Fix typo.
[oota-llvm.git] / docs / LangRef.html
index a79280c9fc3a45fc1a5e8fc24a400f82983824f1..15f95e2a11c477052022048040e426d6bb0ed6f2 100644 (file)
         <ol>
           <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
           <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
-          <li><a href="#i_vicmp">'<tt>vicmp</tt>' Instruction</a></li>
-          <li><a href="#i_vfcmp">'<tt>vfcmp</tt>' Instruction</a></li>
           <li><a href="#i_phi">'<tt>phi</tt>'   Instruction</a></li>
           <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
           <li><a href="#i_call">'<tt>call</tt>'  Instruction</a></li>
           <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
           <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
           <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
-          <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
-          <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
         </ol>
       </li>
       <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a>
@@ -2042,12 +2038,6 @@ following is the syntax for constant expressions:</p>
   <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
   <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
 
-  <dt><b><tt>vicmp COND ( VAL1, VAL2 )</tt></b></dt>
-  <dd>Performs the <a href="#i_vicmp">vicmp operation</a> on constants.</dd>
-
-  <dt><b><tt>vfcmp COND ( VAL1, VAL2 )</tt></b></dt>
-  <dd>Performs the <a href="#i_vfcmp">vfcmp operation</a> on constants.</dd>
-
   <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
 
   <dd>Perform the <a href="#i_extractelement">extractelement
@@ -3532,9 +3522,10 @@ address space (address space zero).</p>
 bytes of memory from the operating system and returns a pointer of the
 appropriate type to the program.  If "NumElements" is specified, it is the
 number of elements allocated, otherwise "NumElements" is defaulted to be one.
-If a constant alignment is specified, the value result of the allocation is guaranteed to
-be aligned to at least that boundary.  If not specified, or if zero, the target can
-choose to align the allocation on any convenient boundary.</p>
+If a constant alignment is specified, the value result of the allocation is
+guaranteed to be aligned to at least that boundary.  If not specified, or if
+zero, the target can choose to align the allocation on any convenient boundary
+compatible with the type.</p>
 
 <p>'<tt>type</tt>' must be a sized type.</p>
 
@@ -3625,9 +3616,10 @@ space (address space zero).</p>
 bytes of memory on the runtime stack, returning a pointer of the
 appropriate type to the program.  If "NumElements" is specified, it is the
 number of elements allocated, otherwise "NumElements" is defaulted to be one.
-If a constant alignment is specified, the value result of the allocation is guaranteed
-to be aligned to at least that boundary.  If not specified, or if zero, the target
-can choose to align the allocation on any convenient boundary.</p>
+If a constant alignment is specified, the value result of the allocation is
+guaranteed to be aligned to at least that boundary.  If not specified, or if
+zero, the target can choose to align the allocation on any convenient boundary
+compatible with the type.</p>
 
 <p>'<tt>type</tt>' may be any sized type.</p>
 
@@ -4502,109 +4494,6 @@ always yields an <a href="#t_primitive">i1</a> result, as follows:</p>
 
 </div>
 
-<!-- _______________________________________________________________________ -->
-<div class="doc_subsubsection">
-  <a name="i_vicmp">'<tt>vicmp</tt>' Instruction</a>
-</div>
-<div class="doc_text">
-<h5>Syntax:</h5>
-<pre>  &lt;result&gt; = vicmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
-</pre>
-<h5>Overview:</h5>
-<p>The '<tt>vicmp</tt>' instruction returns an integer vector value based on
-element-wise comparison of its two integer vector operands.</p>
-<h5>Arguments:</h5>
-<p>The '<tt>vicmp</tt>' instruction takes three operands. The first operand is
-the condition code indicating the kind of comparison to perform. It is not
-a value, just a keyword. The possible condition code are:</p>
-<ol>
-  <li><tt>eq</tt>: equal</li>
-  <li><tt>ne</tt>: not equal </li>
-  <li><tt>ugt</tt>: unsigned greater than</li>
-  <li><tt>uge</tt>: unsigned greater or equal</li>
-  <li><tt>ult</tt>: unsigned less than</li>
-  <li><tt>ule</tt>: unsigned less or equal</li>
-  <li><tt>sgt</tt>: signed greater than</li>
-  <li><tt>sge</tt>: signed greater or equal</li>
-  <li><tt>slt</tt>: signed less than</li>
-  <li><tt>sle</tt>: signed less or equal</li>
-</ol>
-<p>The remaining two arguments must be <a href="#t_vector">vector</a> or
-<a href="#t_integer">integer</a> typed. They must also be identical types.</p>
-<h5>Semantics:</h5>
-<p>The '<tt>vicmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
-according to the condition code given as <tt>cond</tt>. The comparison yields a 
-<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, of
-identical type as the values being compared.  The most significant bit in each
-element is 1 if the element-wise comparison evaluates to true, and is 0
-otherwise.  All other bits of the result are undefined.  The condition codes
-are evaluated identically to the <a href="#i_icmp">'<tt>icmp</tt>'
-instruction</a>.</p>
-
-<h5>Example:</h5>
-<pre>
-  &lt;result&gt; = vicmp eq &lt;2 x i32&gt; &lt; i32 4, i32 0&gt;, &lt; i32 5, i32 0&gt;   <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
-  &lt;result&gt; = vicmp ult &lt;2 x i8 &gt; &lt; i8 1, i8 2&gt;, &lt; i8 2, i8 2 &gt;        <i>; yields: result=&lt;2 x i8&gt; &lt; i8 -1, i8 0 &gt;</i>
-</pre>
-</div>
-
-<!-- _______________________________________________________________________ -->
-<div class="doc_subsubsection">
-  <a name="i_vfcmp">'<tt>vfcmp</tt>' Instruction</a>
-</div>
-<div class="doc_text">
-<h5>Syntax:</h5>
-<pre>  &lt;result&gt; = vfcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;</pre>
-<h5>Overview:</h5>
-<p>The '<tt>vfcmp</tt>' instruction returns an integer vector value based on
-element-wise comparison of its two floating point vector operands.  The output
-elements have the same width as the input elements.</p>
-<h5>Arguments:</h5>
-<p>The '<tt>vfcmp</tt>' instruction takes three operands. The first operand is
-the condition code indicating the kind of comparison to perform. It is not
-a value, just a keyword. The possible condition code are:</p>
-<ol>
-  <li><tt>false</tt>: no comparison, always returns false</li>
-  <li><tt>oeq</tt>: ordered and equal</li>
-  <li><tt>ogt</tt>: ordered and greater than </li>
-  <li><tt>oge</tt>: ordered and greater than or equal</li>
-  <li><tt>olt</tt>: ordered and less than </li>
-  <li><tt>ole</tt>: ordered and less than or equal</li>
-  <li><tt>one</tt>: ordered and not equal</li>
-  <li><tt>ord</tt>: ordered (no nans)</li>
-  <li><tt>ueq</tt>: unordered or equal</li>
-  <li><tt>ugt</tt>: unordered or greater than </li>
-  <li><tt>uge</tt>: unordered or greater than or equal</li>
-  <li><tt>ult</tt>: unordered or less than </li>
-  <li><tt>ule</tt>: unordered or less than or equal</li>
-  <li><tt>une</tt>: unordered or not equal</li>
-  <li><tt>uno</tt>: unordered (either nans)</li>
-  <li><tt>true</tt>: no comparison, always returns true</li>
-</ol>
-<p>The remaining two arguments must be <a href="#t_vector">vector</a> of 
-<a href="#t_floating">floating point</a> typed. They must also be identical
-types.</p>
-<h5>Semantics:</h5>
-<p>The '<tt>vfcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
-according to  the condition code given as <tt>cond</tt>. The comparison yields a 
-<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, with
-an identical number of elements as the values being compared, and each element
-having identical with to the width of the floating point elements. The most 
-significant bit in each element is 1 if the element-wise comparison evaluates to
-true, and is 0 otherwise.  All other bits of the result are undefined.  The
-condition codes are evaluated identically to the 
-<a href="#i_fcmp">'<tt>fcmp</tt>' instruction</a>.</p>
-
-<h5>Example:</h5>
-<pre>
-  <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
-  &lt;result&gt; = vfcmp oeq &lt;2 x float&gt; &lt; float 4, float 0 &gt;, &lt; float 5, float 0 &gt;
-  
-  <i>; yields: result=&lt;2 x i64&gt; &lt; i64 -1, i64 0 &gt;</i>
-  &lt;result&gt; = vfcmp ult &lt;2 x double&gt; &lt; double 1, double 2 &gt;, &lt; double 2, double 2&gt;
-</pre>
-</div>
-
 <!-- _______________________________________________________________________ -->
 <div class="doc_subsubsection">
   <a name="i_phi">'<tt>phi</tt>' Instruction</a>
@@ -6051,110 +5940,6 @@ of src.  For example, <tt>llvm.cttz(2) = 1</tt>.
 </p>
 </div>
 
-<!-- _______________________________________________________________________ -->
-<div class="doc_subsubsection">
-  <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
-</div>
-
-<div class="doc_text">
-
-<h5>Syntax:</h5>
-<p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt> 
-on any integer bit width.</p>
-<pre>
-  declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit)
-  declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit)
-</pre>
-
-<h5>Overview:</h5>
-<p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
-range of bits from an integer value and returns them in the same bit width as
-the original value.</p>
-
-<h5>Arguments:</h5>
-<p>The first argument, <tt>%val</tt> and the result may be integer types of 
-any bit width but they must have the same bit width. The second and third 
-arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
-
-<h5>Semantics:</h5>
-<p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
-of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
-<tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
-operates in forward mode.</p>
-<p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
-right by <tt>%loBit</tt> bits and then ANDing it with a mask with
-only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
-<ol>
-  <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
-  by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
-  <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
-  to determine the number of bits to retain.</li>
-  <li>A mask of the retained bits is created by shifting a -1 value.</li>
-  <li>The mask is ANDed with <tt>%val</tt> to produce the result.</li>
-</ol>
-<p>In reverse mode, a similar computation is made except that the bits are
-returned in the reverse order. So, for example, if <tt>X</tt> has the value
-<tt>i16 0x0ACF (101011001111)</tt> and we apply 
-<tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value 
-<tt>i16 0x0026 (000000100110)</tt>.</p>
-</div>
-
-<div class="doc_subsubsection">
-  <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
-</div>
-
-<div class="doc_text">
-
-<h5>Syntax:</h5>
-<p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt> 
-on any integer bit width.</p>
-<pre>
-  declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
-  declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
-</pre>
-
-<h5>Overview:</h5>
-<p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
-of bits in an integer value with another integer value. It returns the integer
-with the replaced bits.</p>
-
-<h5>Arguments:</h5>
-<p>The first argument, <tt>%val</tt>, and the result may be integer types of 
-any bit width, but they must have the same bit width. <tt>%val</tt> is the value
-whose bits will be replaced.  The second argument, <tt>%repl</tt> may be an
-integer of any bit width. The third and fourth arguments must be <tt>i32</tt> 
-type since they specify only a bit index.</p>
-
-<h5>Semantics:</h5>
-<p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
-of operation: forwards and reverse. If <tt>%lo</tt> is greater than
-<tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
-operates in forward mode.</p>
-
-<p>For both modes, the <tt>%repl</tt> value is prepared for use by either
-truncating it down to the size of the replacement area or zero extending it 
-up to that size.</p>
-
-<p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
-are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
-in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
-to the <tt>%hi</tt>th bit.</p>
-
-<p>In reverse mode, a similar computation is made except that the bits are
-reversed.  That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the 
-<tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.</p>
-
-<h5>Examples:</h5>
-
-<pre>
-  llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
-  llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
-  llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
-  llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
-  llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
-</pre>
-
-</div>
 
 <!-- ======================================================================= -->
 <div class="doc_subsection">
@@ -6429,9 +6214,6 @@ on any integer bit width.</p>
 
 <h5>Overview:</h5>
 
-<p><i><b>Warning:</b> '<tt>llvm.umul.with.overflow</tt>' is badly broken. It is
-actively being fixed, but it should not currently be used!</i></p>
-
 <p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
 a unsigned multiplication of the two arguments, and indicate whether an overflow
 occurred during the unsigned multiplication.</p>