1 //===- X86DisassemblerTables.cpp - Disassembler tables ----------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file is part of the X86 Disassembler Emitter.
11 // It contains the implementation of the disassembler tables.
12 // Documentation for the disassembler emitter in general can be found in
13 // X86DisasemblerEmitter.h.
15 //===----------------------------------------------------------------------===//
17 #include "X86DisassemblerTables.h"
18 #include "X86DisassemblerShared.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/Support/ErrorHandling.h"
21 #include "llvm/Support/Format.h"
25 using namespace X86Disassembler;
27 /// stringForContext - Returns a string containing the name of a particular
28 /// InstructionContext, usually for diagnostic purposes.
30 /// @param insnContext - The instruction class to transform to a string.
31 /// @return - A statically-allocated string constant that contains the
32 /// name of the instruction class.
33 static inline const char* stringForContext(InstructionContext insnContext) {
34 switch (insnContext) {
36 llvm_unreachable("Unhandled instruction class");
37 #define ENUM_ENTRY(n, r, d) case n: return #n; break;
38 #define ENUM_ENTRY_K_B(n, r, d) ENUM_ENTRY(n, r, d) ENUM_ENTRY(n##_K_B, r, d)\
39 ENUM_ENTRY(n##_KZ, r, d) ENUM_ENTRY(n##_K, r, d) ENUM_ENTRY(n##_B, r, d)\
40 ENUM_ENTRY(n##_KZ_B, r, d)
47 /// stringForOperandType - Like stringForContext, but for OperandTypes.
48 static inline const char* stringForOperandType(OperandType type) {
51 llvm_unreachable("Unhandled type");
52 #define ENUM_ENTRY(i, d) case i: return #i;
58 /// stringForOperandEncoding - like stringForContext, but for
60 static inline const char* stringForOperandEncoding(OperandEncoding encoding) {
63 llvm_unreachable("Unhandled encoding");
64 #define ENUM_ENTRY(i, d) case i: return #i;
70 /// inheritsFrom - Indicates whether all instructions in one class also belong
73 /// @param child - The class that may be the subset
74 /// @param parent - The class that may be the superset
75 /// @return - True if child is a subset of parent, false otherwise.
76 static inline bool inheritsFrom(InstructionContext child,
77 InstructionContext parent,
78 bool VEX_LIG = false) {
84 return(inheritsFrom(child, IC_64BIT) ||
85 inheritsFrom(child, IC_OPSIZE) ||
86 inheritsFrom(child, IC_ADSIZE) ||
87 inheritsFrom(child, IC_XD) ||
88 inheritsFrom(child, IC_XS));
90 return(inheritsFrom(child, IC_64BIT_REXW) ||
91 inheritsFrom(child, IC_64BIT_OPSIZE) ||
92 inheritsFrom(child, IC_64BIT_ADSIZE) ||
93 inheritsFrom(child, IC_64BIT_XD) ||
94 inheritsFrom(child, IC_64BIT_XS));
96 return inheritsFrom(child, IC_64BIT_OPSIZE);
101 return inheritsFrom(child, IC_64BIT_XD);
103 return inheritsFrom(child, IC_64BIT_XS);
105 return inheritsFrom(child, IC_64BIT_XD_OPSIZE);
107 return inheritsFrom(child, IC_64BIT_XS_OPSIZE);
109 return(inheritsFrom(child, IC_64BIT_REXW_XS) ||
110 inheritsFrom(child, IC_64BIT_REXW_XD) ||
111 inheritsFrom(child, IC_64BIT_REXW_OPSIZE));
112 case IC_64BIT_OPSIZE:
113 return(inheritsFrom(child, IC_64BIT_REXW_OPSIZE));
115 return(inheritsFrom(child, IC_64BIT_REXW_XD));
117 return(inheritsFrom(child, IC_64BIT_REXW_XS));
118 case IC_64BIT_XD_OPSIZE:
119 case IC_64BIT_XS_OPSIZE:
121 case IC_64BIT_REXW_XD:
122 case IC_64BIT_REXW_XS:
123 case IC_64BIT_REXW_OPSIZE:
126 return (VEX_LIG && inheritsFrom(child, IC_VEX_L_W)) ||
127 inheritsFrom(child, IC_VEX_W) ||
128 (VEX_LIG && inheritsFrom(child, IC_VEX_L));
130 return (VEX_LIG && inheritsFrom(child, IC_VEX_L_W_XS)) ||
131 inheritsFrom(child, IC_VEX_W_XS) ||
132 (VEX_LIG && inheritsFrom(child, IC_VEX_L_XS));
134 return (VEX_LIG && inheritsFrom(child, IC_VEX_L_W_XD)) ||
135 inheritsFrom(child, IC_VEX_W_XD) ||
136 (VEX_LIG && inheritsFrom(child, IC_VEX_L_XD));
138 return (VEX_LIG && inheritsFrom(child, IC_VEX_L_W_OPSIZE)) ||
139 inheritsFrom(child, IC_VEX_W_OPSIZE) ||
140 (VEX_LIG && inheritsFrom(child, IC_VEX_L_OPSIZE));
142 return VEX_LIG && inheritsFrom(child, IC_VEX_L_W);
144 return VEX_LIG && inheritsFrom(child, IC_VEX_L_W_XS);
146 return VEX_LIG && inheritsFrom(child, IC_VEX_L_W_XD);
147 case IC_VEX_W_OPSIZE:
148 return VEX_LIG && inheritsFrom(child, IC_VEX_L_W_OPSIZE);
150 return inheritsFrom(child, IC_VEX_L_W);
152 return inheritsFrom(child, IC_VEX_L_W_XS);
154 return inheritsFrom(child, IC_VEX_L_W_XD);
155 case IC_VEX_L_OPSIZE:
156 return inheritsFrom(child, IC_VEX_L_W_OPSIZE);
160 case IC_VEX_L_W_OPSIZE:
163 return inheritsFrom(child, IC_EVEX_W) ||
164 inheritsFrom(child, IC_EVEX_L_W);
166 return inheritsFrom(child, IC_EVEX_W_XS) ||
167 inheritsFrom(child, IC_EVEX_L_W_XS);
169 return inheritsFrom(child, IC_EVEX_W_XD) ||
170 inheritsFrom(child, IC_EVEX_L_W_XD);
172 return inheritsFrom(child, IC_EVEX_W_OPSIZE) ||
173 inheritsFrom(child, IC_EVEX_L_W_OPSIZE);
179 case IC_EVEX_W_OPSIZE:
187 case IC_EVEX_L_OPSIZE:
192 case IC_EVEX_L_W_OPSIZE:
197 case IC_EVEX_L2_OPSIZE:
200 case IC_EVEX_L2_W_XS:
201 case IC_EVEX_L2_W_XD:
202 case IC_EVEX_L2_W_OPSIZE:
205 return inheritsFrom(child, IC_EVEX_W_K) ||
206 inheritsFrom(child, IC_EVEX_L_W_K);
208 return inheritsFrom(child, IC_EVEX_W_XS_K) ||
209 inheritsFrom(child, IC_EVEX_L_W_XS_K);
211 return inheritsFrom(child, IC_EVEX_W_XD_K) ||
212 inheritsFrom(child, IC_EVEX_L_W_XD_K);
217 return inheritsFrom(child, IC_EVEX_W_XS_KZ) ||
218 inheritsFrom(child, IC_EVEX_L_W_XS_KZ);
220 return inheritsFrom(child, IC_EVEX_W_XD_KZ) ||
221 inheritsFrom(child, IC_EVEX_L_W_XD_KZ);
223 case IC_EVEX_OPSIZE_K:
224 case IC_EVEX_OPSIZE_B:
225 case IC_EVEX_OPSIZE_K_B:
226 case IC_EVEX_OPSIZE_KZ:
227 case IC_EVEX_OPSIZE_KZ_B:
232 case IC_EVEX_W_OPSIZE_K:
233 case IC_EVEX_W_OPSIZE_B:
234 case IC_EVEX_W_OPSIZE_K_B:
239 case IC_EVEX_L_OPSIZE_K:
240 case IC_EVEX_L_OPSIZE_B:
241 case IC_EVEX_L_OPSIZE_K_B:
244 case IC_EVEX_W_XS_KZ:
245 case IC_EVEX_W_XD_KZ:
246 case IC_EVEX_W_OPSIZE_KZ:
247 case IC_EVEX_W_OPSIZE_KZ_B:
250 case IC_EVEX_L_XS_KZ:
251 case IC_EVEX_L_XD_KZ:
252 case IC_EVEX_L_OPSIZE_KZ:
253 case IC_EVEX_L_OPSIZE_KZ_B:
256 case IC_EVEX_L_W_XS_K:
257 case IC_EVEX_L_W_XD_K:
258 case IC_EVEX_L_W_OPSIZE_K:
259 case IC_EVEX_L_W_OPSIZE_B:
260 case IC_EVEX_L_W_OPSIZE_K_B:
262 case IC_EVEX_L_W_XS_KZ:
263 case IC_EVEX_L_W_XD_KZ:
264 case IC_EVEX_L_W_OPSIZE_KZ:
265 case IC_EVEX_L_W_OPSIZE_KZ_B:
270 case IC_EVEX_L2_KZ_B:
271 case IC_EVEX_L2_XS_K:
272 case IC_EVEX_L2_XS_B:
273 case IC_EVEX_L2_XD_B:
274 case IC_EVEX_L2_XD_K:
275 case IC_EVEX_L2_OPSIZE_K:
276 case IC_EVEX_L2_OPSIZE_B:
277 case IC_EVEX_L2_OPSIZE_K_B:
279 case IC_EVEX_L2_XS_KZ:
280 case IC_EVEX_L2_XD_KZ:
281 case IC_EVEX_L2_OPSIZE_KZ:
282 case IC_EVEX_L2_OPSIZE_KZ_B:
286 case IC_EVEX_L2_W_XS_K:
287 case IC_EVEX_L2_W_XD_K:
288 case IC_EVEX_L2_W_XD_B:
289 case IC_EVEX_L2_W_OPSIZE_K:
290 case IC_EVEX_L2_W_OPSIZE_B:
291 case IC_EVEX_L2_W_OPSIZE_K_B:
292 case IC_EVEX_L2_W_KZ:
293 case IC_EVEX_L2_W_XS_KZ:
294 case IC_EVEX_L2_W_XD_KZ:
295 case IC_EVEX_L2_W_OPSIZE_KZ:
296 case IC_EVEX_L2_W_OPSIZE_KZ_B:
299 errs() << "Unknown instruction class: " <<
300 stringForContext((InstructionContext)parent) << "\n";
301 llvm_unreachable("Unknown instruction class");
305 /// outranks - Indicates whether, if an instruction has two different applicable
306 /// classes, which class should be preferred when performing decode. This
307 /// imposes a total ordering (ties are resolved toward "lower")
309 /// @param upper - The class that may be preferable
310 /// @param lower - The class that may be less preferable
311 /// @return - True if upper is to be preferred, false otherwise.
312 static inline bool outranks(InstructionContext upper,
313 InstructionContext lower) {
314 assert(upper < IC_max);
315 assert(lower < IC_max);
317 #define ENUM_ENTRY(n, r, d) r,
318 #define ENUM_ENTRY_K_B(n, r, d) ENUM_ENTRY(n, r, d) \
319 ENUM_ENTRY(n##_K_B, r, d) ENUM_ENTRY(n##_KZ_B, r, d) \
320 ENUM_ENTRY(n##_KZ, r, d) ENUM_ENTRY(n##_K, r, d) ENUM_ENTRY(n##_B, r, d)
321 static int ranks[IC_max] = {
325 #undef ENUM_ENTRY_K_B
327 return (ranks[upper] > ranks[lower]);
330 /// getDecisionType - Determines whether a ModRM decision with 255 entries can
331 /// be compacted by eliminating redundant information.
333 /// @param decision - The decision to be compacted.
334 /// @return - The compactest available representation for the decision.
335 static ModRMDecisionType getDecisionType(ModRMDecision &decision) {
336 bool satisfiesOneEntry = true;
337 bool satisfiesSplitRM = true;
338 bool satisfiesSplitReg = true;
339 bool satisfiesSplitMisc = true;
341 for (unsigned index = 0; index < 256; ++index) {
342 if (decision.instructionIDs[index] != decision.instructionIDs[0])
343 satisfiesOneEntry = false;
345 if (((index & 0xc0) == 0xc0) &&
346 (decision.instructionIDs[index] != decision.instructionIDs[0xc0]))
347 satisfiesSplitRM = false;
349 if (((index & 0xc0) != 0xc0) &&
350 (decision.instructionIDs[index] != decision.instructionIDs[0x00]))
351 satisfiesSplitRM = false;
353 if (((index & 0xc0) == 0xc0) &&
354 (decision.instructionIDs[index] != decision.instructionIDs[index&0xf8]))
355 satisfiesSplitReg = false;
357 if (((index & 0xc0) != 0xc0) &&
358 (decision.instructionIDs[index] != decision.instructionIDs[index&0x38]))
359 satisfiesSplitMisc = false;
362 if (satisfiesOneEntry)
363 return MODRM_ONEENTRY;
365 if (satisfiesSplitRM)
366 return MODRM_SPLITRM;
368 if (satisfiesSplitReg && satisfiesSplitMisc)
369 return MODRM_SPLITREG;
371 if (satisfiesSplitMisc)
372 return MODRM_SPLITMISC;
377 /// stringForDecisionType - Returns a statically-allocated string corresponding
378 /// to a particular decision type.
380 /// @param dt - The decision type.
381 /// @return - A pointer to the statically-allocated string (e.g.,
382 /// "MODRM_ONEENTRY" for MODRM_ONEENTRY).
383 static const char* stringForDecisionType(ModRMDecisionType dt) {
384 #define ENUM_ENTRY(n) case n: return #n;
387 llvm_unreachable("Unknown decision type");
393 DisassemblerTables::DisassemblerTables() {
396 for (i = 0; i < array_lengthof(Tables); i++) {
397 Tables[i] = new ContextDecision;
398 memset(Tables[i], 0, sizeof(ContextDecision));
401 HasConflicts = false;
404 DisassemblerTables::~DisassemblerTables() {
407 for (i = 0; i < array_lengthof(Tables); i++)
411 void DisassemblerTables::emitModRMDecision(raw_ostream &o1, raw_ostream &o2,
412 unsigned &i1, unsigned &i2,
413 unsigned &ModRMTableNum,
414 ModRMDecision &decision) const {
415 static uint32_t sTableNumber = 0;
416 static uint32_t sEntryNumber = 1;
417 ModRMDecisionType dt = getDecisionType(decision);
419 if (dt == MODRM_ONEENTRY && decision.instructionIDs[0] == 0)
421 o2.indent(i2) << "{ /* ModRMDecision */" << "\n";
424 o2.indent(i2) << stringForDecisionType(dt) << "," << "\n";
425 o2.indent(i2) << 0 << " /* EmptyTable */\n";
428 o2.indent(i2) << "}";
432 std::vector<unsigned> ModRMDecision;
436 llvm_unreachable("Unknown decision type");
438 ModRMDecision.push_back(decision.instructionIDs[0]);
441 ModRMDecision.push_back(decision.instructionIDs[0x00]);
442 ModRMDecision.push_back(decision.instructionIDs[0xc0]);
445 for (unsigned index = 0; index < 64; index += 8)
446 ModRMDecision.push_back(decision.instructionIDs[index]);
447 for (unsigned index = 0xc0; index < 256; index += 8)
448 ModRMDecision.push_back(decision.instructionIDs[index]);
450 case MODRM_SPLITMISC:
451 for (unsigned index = 0; index < 64; index += 8)
452 ModRMDecision.push_back(decision.instructionIDs[index]);
453 for (unsigned index = 0xc0; index < 256; ++index)
454 ModRMDecision.push_back(decision.instructionIDs[index]);
457 for (unsigned index = 0; index < 256; ++index)
458 ModRMDecision.push_back(decision.instructionIDs[index]);
462 unsigned &EntryNumber = ModRMTable[ModRMDecision];
463 if (EntryNumber == 0) {
464 EntryNumber = ModRMTableNum;
466 ModRMTableNum += ModRMDecision.size();
467 o1 << "/* Table" << EntryNumber << " */\n";
469 for (std::vector<unsigned>::const_iterator I = ModRMDecision.begin(),
470 E = ModRMDecision.end(); I != E; ++I) {
471 o1.indent(i1 * 2) << format("0x%hx", *I) << ", /* "
472 << InstructionSpecifiers[*I].name << " */\n";
477 o2.indent(i2) << "{ /* struct ModRMDecision */" << "\n";
480 o2.indent(i2) << stringForDecisionType(dt) << "," << "\n";
481 o2.indent(i2) << EntryNumber << " /* Table" << EntryNumber << " */\n";
484 o2.indent(i2) << "}";
488 llvm_unreachable("Unknown decision type");
498 case MODRM_SPLITMISC:
499 sEntryNumber += 8 + 64;
506 // We assume that the index can fit into uint16_t.
507 assert(sEntryNumber < 65536U &&
508 "Index into ModRMDecision is too large for uint16_t!");
513 void DisassemblerTables::emitOpcodeDecision(raw_ostream &o1, raw_ostream &o2,
514 unsigned &i1, unsigned &i2,
515 unsigned &ModRMTableNum,
516 OpcodeDecision &decision) const {
517 o2.indent(i2) << "{ /* struct OpcodeDecision */" << "\n";
519 o2.indent(i2) << "{" << "\n";
522 for (unsigned index = 0; index < 256; ++index) {
525 o2 << "/* 0x" << format("%02hhx", index) << " */" << "\n";
527 emitModRMDecision(o1, o2, i1, i2, ModRMTableNum,
528 decision.modRMDecisions[index]);
537 o2.indent(i2) << "}" << "\n";
539 o2.indent(i2) << "}" << "\n";
542 void DisassemblerTables::emitContextDecision(raw_ostream &o1, raw_ostream &o2,
543 unsigned &i1, unsigned &i2,
544 unsigned &ModRMTableNum,
545 ContextDecision &decision,
546 const char* name) const {
547 o2.indent(i2) << "static const struct ContextDecision " << name << " = {\n";
549 o2.indent(i2) << "{ /* opcodeDecisions */" << "\n";
552 for (unsigned index = 0; index < IC_max; ++index) {
553 o2.indent(i2) << "/* ";
554 o2 << stringForContext((InstructionContext)index);
558 emitOpcodeDecision(o1, o2, i1, i2, ModRMTableNum,
559 decision.opcodeDecisions[index]);
561 if (index + 1 < IC_max)
566 o2.indent(i2) << "}" << "\n";
568 o2.indent(i2) << "};" << "\n";
571 void DisassemblerTables::emitInstructionInfo(raw_ostream &o,
573 unsigned NumInstructions = InstructionSpecifiers.size();
575 o << "static const struct OperandSpecifier x86OperandSets[]["
576 << X86_MAX_OPERANDS << "] = {\n";
578 typedef std::vector<std::pair<const char *, const char *> > OperandListTy;
579 std::map<OperandListTy, unsigned> OperandSets;
581 unsigned OperandSetNum = 0;
582 for (unsigned Index = 0; Index < NumInstructions; ++Index) {
583 OperandListTy OperandList;
585 for (unsigned OperandIndex = 0; OperandIndex < X86_MAX_OPERANDS;
587 const char *Encoding =
588 stringForOperandEncoding((OperandEncoding)InstructionSpecifiers[Index]
589 .operands[OperandIndex].encoding);
591 stringForOperandType((OperandType)InstructionSpecifiers[Index]
592 .operands[OperandIndex].type);
593 OperandList.push_back(std::make_pair(Encoding, Type));
595 unsigned &N = OperandSets[OperandList];
596 if (N != 0) continue;
600 o << " { /* " << (OperandSetNum - 1) << " */\n";
601 for (unsigned i = 0, e = OperandList.size(); i != e; ++i) {
602 o << " { " << OperandList[i].first << ", "
603 << OperandList[i].second << " },\n";
609 o.indent(i * 2) << "static const struct InstructionSpecifier ";
610 o << INSTRUCTIONS_STR "[" << InstructionSpecifiers.size() << "] = {\n";
614 for (unsigned index = 0; index < NumInstructions; ++index) {
615 o.indent(i * 2) << "{ /* " << index << " */" << "\n";
618 OperandListTy OperandList;
619 for (unsigned OperandIndex = 0; OperandIndex < X86_MAX_OPERANDS;
621 const char *Encoding =
622 stringForOperandEncoding((OperandEncoding)InstructionSpecifiers[index]
623 .operands[OperandIndex].encoding);
625 stringForOperandType((OperandType)InstructionSpecifiers[index]
626 .operands[OperandIndex].type);
627 OperandList.push_back(std::make_pair(Encoding, Type));
629 o.indent(i * 2) << (OperandSets[OperandList] - 1) << ",\n";
631 o.indent(i * 2) << "/* " << InstructionSpecifiers[index].name << " */";
635 o.indent(i * 2) << "}";
637 if (index + 1 < NumInstructions)
644 o.indent(i * 2) << "};" << "\n";
647 void DisassemblerTables::emitContextTable(raw_ostream &o, unsigned &i) const {
648 const unsigned int tableSize = 16384;
649 o.indent(i * 2) << "static const uint8_t " CONTEXTS_STR
650 "[" << tableSize << "] = {\n";
653 for (unsigned index = 0; index < tableSize; ++index) {
656 if (index & ATTR_EVEX) {
658 if (index & ATTR_EVEXL2)
660 else if (index & ATTR_EVEXL)
662 if (index & ATTR_REXW)
664 if (index & ATTR_OPSIZE)
666 else if (index & ATTR_XD)
668 else if (index & ATTR_XS)
670 if (index & ATTR_EVEXKZ)
672 else if (index & ATTR_EVEXK)
674 if (index & ATTR_EVEXB)
677 else if ((index & ATTR_VEXL) && (index & ATTR_REXW) && (index & ATTR_OPSIZE))
678 o << "IC_VEX_L_W_OPSIZE";
679 else if ((index & ATTR_VEXL) && (index & ATTR_REXW) && (index & ATTR_XD))
680 o << "IC_VEX_L_W_XD";
681 else if ((index & ATTR_VEXL) && (index & ATTR_REXW) && (index & ATTR_XS))
682 o << "IC_VEX_L_W_XS";
683 else if ((index & ATTR_VEXL) && (index & ATTR_REXW))
685 else if ((index & ATTR_VEXL) && (index & ATTR_OPSIZE))
686 o << "IC_VEX_L_OPSIZE";
687 else if ((index & ATTR_VEXL) && (index & ATTR_XD))
689 else if ((index & ATTR_VEXL) && (index & ATTR_XS))
691 else if ((index & ATTR_VEX) && (index & ATTR_REXW) && (index & ATTR_OPSIZE))
692 o << "IC_VEX_W_OPSIZE";
693 else if ((index & ATTR_VEX) && (index & ATTR_REXW) && (index & ATTR_XD))
695 else if ((index & ATTR_VEX) && (index & ATTR_REXW) && (index & ATTR_XS))
697 else if (index & ATTR_VEXL)
699 else if ((index & ATTR_VEX) && (index & ATTR_REXW))
701 else if ((index & ATTR_VEX) && (index & ATTR_OPSIZE))
702 o << "IC_VEX_OPSIZE";
703 else if ((index & ATTR_VEX) && (index & ATTR_XD))
705 else if ((index & ATTR_VEX) && (index & ATTR_XS))
707 else if (index & ATTR_VEX)
709 else if ((index & ATTR_64BIT) && (index & ATTR_REXW) && (index & ATTR_XS))
710 o << "IC_64BIT_REXW_XS";
711 else if ((index & ATTR_64BIT) && (index & ATTR_REXW) && (index & ATTR_XD))
712 o << "IC_64BIT_REXW_XD";
713 else if ((index & ATTR_64BIT) && (index & ATTR_REXW) &&
714 (index & ATTR_OPSIZE))
715 o << "IC_64BIT_REXW_OPSIZE";
716 else if ((index & ATTR_64BIT) && (index & ATTR_XD) && (index & ATTR_OPSIZE))
717 o << "IC_64BIT_XD_OPSIZE";
718 else if ((index & ATTR_64BIT) && (index & ATTR_XS) && (index & ATTR_OPSIZE))
719 o << "IC_64BIT_XS_OPSIZE";
720 else if ((index & ATTR_64BIT) && (index & ATTR_XS))
722 else if ((index & ATTR_64BIT) && (index & ATTR_XD))
724 else if ((index & ATTR_64BIT) && (index & ATTR_OPSIZE))
725 o << "IC_64BIT_OPSIZE";
726 else if ((index & ATTR_64BIT) && (index & ATTR_ADSIZE))
727 o << "IC_64BIT_ADSIZE";
728 else if ((index & ATTR_64BIT) && (index & ATTR_REXW))
729 o << "IC_64BIT_REXW";
730 else if ((index & ATTR_64BIT))
732 else if ((index & ATTR_XS) && (index & ATTR_OPSIZE))
734 else if ((index & ATTR_XD) && (index & ATTR_OPSIZE))
736 else if (index & ATTR_XS)
738 else if (index & ATTR_XD)
740 else if (index & ATTR_OPSIZE)
742 else if (index & ATTR_ADSIZE)
747 if (index < tableSize - 1)
752 o << " /* " << index << " */";
758 o.indent(i * 2) << "};" << "\n";
761 void DisassemblerTables::emitContextDecisions(raw_ostream &o1, raw_ostream &o2,
762 unsigned &i1, unsigned &i2,
763 unsigned &ModRMTableNum) const {
764 emitContextDecision(o1, o2, i1, i2, ModRMTableNum, *Tables[0], ONEBYTE_STR);
765 emitContextDecision(o1, o2, i1, i2, ModRMTableNum, *Tables[1], TWOBYTE_STR);
766 emitContextDecision(o1, o2, i1, i2, ModRMTableNum, *Tables[2], THREEBYTE38_STR);
767 emitContextDecision(o1, o2, i1, i2, ModRMTableNum, *Tables[3], THREEBYTE3A_STR);
768 emitContextDecision(o1, o2, i1, i2, ModRMTableNum, *Tables[4], XOP8_MAP_STR);
769 emitContextDecision(o1, o2, i1, i2, ModRMTableNum, *Tables[5], XOP9_MAP_STR);
770 emitContextDecision(o1, o2, i1, i2, ModRMTableNum, *Tables[6], XOPA_MAP_STR);
773 void DisassemblerTables::emit(raw_ostream &o) const {
780 raw_string_ostream o1(s1);
781 raw_string_ostream o2(s2);
783 emitInstructionInfo(o, i2);
786 emitContextTable(o, i2);
789 unsigned ModRMTableNum = 0;
791 o << "static const InstrUID modRMTable[] = {\n";
793 std::vector<unsigned> EmptyTable(1, 0);
794 ModRMTable[EmptyTable] = ModRMTableNum;
795 ModRMTableNum += EmptyTable.size();
796 o1 << "/* EmptyTable */\n";
797 o1.indent(i1 * 2) << "0x0,\n";
799 emitContextDecisions(o1, o2, i1, i2, ModRMTableNum);
810 void DisassemblerTables::setTableFields(ModRMDecision &decision,
811 const ModRMFilter &filter,
814 for (unsigned index = 0; index < 256; ++index) {
815 if (filter.accepts(index)) {
816 if (decision.instructionIDs[index] == uid)
819 if (decision.instructionIDs[index] != 0) {
820 InstructionSpecifier &newInfo =
821 InstructionSpecifiers[uid];
822 InstructionSpecifier &previousInfo =
823 InstructionSpecifiers[decision.instructionIDs[index]];
825 // Instructions such as MOV8ao8 and MOV8ao8_16 differ only in the
826 // presence of the AdSize prefix. However, the disassembler doesn't
827 // care about that difference in the instruction definition; it
828 // handles 16-bit vs. 32-bit addressing for itself based purely
829 // on the 0x67 prefix and the CPU mode. So there's no need to
830 // disambiguate between them; just let them conflict/coexist.
831 if (previousInfo.name + "_16" == newInfo.name)
834 if(previousInfo.name == "NOOP" && (newInfo.name == "XCHG16ar" ||
835 newInfo.name == "XCHG32ar" ||
836 newInfo.name == "XCHG32ar64" ||
837 newInfo.name == "XCHG64ar"))
838 continue; // special case for XCHG*ar and NOOP
840 if (outranks(previousInfo.insnContext, newInfo.insnContext))
843 if (previousInfo.insnContext == newInfo.insnContext) {
844 errs() << "Error: Primary decode conflict: ";
845 errs() << newInfo.name << " would overwrite " << previousInfo.name;
847 errs() << "ModRM " << index << "\n";
848 errs() << "Opcode " << (uint16_t)opcode << "\n";
849 errs() << "Context " << stringForContext(newInfo.insnContext) << "\n";
854 decision.instructionIDs[index] = uid;
859 void DisassemblerTables::setTableFields(OpcodeType type,
860 InstructionContext insnContext,
862 const ModRMFilter &filter,
866 ContextDecision &decision = *Tables[type];
868 for (unsigned index = 0; index < IC_max; ++index) {
869 if (is32bit && inheritsFrom((InstructionContext)index, IC_64BIT))
872 if (inheritsFrom((InstructionContext)index,
873 InstructionSpecifiers[uid].insnContext, ignoresVEX_L))
874 setTableFields(decision.opcodeDecisions[index].modRMDecisions[opcode],