>Example:</h5>
@@ -2177,18 +2176,28 @@ Instruction</a> </div>
 <h5>Syntax:</h5>
 <pre>  &lt;result&gt; = shl &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt;   <i>; yields {ty}:result</i>
 </pre>
+
 <h5>Overview:</h5>
+
 <p>The '<tt>shl</tt>' instruction returns the first operand shifted to
 the left a specified number of bits.</p>
+
 <h5>Arguments:</h5>
+
 <p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
  href="#t_integer">integer</a> type.</p>
 <h5>Semantics:</h5>
-<p>The value produced is <tt>var1</tt> * 2<sup><tt>var2</tt></sup>.</p>
+
+<p>The value produced is <tt>var1</tt> * 2<sup><tt>var2</tt></sup>.  If
+<tt>var2</tt> is (statically or dynamically) equal to or larger than the number
+of bits in <tt>var1</tt>, the result is undefined.</p>
+
 <h5>Example:</h5><pre>
   &lt;result&gt; = shl i32 4, %var   <i>; yields {i32}: 4 &lt;&lt; %var</i>
   &lt;result&gt; = shl i32 4, 2      <i>; yields {i32}: 16</i>
   &lt;result&gt; = shl i32 1, 10     <i>; yields {i32}: 1024</i>
+  &lt;result&gt; = shl i32 1, 32     <i>; undefined</i>
 </pre>
 </div>
 <!-- _______________________________________________________________________ -->
@@ -2208,9 +2217,11 @@ operand shifted to the right a specified number of bits with zero fill.</p>
 <a href="#t_integer">integer</a> type.</p>
 
 <h5>Semantics:</h5>
+
 <p>This instruction always performs a logical shift right operation. The most
 significant bits of the result will be filled with zero bits after the 
-shift.</p>
+shift.  If <tt>var2</tt> is (statically or dynamically) equal to or larger than
+the number of bits in <tt>var1</tt>, the result is undefined.</p>
 
 <h5>Example:</h5>
 <pre>
@@ -2218,6 +2229,7 @@ shift.</p>
   &lt;result&gt; = lshr i32 4, 2   <i>; yields {i32}:result = 1</i>
   &lt;result&gt; = lshr i8  4, 3   <i>; yields {i8}:result = 0</i>
   &lt;result&gt; = lshr i8 -2, 1   <i>; yields {i8}:result = 0x7FFFFFFF </i>
+  &lt;result&gt; = lshr i32 1, 32  <i>; undefined</i>
 </pre>
 </div>
 
@@ -2241,7 +2253,9 @@ operand shifted to the right a specified number of bits with sign extension.</p>
 <h5>Semantics:</h5>
 <p>This instruction always performs an arithmetic shift right operation, 
 The most significant bits of the result will be filled with the sign bit 
-of <tt>var1</tt>.</p>
+of <tt>var1</tt>.  If <tt>var2</tt> is (statically or dynamically) equal to or
+larger than the number of bits in <tt>var1</tt>, the result is undefined.
+</p>
 
 <h5>Example:</h5>
 <pre>
@@ -2249,6 +2263,7 @@ of <tt>var1</tt>.</p>
   &lt;result&gt; = ashr i32 4, 2   <i>; yields {i32}:result = 1</i>
   &lt;result&gt; = ashr i8  4, 3   <i>; yields {i8}:result = 0</i>
   &lt;result&gt; = ashr i8 -2, 1   <i>; yields {i8}:result = -1</i>
+  &lt;result&gt; = ashr i32 1, 32  <i>; undefined</i>
 </pre>
 </div>
 
@@ -2778,9 +2793,8 @@ this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
 at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.</p>
 <h5>Example:</h5>
 <pre>  %ptr = <a href="#i_alloca">alloca</a> i32                               <i>; yields {i32*}:ptr</i>
-  <a
- href="#i_store">store</a> i32 3, i32* %ptr                          <i>; yields {void}</i>
-  %val = load i32* %ptr                           <i>; yields {i32}:val = i32 3</i>
+  store i32 3, i32* %ptr                          <i>; yields {void}</i>
+  %val = <a href="#i_load">load</a> i32* %ptr                           <i>; yields {i32}:val = i32 3</i>
 </pre>
 </div>
 
@@ -4484,16 +4498,22 @@ this can be specified as the fourth argument, otherwise it should be set to 0 or
 <div class="doc_text">
 
 <h5>Syntax:</h5>
+<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any 
+floating point or vector of floating point type. Not all targets support all
+types however.
 <pre>
-  declare float @llvm.sqrt.f32(float %Val)
-  declare double @llvm.sqrt.f64(double %Val)
+  declare float     @llvm.sqrt.f32(float %Val)
+  declare double    @llvm.sqrt.f64(double %Val)
+  declare x86_fp80  @llvm.sqrt.f80(x86_fp80 %Val)
+  declare fp128     @llvm.sqrt.f128(fp128 %Val)
+  declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
 </pre>
 
 <h5>Overview:</h5>
 
 <p>
 The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
-returning the same value as the libm '<tt>sqrt</tt>' function would.  Unlike
+returning the same value as the libm '<tt>sqrt</tt>' functions would.  Unlike
 <tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
 negative numbers (which allows for better optimization).
 </p>
@@ -4520,9 +4540,15 @@ floating point number.
 <div class="doc_text">
 
 <h5>Syntax:</h5>
+<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any 
+floating point or vector of floating point type. Not all targets support all
+types however.
 <pre>
-  declare float  @llvm.powi.f32(float  %Val, i32 %power)
-  declare double @llvm.powi.f64(double %Val, i32 %power)
+  declare float     @llvm.powi.f32(float  %Val, i32 %power)
+  declare double    @llvm.powi.f64(double %Val, i32 %power)
+  declare x86_fp80  @llvm.powi.f80(x86_fp80  %Val, i32 %power)
+  declare fp128     @llvm.powi.f128(fp128 %Val, i32 %power)
+  declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128  %Val, i32 %power)
 </pre>
 
 <h5>Overview:</h5>
@@ -4530,7 +4556,8 @@ floating point number.
 <p>
 The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
 specified (positive or negative) power.  The order of evaluation of
-multiplications is not defined.
+multiplications is not defined.  When a vector of floating point type is
+used, the second argument remains a scalar integer value.
 </p>
 
 <h5>Arguments:</h5>
@@ -4547,6 +4574,126 @@ This function returns the first value raised to the second power with an
 unspecified sequence of rounding operations.</p>
 </div>
 
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any 
+floating point or vector of floating point type. Not all targets support all
+types however.
+<pre>
+  declare float     @llvm.sin.f32(float  %Val)
+  declare double    @llvm.sin.f64(double %Val)
+  declare x86_fp80  @llvm.sin.f80(x86_fp80  %Val)
+  declare fp128     @llvm.sin.f128(fp128 %Val)
+  declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128  %Val)
+</pre>
+
+<h5>Overview:</h5>
+
+<p>
+The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.
+</p>
+
+<h5>Arguments:</h5>
+
+<p>
+The argument and return value are floating point numbers of the same type.
+</p>
+
+<h5>Semantics:</h5>
+
+<p>
+This function returns the sine of the specified operand, returning the
+same values as the libm <tt>sin</tt> functions would, and handles error
+conditions in the same way.</p>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any 
+floating point or vector of floating point type. Not all targets support all
+types however.
+<pre>
+  declare float     @llvm.cos.f32(float  %Val)
+  declare double    @llvm.cos.f64(double %Val)
+  declare x86_fp80  @llvm.cos.f80(x86_fp80  %Val)
+  declare fp128     @llvm.cos.f128(fp128 %Val)
+  declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128  %Val)
+</pre>
+
+<h5>Overview:</h5>
+
+<p>
+The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.
+</p>
+
+<h5>Arguments:</h5>
+
+<p>
+The argument and return value are floating point numbers of the same type.
+</p>
+
+<h5>Semantics:</h5>
+
+<p>
+This function returns the cosine of the specified operand, returning the
+same values as the libm <tt>cos</tt> functions would, and handles error
+conditions in the same way.</p>
+</div>
+
+<!-- _______________________________________________________________________ -->
+<div class="doc_subsubsection">
+  <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
+</div>
+
+<div class="doc_text">
+
+<h5>Syntax:</h5>
+<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any 
+floating point or vector of floating point type. Not all targets support all
+types however.
+<pre>
+  declare float     @llvm.pow.f32(float  %Val, float %Power)
+  declare double    @llvm.pow.f64(double %Val, double %Power)
+  declare x86_fp80  @llvm.pow.f80(x86_fp80  %Val, x86_fp80 %Power)
+  declare fp128     @llvm.pow.f128(fp128 %Val, fp128 %Power)
+  declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128  %Val, ppc_fp128 Power)
+</pre>
+
+<h5>Overview:</h5>
+
+<p>
+The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
+specified (positive or negative) power.
+</p>
+
+<h5>Arguments:</h5>
+
+<p>
+The second argument is a floating point power, and the first is a value to
+raise to that power.
+</p>
+
+<h5>Semantics:</h5>
+
+<p>
+This function returns the first value raised to the second power,
+returning the
+same values as the libm <tt>pow</tt> functions would, and handles error
+conditions in the same way.</p>
+</div>
+
 
 <!-- ======================================================================= -->
 <div class="doc_subsection">
@@ -4849,298 +4996,6 @@ href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
 Handling</a> document. </p>
 </div>
 
-<!-- ======================================================================= -->
-<div class="doc_subsection">
-  <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
-</div>
-
-<div class="doc_text">
-<p>
-  These intrinsic functions expand the "universal IR" of LLVM to represent 
-  hardware constructs for atomic operations and memory synchronization.  This 
-  provides an interface to the hardware, not an interface to the programmer. It 
-  is aimed at a low enough level to allow any programming models or APIs which 
-  need atomic behaviors to map cleanly onto it. It is also modeled primarily on 
-  hardware behavior. Just as hardware provides a "universal IR" for source 
-  languages, it also provides a starting point for developing a "universal" 
-  atomic operation and synchronization IR.
-</p>
-<p>
-  These do <em>not</em> form an API such as high-level threading libraries, 
-  software transaction memory systems, atomic primitives, and intrinsic 
-  functions as found in BSD, GNU libc, atomic_ops, APR, and other system and 
-  application libraries.  The hardware interface provided by LLVM should allow 
-  a clean implementation of all of these APIs and parallel programming models. 
-  No one model or paradigm should be selected above others unless the hardware 
-  itself ubiquitously does so.
-</p>
-</div>
-
-<!-- _______________________________________________________________________ -->
-<div class="doc_subsubsection">
-  <a name="int_lcs">'<tt>llvm.atomic.lcs.*</tt>' Intrinsic</a>
-</div>
-<div class="doc_text">
-<h5>Syntax:</h5>
-<p>
-  This is an overloaded intrinsic. You can use <tt>llvm.atomic.lcs</tt> on any 
-  integer bit width. Not all targets support all bit widths however.</p>
-<pre>
-declare i8 @llvm.atomic.lcs.i8.i8p.i8.i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
-declare i16 @llvm.atomic.lcs.i16.i16p.i16.i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
-declare i32 @llvm.atomic.lcs.i32.i32p.i32.i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
-declare i64 @llvm.atomic.lcs.i64.i64p.i64.i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
-</pre>
-<h5>Overview:</h5>
-<p>
-  This loads a value in memory and compares it to a given value. If they are 
-  equal, it stores a new value into the memory.
-</p>
-<h5>Arguments:</h5>
-<p>
-  The <tt>llvm.atomic.lcs</tt> intrinsic takes three arguments. The result as 
-  well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the 
-  same bit width. The <tt>ptr</tt> argument must be a pointer to a value of 
-  this integer type. While any bit width integer may be used, targets may only 
-  lower representations they support in hardware.
-</p>
-<h5>Semantics:</h5>
-<p>
-  This entire intrinsic must be executed atomically. It first loads the value 
-  in memory pointed to by <tt>ptr</tt> and compares it with the value 
-  <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the memory. The 
-  loaded value is yielded in all cases. This provides the equivalent of an 
-  atomic compare-and-swap operation within the SSA framework.
-</p>
-<h5>Examples:</h5>
-<pre>
-%ptr      = malloc i32
-            store i32 4, %ptr
-
-%val1     = add i32 4, 4
-%result1  = call i32 @llvm.atomic.lcs( i32* %ptr, i32 4, %val1 )
-                                          <i>; yields {i32}:result1 = 4</i>
-%stored1  = icmp eq i32 %result1, 4       <i>; yields {i1}:stored1 = true</i>
-%memval1  = load i32* %ptr                <i>; yields {i32}:memval1 = 8</i>
-
-%val2     = add i32 1, 1
-%result2  = call i32 @llvm.atomic.lcs( i32* %ptr, i32 5, %val2 )
-                                          <i>; yields {i32}:result2 = 8</i>
-%stored2  = icmp eq i32 %result2, 5       <i>; yields {i1}:stored2 = false</i>
-%memval2  = load i32* %ptr                <i>; yields {i32}:memval2 = 8</i>
-</pre>
-</div>
-
-<!-- _______________________________________________________________________ -->
-<div class="doc_subsubsection">
-  <a name="int_ls">'<tt>llvm.atomic.ls.*</tt>' Intrinsic</a>
-</div>
-<div class="doc_text">
-<h5>Syntax:</h5>
-<p>
-  This is an overloaded intrinsic. You can use <tt>llvm.atomic.ls</tt> on any 
-  integer bit width. Not all targets support all bit widths however.</p>
-<pre>
-declare i8 @llvm.atomic.ls.i8.i8p.i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
-declare i16 @llvm.atomic.ls.i16.i16p.i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
-declare i32 @llvm.atomic.ls.i32.i32p.i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
-declare i64 @llvm.atomic.ls.i64.i64p.i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
-</pre>
-<h5>Overview:</h5>
-<p>
-  This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields 
-  the value from memory. It then stores the value in <tt>val</tt> in the memory 
-  at <tt>ptr</tt>.
-</p>
-<h5>Arguments:</h5>
-<p>
-  The <tt>llvm.atomic.ls</tt> intrinsic takes two arguments. Both the 
-  <tt>val</tt> argument and the result must be integers of the same bit width. 
-  The first argument, <tt>ptr</tt>, must be a pointer to a value of this 
-  integer type. The targets may only lower integer representations they 
-  support.
-</p>
-<h5>Semantics:</h5>
-<p>
-  This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and 
-  stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the 
-  equivalent of an atomic swap operation within the SSA framework.
-</p>
-<h5>Examples:</h5>
-<pre>
-%ptr      = malloc i32
-            store i32 4, %ptr
-
-%val1     = add i32 4, 4
-%result1  = call i32 @llvm.atomic.ls( i32* %ptr, i32 %val1 )
-                                        <i>; yields {i32}:result1 = 4</i>
-%stored1  = icmp eq i32 %result1, 4     <i>; yields {i1}:stored1 = true</i>
-%memval1  = load i32* %ptr              <i>; yields {i32}:memval1 = 8</i>
-
-%val2     = add i32 1, 1
-%result2  = call i32 @llvm.atomic.ls( i32* %ptr, i32 %val2 )
-                                        <i>; yields {i32}:result2 = 8</i>
-%stored2  = icmp eq i32 %result2, 8     <i>; yields {i1}:stored2 = true</i>
-%memval2  = load i32* %ptr              <i>; yields {i32}:memval2 = 2</i>
-</pre>
- </div>
-
-<!-- _______________________________________________________________________ -->
-<div class="doc_subsubsection">
-  <a name="int_las">'<tt>llvm.atomic.las.*</tt>' Intrinsic</a>
-</div>
-<div class="doc_text">
-<h5>Syntax:</h5>
-<p>
-  This is an overloaded intrinsic. You can use <tt>llvm.atomic.las</tt> on any 
-  integer bit width. Not all targets support all bit widths however.</p>
-<pre>
-declare i8 @llvm.atomic.las.i8.i8p.i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
-declare i16 @llvm.atomic.las.i16.i16p.i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
-declare i32 @llvm.atomic.las.i32.i32p.i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
-declare i64 @llvm.atomic.las.i64.i64p.i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
-</pre>
-<h5>Overview:</h5>
-<p>
-  This intrinsic adds <tt>delta</tt> to the value stored in memory at 
-  <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
-</p>
-<h5>Arguments:</h5>
-<p>
-  The intrinsic takes two arguments, the first a pointer to an integer value 
-  and the second an integer value. The result is also an integer value. These 
-  integer types can have any bit width, but they must all have the same bit 
-  width. The targets may only lower integer representations they support.
-</p>
-<h5>Semantics:</h5>
-<p>
-  This intrinsic does a series of operations atomically. It first loads the 
-  value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result 
-  to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
-</p>
-<h5>Examples:</h5>
-<pre>
-%ptr      = malloc i32
-        store i32 4, %ptr
-%result1  = call i32 @llvm.atomic.las( i32* %ptr, i32 4 )
-                                <i>; yields {i32}:result1 = 4</i>
-%result2  = call i32 @llvm.atomic.las( i32* %ptr, i32 2 )
-                                <i>; yields {i32}:result2 = 8</i>
-%result3  = call i32 @llvm.atomic.las( i32* %ptr, i32 5 )
-                                <i>; yields {i32}:result3 = 10</i>
-%memval   = load i32* %ptr      <i>; yields {i32}:memval1 = 15</i>
-</pre>
-</div>
-
-<!-- _______________________________________________________________________ -->
-<div class="doc_subsubsection">
-  <a name="int_lss">'<tt>llvm.atomic.lss.*</tt>' Intrinsic</a>
-</div>
-<div class="doc_text">
-<h5>Syntax:</h5>
-<p>
-  This is an overloaded intrinsic. You can use <tt>llvm.atomic.lss</tt> on any 
-  integer bit width. Not all targets support all bit widths however.</p>
-<pre>
-declare i8 @llvm.atomic.lss.i8.i8.i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
-declare i16 @llvm.atomic.lss.i16.i16.i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
-declare i32 @llvm.atomic.lss.i32.i32.i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
-declare i64 @llvm.atomic.lss.i64.i64.i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
-</pre>
-<h5>Overview:</h5>
-<p>
-  This intrinsic subtracts <tt>delta</tt> from the value stored in memory at 
-  <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
-</p>
-<h5>Arguments:</h5>
-<p>
-  The intrinsic takes two arguments, the first a pointer to an integer value 
-  and the second an integer value. The result is also an integer value. These 
-  integer types can have any bit width, but they must all have the same bit 
-  width. The targets may only lower integer representations they support.
-</p>
-<h5>Semantics:</h5>
-<p>
-  This intrinsic does a series of operations atomically. It first loads the 
-  value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, 
-  stores the result to <tt>ptr</tt>. It yields the original value stored 
-  at <tt>ptr</tt>.
-</p>
-<h5>Examples:</h5>
-<pre>
-%ptr      = malloc i32
-        store i32 32, %ptr
-%result1  = call i32 @llvm.atomic.lss( i32* %ptr, i32 4 )
-                                    <i>; yields {i32}:result1 = 32</i>
-%result2  = call i32 @llvm.atomic.lss( i32* %ptr, i32 2 )
-                                    <i>; yields {i32}:result2 = 28</i>
-%result3  = call i32 @llvm.atomic.lss( i32* %ptr, i32 5 )
-                                    <i>; yields {i32}:result3 = 26</i>
-%memval   = load i32* %ptr          <i>; yields {i32}:memval1 = 21</i>
-</pre>
-</div>
-
-<!-- _______________________________________________________________________ -->
-<div class="doc_subsubsection">
-  <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
-</div>
-<div class="doc_text">
-<h5>Syntax:</h5>
-<pre>
-declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt; )
-</pre>
-<h5>Overview:</h5>
-<p>
-  The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between 
-  specific pairs of memory access types.
-</p>
-<h5>Arguments:</h5>
-<p>
-  The <tt>llvm.memory.barrier</tt> intrinsic requires four boolean arguments. 
-  Each argument enables a specific barrier as listed below.
-</p>
-  <ul>
-    <li><tt>ll</tt>: load-load barrier</li>
-    <li><tt>ls</tt>: load-store barrier</li>
-    <li><tt>sl</tt>: store-load barrier</li>
-    <li><tt>ss</tt>: store-store barrier</li>
-  </ul>
-<h5>Semantics:</h5>
-<p>
-  This intrinsic causes the system to enforce some ordering constraints upon 
-  the loads and stores of the program. This barrier does not indicate 
-  <em>when</em> any events will occur, it only enforces an <em>order</em> in 
-  which they occur. For any of the specified pairs of load and store operations 
-  (f.ex.  load-load, or store-load), all of the first operations preceding the 
-  barrier will complete before any of the second operations succeeding the 
-  barrier begin. Specifically the semantics for each pairing is as follows:
-</p>
-  <ul>
-    <li><tt>ll</tt>: All loads before the barrier must complete before any load 
-    after the barrier begins.</li>
-    <li><tt>ls</tt>: All loads before the barrier must complete before any 
-    store after the barrier begins.</li>
-    <li><tt>ss</tt>: All stores before the barrier must complete before any 
-    store after the barrier begins.</li>
-    <li><tt>sl</tt>: All stores before the barrier must complete before any 
-    load after the barrier begins.</li>
-  </ul>
-<p>
-  These semantics are applied with a logical "and" behavior when more than  one 
-  is enabled in a single memory barrier intrinsic.
-</p>
-<h5>Example:</h5>
-<pre>
-%ptr      = malloc i32
-            store i32 4, %ptr
-
-%result1  = load i32* %ptr      <i>; yields {i32}:result1 = 4</i>
-            call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
-                                <i>; guarantee the above finishes</i>
-            store i32 8, %ptr   <i>; before this begins</i>
-</pre>
-</div>
-
 <!-- ======================================================================= -->
 <div class="doc_subsection">
   <a name="int_trampoline">Trampoline Intrinsic</a>
@@ -5160,16 +5015,15 @@ declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;,
 <p>
   For example, if the function is
   <tt>i32 f(i8* nest  %c, i32 %x, i32 %y)</tt> then the resulting function
-  pointer has signature <tt>i32 (i32, i32)*</tt>.  It can be created as follows:
+  pointer has signature <tt>i32 (i32, i32)*</tt>.  It can be created as follows:</p>
 <pre>
   %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
   %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
   %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
   %fp = bitcast i8* %p to i32 (i32, i32)*
 </pre>
-  The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent to
-  <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.
-</p>
+  <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
+  to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
 </div>
 
 <!-- _______________________________________________________________________ -->