MachineModel: Add a ProcResGroup class.
[oota-llvm.git] / utils / TableGen / SubtargetEmitter.cpp
1 //===- SubtargetEmitter.cpp - Generate subtarget enumerations -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This tablegen backend emits subtarget enumerations.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #define DEBUG_TYPE "subtarget-emitter"
15
16 #include "CodeGenTarget.h"
17 #include "CodeGenSchedule.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/StringExtras.h"
20 #include "llvm/MC/MCInstrItineraries.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/Format.h"
23 #include "llvm/TableGen/Error.h"
24 #include "llvm/TableGen/Record.h"
25 #include "llvm/TableGen/TableGenBackend.h"
26 #include <algorithm>
27 #include <map>
28 #include <string>
29 #include <vector>
30 using namespace llvm;
31
32 namespace {
33 class SubtargetEmitter {
34   // Each processor has a SchedClassDesc table with an entry for each SchedClass.
35   // The SchedClassDesc table indexes into a global write resource table, write
36   // latency table, and read advance table.
37   struct SchedClassTables {
38     std::vector<std::vector<MCSchedClassDesc> > ProcSchedClasses;
39     std::vector<MCWriteProcResEntry> WriteProcResources;
40     std::vector<MCWriteLatencyEntry> WriteLatencies;
41     std::vector<std::string> WriterNames;
42     std::vector<MCReadAdvanceEntry> ReadAdvanceEntries;
43
44     // Reserve an invalid entry at index 0
45     SchedClassTables() {
46       ProcSchedClasses.resize(1);
47       WriteProcResources.resize(1);
48       WriteLatencies.resize(1);
49       WriterNames.push_back("InvalidWrite");
50       ReadAdvanceEntries.resize(1);
51     }
52   };
53
54   struct LessWriteProcResources {
55     bool operator()(const MCWriteProcResEntry &LHS,
56                     const MCWriteProcResEntry &RHS) {
57       return LHS.ProcResourceIdx < RHS.ProcResourceIdx;
58     }
59   };
60
61   RecordKeeper &Records;
62   CodeGenSchedModels &SchedModels;
63   std::string Target;
64
65   void Enumeration(raw_ostream &OS, const char *ClassName, bool isBits);
66   unsigned FeatureKeyValues(raw_ostream &OS);
67   unsigned CPUKeyValues(raw_ostream &OS);
68   void FormItineraryStageString(const std::string &Names,
69                                 Record *ItinData, std::string &ItinString,
70                                 unsigned &NStages);
71   void FormItineraryOperandCycleString(Record *ItinData, std::string &ItinString,
72                                        unsigned &NOperandCycles);
73   void FormItineraryBypassString(const std::string &Names,
74                                  Record *ItinData,
75                                  std::string &ItinString, unsigned NOperandCycles);
76   void EmitStageAndOperandCycleData(raw_ostream &OS,
77                                     std::vector<std::vector<InstrItinerary> >
78                                       &ProcItinLists);
79   void EmitItineraries(raw_ostream &OS,
80                        std::vector<std::vector<InstrItinerary> >
81                          &ProcItinLists);
82   void EmitProcessorProp(raw_ostream &OS, const Record *R, const char *Name,
83                          char Separator);
84   void EmitProcessorResources(const CodeGenProcModel &ProcModel,
85                               raw_ostream &OS);
86   Record *FindWriteResources(const CodeGenSchedRW &SchedWrite,
87                              const CodeGenProcModel &ProcModel);
88   Record *FindReadAdvance(const CodeGenSchedRW &SchedRead,
89                           const CodeGenProcModel &ProcModel);
90   void ExpandProcResources(RecVec &PRVec, std::vector<int64_t> &Cycles,
91                            const CodeGenProcModel &ProcModel);
92   void GenSchedClassTables(const CodeGenProcModel &ProcModel,
93                            SchedClassTables &SchedTables);
94   void EmitSchedClassTables(SchedClassTables &SchedTables, raw_ostream &OS);
95   void EmitProcessorModels(raw_ostream &OS);
96   void EmitProcessorLookup(raw_ostream &OS);
97   void EmitSchedModelHelpers(std::string ClassName, raw_ostream &OS);
98   void EmitSchedModel(raw_ostream &OS);
99   void ParseFeaturesFunction(raw_ostream &OS, unsigned NumFeatures,
100                              unsigned NumProcs);
101
102 public:
103   SubtargetEmitter(RecordKeeper &R, CodeGenTarget &TGT):
104     Records(R), SchedModels(TGT.getSchedModels()), Target(TGT.getName()) {}
105
106   void run(raw_ostream &o);
107
108 };
109 } // End anonymous namespace
110
111 //
112 // Enumeration - Emit the specified class as an enumeration.
113 //
114 void SubtargetEmitter::Enumeration(raw_ostream &OS,
115                                    const char *ClassName,
116                                    bool isBits) {
117   // Get all records of class and sort
118   std::vector<Record*> DefList = Records.getAllDerivedDefinitions(ClassName);
119   std::sort(DefList.begin(), DefList.end(), LessRecord());
120
121   unsigned N = DefList.size();
122   if (N == 0)
123     return;
124   if (N > 64) {
125     errs() << "Too many (> 64) subtarget features!\n";
126     exit(1);
127   }
128
129   OS << "namespace " << Target << " {\n";
130
131   // For bit flag enumerations with more than 32 items, emit constants.
132   // Emit an enum for everything else.
133   if (isBits && N > 32) {
134     // For each record
135     for (unsigned i = 0; i < N; i++) {
136       // Next record
137       Record *Def = DefList[i];
138
139       // Get and emit name and expression (1 << i)
140       OS << "  const uint64_t " << Def->getName() << " = 1ULL << " << i << ";\n";
141     }
142   } else {
143     // Open enumeration
144     OS << "enum {\n";
145
146     // For each record
147     for (unsigned i = 0; i < N;) {
148       // Next record
149       Record *Def = DefList[i];
150
151       // Get and emit name
152       OS << "  " << Def->getName();
153
154       // If bit flags then emit expression (1 << i)
155       if (isBits)  OS << " = " << " 1ULL << " << i;
156
157       // Depending on 'if more in the list' emit comma
158       if (++i < N) OS << ",";
159
160       OS << "\n";
161     }
162
163     // Close enumeration
164     OS << "};\n";
165   }
166
167   OS << "}\n";
168 }
169
170 //
171 // FeatureKeyValues - Emit data of all the subtarget features.  Used by the
172 // command line.
173 //
174 unsigned SubtargetEmitter::FeatureKeyValues(raw_ostream &OS) {
175   // Gather and sort all the features
176   std::vector<Record*> FeatureList =
177                            Records.getAllDerivedDefinitions("SubtargetFeature");
178
179   if (FeatureList.empty())
180     return 0;
181
182   std::sort(FeatureList.begin(), FeatureList.end(), LessRecordFieldName());
183
184   // Begin feature table
185   OS << "// Sorted (by key) array of values for CPU features.\n"
186      << "extern const llvm::SubtargetFeatureKV " << Target
187      << "FeatureKV[] = {\n";
188
189   // For each feature
190   unsigned NumFeatures = 0;
191   for (unsigned i = 0, N = FeatureList.size(); i < N; ++i) {
192     // Next feature
193     Record *Feature = FeatureList[i];
194
195     const std::string &Name = Feature->getName();
196     const std::string &CommandLineName = Feature->getValueAsString("Name");
197     const std::string &Desc = Feature->getValueAsString("Desc");
198
199     if (CommandLineName.empty()) continue;
200
201     // Emit as { "feature", "description", featureEnum, i1 | i2 | ... | in }
202     OS << "  { "
203        << "\"" << CommandLineName << "\", "
204        << "\"" << Desc << "\", "
205        << Target << "::" << Name << ", ";
206
207     const std::vector<Record*> &ImpliesList =
208       Feature->getValueAsListOfDefs("Implies");
209
210     if (ImpliesList.empty()) {
211       OS << "0ULL";
212     } else {
213       for (unsigned j = 0, M = ImpliesList.size(); j < M;) {
214         OS << Target << "::" << ImpliesList[j]->getName();
215         if (++j < M) OS << " | ";
216       }
217     }
218
219     OS << " }";
220     ++NumFeatures;
221
222     // Depending on 'if more in the list' emit comma
223     if ((i + 1) < N) OS << ",";
224
225     OS << "\n";
226   }
227
228   // End feature table
229   OS << "};\n";
230
231   return NumFeatures;
232 }
233
234 //
235 // CPUKeyValues - Emit data of all the subtarget processors.  Used by command
236 // line.
237 //
238 unsigned SubtargetEmitter::CPUKeyValues(raw_ostream &OS) {
239   // Gather and sort processor information
240   std::vector<Record*> ProcessorList =
241                           Records.getAllDerivedDefinitions("Processor");
242   std::sort(ProcessorList.begin(), ProcessorList.end(), LessRecordFieldName());
243
244   // Begin processor table
245   OS << "// Sorted (by key) array of values for CPU subtype.\n"
246      << "extern const llvm::SubtargetFeatureKV " << Target
247      << "SubTypeKV[] = {\n";
248
249   // For each processor
250   for (unsigned i = 0, N = ProcessorList.size(); i < N;) {
251     // Next processor
252     Record *Processor = ProcessorList[i];
253
254     const std::string &Name = Processor->getValueAsString("Name");
255     const std::vector<Record*> &FeatureList =
256       Processor->getValueAsListOfDefs("Features");
257
258     // Emit as { "cpu", "description", f1 | f2 | ... fn },
259     OS << "  { "
260        << "\"" << Name << "\", "
261        << "\"Select the " << Name << " processor\", ";
262
263     if (FeatureList.empty()) {
264       OS << "0ULL";
265     } else {
266       for (unsigned j = 0, M = FeatureList.size(); j < M;) {
267         OS << Target << "::" << FeatureList[j]->getName();
268         if (++j < M) OS << " | ";
269       }
270     }
271
272     // The "0" is for the "implies" section of this data structure.
273     OS << ", 0ULL }";
274
275     // Depending on 'if more in the list' emit comma
276     if (++i < N) OS << ",";
277
278     OS << "\n";
279   }
280
281   // End processor table
282   OS << "};\n";
283
284   return ProcessorList.size();
285 }
286
287 //
288 // FormItineraryStageString - Compose a string containing the stage
289 // data initialization for the specified itinerary.  N is the number
290 // of stages.
291 //
292 void SubtargetEmitter::FormItineraryStageString(const std::string &Name,
293                                                 Record *ItinData,
294                                                 std::string &ItinString,
295                                                 unsigned &NStages) {
296   // Get states list
297   const std::vector<Record*> &StageList =
298     ItinData->getValueAsListOfDefs("Stages");
299
300   // For each stage
301   unsigned N = NStages = StageList.size();
302   for (unsigned i = 0; i < N;) {
303     // Next stage
304     const Record *Stage = StageList[i];
305
306     // Form string as ,{ cycles, u1 | u2 | ... | un, timeinc, kind }
307     int Cycles = Stage->getValueAsInt("Cycles");
308     ItinString += "  { " + itostr(Cycles) + ", ";
309
310     // Get unit list
311     const std::vector<Record*> &UnitList = Stage->getValueAsListOfDefs("Units");
312
313     // For each unit
314     for (unsigned j = 0, M = UnitList.size(); j < M;) {
315       // Add name and bitwise or
316       ItinString += Name + "FU::" + UnitList[j]->getName();
317       if (++j < M) ItinString += " | ";
318     }
319
320     int TimeInc = Stage->getValueAsInt("TimeInc");
321     ItinString += ", " + itostr(TimeInc);
322
323     int Kind = Stage->getValueAsInt("Kind");
324     ItinString += ", (llvm::InstrStage::ReservationKinds)" + itostr(Kind);
325
326     // Close off stage
327     ItinString += " }";
328     if (++i < N) ItinString += ", ";
329   }
330 }
331
332 //
333 // FormItineraryOperandCycleString - Compose a string containing the
334 // operand cycle initialization for the specified itinerary.  N is the
335 // number of operands that has cycles specified.
336 //
337 void SubtargetEmitter::FormItineraryOperandCycleString(Record *ItinData,
338                          std::string &ItinString, unsigned &NOperandCycles) {
339   // Get operand cycle list
340   const std::vector<int64_t> &OperandCycleList =
341     ItinData->getValueAsListOfInts("OperandCycles");
342
343   // For each operand cycle
344   unsigned N = NOperandCycles = OperandCycleList.size();
345   for (unsigned i = 0; i < N;) {
346     // Next operand cycle
347     const int OCycle = OperandCycleList[i];
348
349     ItinString += "  " + itostr(OCycle);
350     if (++i < N) ItinString += ", ";
351   }
352 }
353
354 void SubtargetEmitter::FormItineraryBypassString(const std::string &Name,
355                                                  Record *ItinData,
356                                                  std::string &ItinString,
357                                                  unsigned NOperandCycles) {
358   const std::vector<Record*> &BypassList =
359     ItinData->getValueAsListOfDefs("Bypasses");
360   unsigned N = BypassList.size();
361   unsigned i = 0;
362   for (; i < N;) {
363     ItinString += Name + "Bypass::" + BypassList[i]->getName();
364     if (++i < NOperandCycles) ItinString += ", ";
365   }
366   for (; i < NOperandCycles;) {
367     ItinString += " 0";
368     if (++i < NOperandCycles) ItinString += ", ";
369   }
370 }
371
372 //
373 // EmitStageAndOperandCycleData - Generate unique itinerary stages and operand
374 // cycle tables. Create a list of InstrItinerary objects (ProcItinLists) indexed
375 // by CodeGenSchedClass::Index.
376 //
377 void SubtargetEmitter::
378 EmitStageAndOperandCycleData(raw_ostream &OS,
379                              std::vector<std::vector<InstrItinerary> >
380                                &ProcItinLists) {
381
382   // Multiple processor models may share an itinerary record. Emit it once.
383   SmallPtrSet<Record*, 8> ItinsDefSet;
384
385   // Emit functional units for all the itineraries.
386   for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
387          PE = SchedModels.procModelEnd(); PI != PE; ++PI) {
388
389     if (!ItinsDefSet.insert(PI->ItinsDef))
390       continue;
391
392     std::vector<Record*> FUs = PI->ItinsDef->getValueAsListOfDefs("FU");
393     if (FUs.empty())
394       continue;
395
396     const std::string &Name = PI->ItinsDef->getName();
397     OS << "\n// Functional units for \"" << Name << "\"\n"
398        << "namespace " << Name << "FU {\n";
399
400     for (unsigned j = 0, FUN = FUs.size(); j < FUN; ++j)
401       OS << "  const unsigned " << FUs[j]->getName()
402          << " = 1 << " << j << ";\n";
403
404     OS << "}\n";
405
406     std::vector<Record*> BPs = PI->ItinsDef->getValueAsListOfDefs("BP");
407     if (BPs.size()) {
408       OS << "\n// Pipeline forwarding pathes for itineraries \"" << Name
409          << "\"\n" << "namespace " << Name << "Bypass {\n";
410
411       OS << "  const unsigned NoBypass = 0;\n";
412       for (unsigned j = 0, BPN = BPs.size(); j < BPN; ++j)
413         OS << "  const unsigned " << BPs[j]->getName()
414            << " = 1 << " << j << ";\n";
415
416       OS << "}\n";
417     }
418   }
419
420   // Begin stages table
421   std::string StageTable = "\nextern const llvm::InstrStage " + Target +
422                            "Stages[] = {\n";
423   StageTable += "  { 0, 0, 0, llvm::InstrStage::Required }, // No itinerary\n";
424
425   // Begin operand cycle table
426   std::string OperandCycleTable = "extern const unsigned " + Target +
427     "OperandCycles[] = {\n";
428   OperandCycleTable += "  0, // No itinerary\n";
429
430   // Begin pipeline bypass table
431   std::string BypassTable = "extern const unsigned " + Target +
432     "ForwardingPaths[] = {\n";
433   BypassTable += " 0, // No itinerary\n";
434
435   // For each Itinerary across all processors, add a unique entry to the stages,
436   // operand cycles, and pipepine bypess tables. Then add the new Itinerary
437   // object with computed offsets to the ProcItinLists result.
438   unsigned StageCount = 1, OperandCycleCount = 1;
439   std::map<std::string, unsigned> ItinStageMap, ItinOperandMap;
440   for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
441          PE = SchedModels.procModelEnd(); PI != PE; ++PI) {
442     const CodeGenProcModel &ProcModel = *PI;
443
444     // Add process itinerary to the list.
445     ProcItinLists.resize(ProcItinLists.size()+1);
446
447     // If this processor defines no itineraries, then leave the itinerary list
448     // empty.
449     std::vector<InstrItinerary> &ItinList = ProcItinLists.back();
450     if (ProcModel.ItinDefList.empty())
451       continue;
452
453     // Reserve index==0 for NoItinerary.
454     ItinList.resize(SchedModels.numItineraryClasses()+1);
455
456     const std::string &Name = ProcModel.ItinsDef->getName();
457
458     // For each itinerary data
459     for (unsigned SchedClassIdx = 0,
460            SchedClassEnd = ProcModel.ItinDefList.size();
461          SchedClassIdx < SchedClassEnd; ++SchedClassIdx) {
462
463       // Next itinerary data
464       Record *ItinData = ProcModel.ItinDefList[SchedClassIdx];
465
466       // Get string and stage count
467       std::string ItinStageString;
468       unsigned NStages = 0;
469       if (ItinData)
470         FormItineraryStageString(Name, ItinData, ItinStageString, NStages);
471
472       // Get string and operand cycle count
473       std::string ItinOperandCycleString;
474       unsigned NOperandCycles = 0;
475       std::string ItinBypassString;
476       if (ItinData) {
477         FormItineraryOperandCycleString(ItinData, ItinOperandCycleString,
478                                         NOperandCycles);
479
480         FormItineraryBypassString(Name, ItinData, ItinBypassString,
481                                   NOperandCycles);
482       }
483
484       // Check to see if stage already exists and create if it doesn't
485       unsigned FindStage = 0;
486       if (NStages > 0) {
487         FindStage = ItinStageMap[ItinStageString];
488         if (FindStage == 0) {
489           // Emit as { cycles, u1 | u2 | ... | un, timeinc }, // indices
490           StageTable += ItinStageString + ", // " + itostr(StageCount);
491           if (NStages > 1)
492             StageTable += "-" + itostr(StageCount + NStages - 1);
493           StageTable += "\n";
494           // Record Itin class number.
495           ItinStageMap[ItinStageString] = FindStage = StageCount;
496           StageCount += NStages;
497         }
498       }
499
500       // Check to see if operand cycle already exists and create if it doesn't
501       unsigned FindOperandCycle = 0;
502       if (NOperandCycles > 0) {
503         std::string ItinOperandString = ItinOperandCycleString+ItinBypassString;
504         FindOperandCycle = ItinOperandMap[ItinOperandString];
505         if (FindOperandCycle == 0) {
506           // Emit as  cycle, // index
507           OperandCycleTable += ItinOperandCycleString + ", // ";
508           std::string OperandIdxComment = itostr(OperandCycleCount);
509           if (NOperandCycles > 1)
510             OperandIdxComment += "-"
511               + itostr(OperandCycleCount + NOperandCycles - 1);
512           OperandCycleTable += OperandIdxComment + "\n";
513           // Record Itin class number.
514           ItinOperandMap[ItinOperandCycleString] =
515             FindOperandCycle = OperandCycleCount;
516           // Emit as bypass, // index
517           BypassTable += ItinBypassString + ", // " + OperandIdxComment + "\n";
518           OperandCycleCount += NOperandCycles;
519         }
520       }
521
522       // Set up itinerary as location and location + stage count
523       int NumUOps = ItinData ? ItinData->getValueAsInt("NumMicroOps") : 0;
524       InstrItinerary Intinerary = { NumUOps, FindStage, FindStage + NStages,
525                                     FindOperandCycle,
526                                     FindOperandCycle + NOperandCycles};
527
528       // Inject - empty slots will be 0, 0
529       ItinList[SchedClassIdx] = Intinerary;
530     }
531   }
532
533   // Closing stage
534   StageTable += "  { 0, 0, 0, llvm::InstrStage::Required } // End stages\n";
535   StageTable += "};\n";
536
537   // Closing operand cycles
538   OperandCycleTable += "  0 // End operand cycles\n";
539   OperandCycleTable += "};\n";
540
541   BypassTable += " 0 // End bypass tables\n";
542   BypassTable += "};\n";
543
544   // Emit tables.
545   OS << StageTable;
546   OS << OperandCycleTable;
547   OS << BypassTable;
548 }
549
550 //
551 // EmitProcessorData - Generate data for processor itineraries that were
552 // computed during EmitStageAndOperandCycleData(). ProcItinLists lists all
553 // Itineraries for each processor. The Itinerary lists are indexed on
554 // CodeGenSchedClass::Index.
555 //
556 void SubtargetEmitter::
557 EmitItineraries(raw_ostream &OS,
558                 std::vector<std::vector<InstrItinerary> > &ProcItinLists) {
559
560   // Multiple processor models may share an itinerary record. Emit it once.
561   SmallPtrSet<Record*, 8> ItinsDefSet;
562
563   // For each processor's machine model
564   std::vector<std::vector<InstrItinerary> >::iterator
565       ProcItinListsIter = ProcItinLists.begin();
566   for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
567          PE = SchedModels.procModelEnd(); PI != PE; ++PI, ++ProcItinListsIter) {
568
569     Record *ItinsDef = PI->ItinsDef;
570     if (!ItinsDefSet.insert(ItinsDef))
571       continue;
572
573     // Get processor itinerary name
574     const std::string &Name = ItinsDef->getName();
575
576     // Get the itinerary list for the processor.
577     assert(ProcItinListsIter != ProcItinLists.end() && "bad iterator");
578     std::vector<InstrItinerary> &ItinList = *ProcItinListsIter;
579
580     OS << "\n";
581     OS << "static const llvm::InstrItinerary ";
582     if (ItinList.empty()) {
583       OS << '*' << Name << " = 0;\n";
584       continue;
585     }
586
587     // Begin processor itinerary table
588     OS << Name << "[] = {\n";
589
590     // For each itinerary class in CodeGenSchedClass::Index order.
591     for (unsigned j = 0, M = ItinList.size(); j < M; ++j) {
592       InstrItinerary &Intinerary = ItinList[j];
593
594       // Emit Itinerary in the form of
595       // { firstStage, lastStage, firstCycle, lastCycle } // index
596       OS << "  { " <<
597         Intinerary.NumMicroOps << ", " <<
598         Intinerary.FirstStage << ", " <<
599         Intinerary.LastStage << ", " <<
600         Intinerary.FirstOperandCycle << ", " <<
601         Intinerary.LastOperandCycle << " }" <<
602         ", // " << j << " " << SchedModels.getSchedClass(j).Name << "\n";
603     }
604     // End processor itinerary table
605     OS << "  { 0, ~0U, ~0U, ~0U, ~0U } // end marker\n";
606     OS << "};\n";
607   }
608 }
609
610 // Emit either the value defined in the TableGen Record, or the default
611 // value defined in the C++ header. The Record is null if the processor does not
612 // define a model.
613 void SubtargetEmitter::EmitProcessorProp(raw_ostream &OS, const Record *R,
614                                          const char *Name, char Separator) {
615   OS << "  ";
616   int V = R ? R->getValueAsInt(Name) : -1;
617   if (V >= 0)
618     OS << V << Separator << " // " << Name;
619   else
620     OS << "MCSchedModel::Default" << Name << Separator;
621   OS << '\n';
622 }
623
624 void SubtargetEmitter::EmitProcessorResources(const CodeGenProcModel &ProcModel,
625                                               raw_ostream &OS) {
626   char Sep = ProcModel.ProcResourceDefs.empty() ? ' ' : ',';
627
628   OS << "\n// {Name, NumUnits, SuperIdx, IsBuffered}\n";
629   OS << "static const llvm::MCProcResourceDesc "
630      << ProcModel.ModelName << "ProcResources" << "[] = {\n"
631      << "  {DBGFIELD(\"InvalidUnit\")     0, 0, 0}" << Sep << "\n";
632
633   for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) {
634     Record *PRDef = ProcModel.ProcResourceDefs[i];
635
636     Record *SuperDef = 0;
637     unsigned SuperIdx = 0;
638     unsigned NumUnits = 0;
639     bool IsBuffered = true;
640     if (PRDef->isSubClassOf("ProcResGroup")) {
641       RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources");
642       for (RecIter RUI = ResUnits.begin(), RUE = ResUnits.end();
643            RUI != RUE; ++RUI) {
644         if (!NumUnits)
645           IsBuffered = (*RUI)->getValueAsBit("Buffered");
646         else if(IsBuffered != (*RUI)->getValueAsBit("Buffered"))
647           PrintFatalError(PRDef->getLoc(),
648                           "Mixing buffered and unbuffered resources.");
649         NumUnits += (*RUI)->getValueAsInt("NumUnits");
650       }
651     }
652     else {
653       // Find the SuperIdx
654       if (PRDef->getValueInit("Super")->isComplete()) {
655         SuperDef = SchedModels.findProcResUnits(
656           PRDef->getValueAsDef("Super"), ProcModel);
657         SuperIdx = ProcModel.getProcResourceIdx(SuperDef);
658       }
659     }
660     // Emit the ProcResourceDesc
661     if (i+1 == e)
662       Sep = ' ';
663     OS << "  {DBGFIELD(\"" << PRDef->getName() << "\") ";
664     if (PRDef->getName().size() < 15)
665       OS.indent(15 - PRDef->getName().size());
666     OS << NumUnits << ", " << SuperIdx << ", "
667        << IsBuffered << "}" << Sep << " // #" << i+1;
668     if (SuperDef)
669       OS << ", Super=" << SuperDef->getName();
670     OS << "\n";
671   }
672   OS << "};\n";
673 }
674
675 // Find the WriteRes Record that defines processor resources for this
676 // SchedWrite.
677 Record *SubtargetEmitter::FindWriteResources(
678   const CodeGenSchedRW &SchedWrite, const CodeGenProcModel &ProcModel) {
679
680   // Check if the SchedWrite is already subtarget-specific and directly
681   // specifies a set of processor resources.
682   if (SchedWrite.TheDef->isSubClassOf("SchedWriteRes"))
683     return SchedWrite.TheDef;
684
685   Record *AliasDef = 0;
686   for (RecIter AI = SchedWrite.Aliases.begin(), AE = SchedWrite.Aliases.end();
687        AI != AE; ++AI) {
688     const CodeGenSchedRW &AliasRW =
689       SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW"));
690     if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) {
691       Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel");
692       if (&SchedModels.getProcModel(ModelDef) != &ProcModel)
693         continue;
694     }
695     if (AliasDef)
696       PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
697                     "defined for processor " + ProcModel.ModelName +
698                     " Ensure only one SchedAlias exists per RW.");
699     AliasDef = AliasRW.TheDef;
700   }
701   if (AliasDef && AliasDef->isSubClassOf("SchedWriteRes"))
702     return AliasDef;
703
704   // Check this processor's list of write resources.
705   Record *ResDef = 0;
706   for (RecIter WRI = ProcModel.WriteResDefs.begin(),
707          WRE = ProcModel.WriteResDefs.end(); WRI != WRE; ++WRI) {
708     if (!(*WRI)->isSubClassOf("WriteRes"))
709       continue;
710     if (AliasDef == (*WRI)->getValueAsDef("WriteType")
711         || SchedWrite.TheDef == (*WRI)->getValueAsDef("WriteType")) {
712       if (ResDef) {
713         PrintFatalError((*WRI)->getLoc(), "Resources are defined for both "
714                       "SchedWrite and its alias on processor " +
715                       ProcModel.ModelName);
716       }
717       ResDef = *WRI;
718     }
719   }
720   // TODO: If ProcModel has a base model (previous generation processor),
721   // then call FindWriteResources recursively with that model here.
722   if (!ResDef) {
723     PrintFatalError(ProcModel.ModelDef->getLoc(),
724                   std::string("Processor does not define resources for ")
725                   + SchedWrite.TheDef->getName());
726   }
727   return ResDef;
728 }
729
730 /// Find the ReadAdvance record for the given SchedRead on this processor or
731 /// return NULL.
732 Record *SubtargetEmitter::FindReadAdvance(const CodeGenSchedRW &SchedRead,
733                                           const CodeGenProcModel &ProcModel) {
734   // Check for SchedReads that directly specify a ReadAdvance.
735   if (SchedRead.TheDef->isSubClassOf("SchedReadAdvance"))
736     return SchedRead.TheDef;
737
738   // Check this processor's list of aliases for SchedRead.
739   Record *AliasDef = 0;
740   for (RecIter AI = SchedRead.Aliases.begin(), AE = SchedRead.Aliases.end();
741        AI != AE; ++AI) {
742     const CodeGenSchedRW &AliasRW =
743       SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW"));
744     if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) {
745       Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel");
746       if (&SchedModels.getProcModel(ModelDef) != &ProcModel)
747         continue;
748     }
749     if (AliasDef)
750       PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
751                     "defined for processor " + ProcModel.ModelName +
752                     " Ensure only one SchedAlias exists per RW.");
753     AliasDef = AliasRW.TheDef;
754   }
755   if (AliasDef && AliasDef->isSubClassOf("SchedReadAdvance"))
756     return AliasDef;
757
758   // Check this processor's ReadAdvanceList.
759   Record *ResDef = 0;
760   for (RecIter RAI = ProcModel.ReadAdvanceDefs.begin(),
761          RAE = ProcModel.ReadAdvanceDefs.end(); RAI != RAE; ++RAI) {
762     if (!(*RAI)->isSubClassOf("ReadAdvance"))
763       continue;
764     if (AliasDef == (*RAI)->getValueAsDef("ReadType")
765         || SchedRead.TheDef == (*RAI)->getValueAsDef("ReadType")) {
766       if (ResDef) {
767         PrintFatalError((*RAI)->getLoc(), "Resources are defined for both "
768                       "SchedRead and its alias on processor " +
769                       ProcModel.ModelName);
770       }
771       ResDef = *RAI;
772     }
773   }
774   // TODO: If ProcModel has a base model (previous generation processor),
775   // then call FindReadAdvance recursively with that model here.
776   if (!ResDef && SchedRead.TheDef->getName() != "ReadDefault") {
777     PrintFatalError(ProcModel.ModelDef->getLoc(),
778                   std::string("Processor does not define resources for ")
779                   + SchedRead.TheDef->getName());
780   }
781   return ResDef;
782 }
783
784 // Expand an explicit list of processor resources into a full list of implied
785 // resource groups that cover them.
786 //
787 // FIXME: Effectively consider a super-resource a group that include all of its
788 // subresources to allow mixing and matching super-resources and groups.
789 //
790 // FIXME: Warn if two overlapping groups don't have a common supergroup.
791 void SubtargetEmitter::ExpandProcResources(RecVec &PRVec,
792                                            std::vector<int64_t> &Cycles,
793                                            const CodeGenProcModel &ProcModel) {
794   // Default to 1 resource cycle.
795   Cycles.resize(PRVec.size(), 1);
796   for (unsigned i = 0, e = PRVec.size(); i != e; ++i) {
797     RecVec SubResources;
798     if (PRVec[i]->isSubClassOf("ProcResGroup")) {
799       SubResources = PRVec[i]->getValueAsListOfDefs("Resources");
800       std::sort(SubResources.begin(), SubResources.end(), LessRecord());
801     }
802     else {
803       SubResources.push_back(PRVec[i]);
804     }
805     for (RecIter PRI = ProcModel.ProcResourceDefs.begin(),
806            PRE = ProcModel.ProcResourceDefs.end();
807          PRI != PRE; ++PRI) {
808       if (*PRI == PRVec[i] || !(*PRI)->isSubClassOf("ProcResGroup"))
809         continue;
810       RecVec SuperResources = (*PRI)->getValueAsListOfDefs("Resources");
811       std::sort(SuperResources.begin(), SuperResources.end(), LessRecord());
812       RecIter SubI = SubResources.begin(), SubE = SubResources.end();
813       RecIter SuperI = SuperResources.begin(), SuperE = SuperResources.end();
814       for ( ; SubI != SubE && SuperI != SuperE; ++SuperI) {
815         if (*SubI < *SuperI)
816           break;
817         else if (*SuperI < *SubI)
818           continue;
819         ++SubI;
820       }
821       if (SubI == SubE) {
822         PRVec.push_back(*PRI);
823         Cycles.push_back(Cycles[i]);
824       }
825     }
826   }
827 }
828
829 // Generate the SchedClass table for this processor and update global
830 // tables. Must be called for each processor in order.
831 void SubtargetEmitter::GenSchedClassTables(const CodeGenProcModel &ProcModel,
832                                            SchedClassTables &SchedTables) {
833   SchedTables.ProcSchedClasses.resize(SchedTables.ProcSchedClasses.size() + 1);
834   if (!ProcModel.hasInstrSchedModel())
835     return;
836
837   std::vector<MCSchedClassDesc> &SCTab = SchedTables.ProcSchedClasses.back();
838   for (CodeGenSchedModels::SchedClassIter SCI = SchedModels.schedClassBegin(),
839          SCE = SchedModels.schedClassEnd(); SCI != SCE; ++SCI) {
840     DEBUG(SCI->dump(&SchedModels));
841
842     SCTab.resize(SCTab.size() + 1);
843     MCSchedClassDesc &SCDesc = SCTab.back();
844     // SCDesc.Name is guarded by NDEBUG
845     SCDesc.NumMicroOps = 0;
846     SCDesc.BeginGroup = false;
847     SCDesc.EndGroup = false;
848     SCDesc.WriteProcResIdx = 0;
849     SCDesc.WriteLatencyIdx = 0;
850     SCDesc.ReadAdvanceIdx = 0;
851
852     // A Variant SchedClass has no resources of its own.
853     if (!SCI->Transitions.empty()) {
854       SCDesc.NumMicroOps = MCSchedClassDesc::VariantNumMicroOps;
855       continue;
856     }
857
858     // Determine if the SchedClass is actually reachable on this processor. If
859     // not don't try to locate the processor resources, it will fail.
860     // If ProcIndices contains 0, this class applies to all processors.
861     assert(!SCI->ProcIndices.empty() && "expect at least one procidx");
862     if (SCI->ProcIndices[0] != 0) {
863       IdxIter PIPos = std::find(SCI->ProcIndices.begin(),
864                                 SCI->ProcIndices.end(), ProcModel.Index);
865       if (PIPos == SCI->ProcIndices.end())
866         continue;
867     }
868     IdxVec Writes = SCI->Writes;
869     IdxVec Reads = SCI->Reads;
870     if (SCI->ItinClassDef) {
871       assert(SCI->InstRWs.empty() && "ItinClass should not have InstRWs");
872       // Check this processor's itinerary class resources.
873       for (RecIter II = ProcModel.ItinRWDefs.begin(),
874              IE = ProcModel.ItinRWDefs.end(); II != IE; ++II) {
875         RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses");
876         if (std::find(Matched.begin(), Matched.end(), SCI->ItinClassDef)
877             != Matched.end()) {
878           SchedModels.findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"),
879                               Writes, Reads);
880           break;
881         }
882       }
883       if (Writes.empty()) {
884         DEBUG(dbgs() << ProcModel.ItinsDef->getName()
885               << " does not have resources for itinerary class "
886               << SCI->ItinClassDef->getName() << '\n');
887       }
888     }
889     else if (!SCI->InstRWs.empty()) {
890       // This class may have a default ReadWrite list which can be overriden by
891       // InstRW definitions.
892       Record *RWDef = 0;
893       for (RecIter RWI = SCI->InstRWs.begin(), RWE = SCI->InstRWs.end();
894            RWI != RWE; ++RWI) {
895         Record *RWModelDef = (*RWI)->getValueAsDef("SchedModel");
896         if (&ProcModel == &SchedModels.getProcModel(RWModelDef)) {
897           RWDef = *RWI;
898           break;
899         }
900       }
901       if (RWDef) {
902         Writes.clear();
903         Reads.clear();
904         SchedModels.findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"),
905                             Writes, Reads);
906       }
907     }
908     // Sum resources across all operand writes.
909     std::vector<MCWriteProcResEntry> WriteProcResources;
910     std::vector<MCWriteLatencyEntry> WriteLatencies;
911     std::vector<std::string> WriterNames;
912     std::vector<MCReadAdvanceEntry> ReadAdvanceEntries;
913     for (IdxIter WI = Writes.begin(), WE = Writes.end(); WI != WE; ++WI) {
914       IdxVec WriteSeq;
915       SchedModels.expandRWSeqForProc(*WI, WriteSeq, /*IsRead=*/false,
916                                      ProcModel);
917
918       // For each operand, create a latency entry.
919       MCWriteLatencyEntry WLEntry;
920       WLEntry.Cycles = 0;
921       unsigned WriteID = WriteSeq.back();
922       WriterNames.push_back(SchedModels.getSchedWrite(WriteID).Name);
923       // If this Write is not referenced by a ReadAdvance, don't distinguish it
924       // from other WriteLatency entries.
925       if (!SchedModels.hasReadOfWrite(SchedModels.getSchedWrite(WriteID).TheDef)) {
926         WriteID = 0;
927       }
928       WLEntry.WriteResourceID = WriteID;
929
930       for (IdxIter WSI = WriteSeq.begin(), WSE = WriteSeq.end();
931            WSI != WSE; ++WSI) {
932
933         Record *WriteRes =
934           FindWriteResources(SchedModels.getSchedWrite(*WSI), ProcModel);
935
936         // Mark the parent class as invalid for unsupported write types.
937         if (WriteRes->getValueAsBit("Unsupported")) {
938           SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
939           break;
940         }
941         WLEntry.Cycles += WriteRes->getValueAsInt("Latency");
942         SCDesc.NumMicroOps += WriteRes->getValueAsInt("NumMicroOps");
943         SCDesc.BeginGroup |= WriteRes->getValueAsBit("BeginGroup");
944         SCDesc.EndGroup |= WriteRes->getValueAsBit("EndGroup");
945
946         // Create an entry for each ProcResource listed in WriteRes.
947         RecVec PRVec = WriteRes->getValueAsListOfDefs("ProcResources");
948         std::vector<int64_t> Cycles =
949           WriteRes->getValueAsListOfInts("ResourceCycles");
950
951         ExpandProcResources(PRVec, Cycles, ProcModel);
952
953         for (unsigned PRIdx = 0, PREnd = PRVec.size();
954              PRIdx != PREnd; ++PRIdx) {
955           MCWriteProcResEntry WPREntry;
956           WPREntry.ProcResourceIdx = ProcModel.getProcResourceIdx(PRVec[PRIdx]);
957           assert(WPREntry.ProcResourceIdx && "Bad ProcResourceIdx");
958           WPREntry.Cycles = Cycles[PRIdx];
959           // If this resource is already used in this sequence, add the current
960           // entry's cycles so that the same resource appears to be used
961           // serially, rather than multiple parallel uses. This is important for
962           // in-order machine where the resource consumption is a hazard.
963           unsigned WPRIdx = 0, WPREnd = WriteProcResources.size();
964           for( ; WPRIdx != WPREnd; ++WPRIdx) {
965             if (WriteProcResources[WPRIdx].ProcResourceIdx
966                 == WPREntry.ProcResourceIdx) {
967               WriteProcResources[WPRIdx].Cycles += WPREntry.Cycles;
968               break;
969             }
970           }
971           if (WPRIdx == WPREnd)
972             WriteProcResources.push_back(WPREntry);
973         }
974       }
975       WriteLatencies.push_back(WLEntry);
976     }
977     // Create an entry for each operand Read in this SchedClass.
978     // Entries must be sorted first by UseIdx then by WriteResourceID.
979     for (unsigned UseIdx = 0, EndIdx = Reads.size();
980          UseIdx != EndIdx; ++UseIdx) {
981       Record *ReadAdvance =
982         FindReadAdvance(SchedModels.getSchedRead(Reads[UseIdx]), ProcModel);
983       if (!ReadAdvance)
984         continue;
985
986       // Mark the parent class as invalid for unsupported write types.
987       if (ReadAdvance->getValueAsBit("Unsupported")) {
988         SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
989         break;
990       }
991       RecVec ValidWrites = ReadAdvance->getValueAsListOfDefs("ValidWrites");
992       IdxVec WriteIDs;
993       if (ValidWrites.empty())
994         WriteIDs.push_back(0);
995       else {
996         for (RecIter VWI = ValidWrites.begin(), VWE = ValidWrites.end();
997              VWI != VWE; ++VWI) {
998           WriteIDs.push_back(SchedModels.getSchedRWIdx(*VWI, /*IsRead=*/false));
999         }
1000       }
1001       std::sort(WriteIDs.begin(), WriteIDs.end());
1002       for(IdxIter WI = WriteIDs.begin(), WE = WriteIDs.end(); WI != WE; ++WI) {
1003         MCReadAdvanceEntry RAEntry;
1004         RAEntry.UseIdx = UseIdx;
1005         RAEntry.WriteResourceID = *WI;
1006         RAEntry.Cycles = ReadAdvance->getValueAsInt("Cycles");
1007         ReadAdvanceEntries.push_back(RAEntry);
1008       }
1009     }
1010     if (SCDesc.NumMicroOps == MCSchedClassDesc::InvalidNumMicroOps) {
1011       WriteProcResources.clear();
1012       WriteLatencies.clear();
1013       ReadAdvanceEntries.clear();
1014     }
1015     // Add the information for this SchedClass to the global tables using basic
1016     // compression.
1017     //
1018     // WritePrecRes entries are sorted by ProcResIdx.
1019     std::sort(WriteProcResources.begin(), WriteProcResources.end(),
1020               LessWriteProcResources());
1021
1022     SCDesc.NumWriteProcResEntries = WriteProcResources.size();
1023     std::vector<MCWriteProcResEntry>::iterator WPRPos =
1024       std::search(SchedTables.WriteProcResources.begin(),
1025                   SchedTables.WriteProcResources.end(),
1026                   WriteProcResources.begin(), WriteProcResources.end());
1027     if (WPRPos != SchedTables.WriteProcResources.end())
1028       SCDesc.WriteProcResIdx = WPRPos - SchedTables.WriteProcResources.begin();
1029     else {
1030       SCDesc.WriteProcResIdx = SchedTables.WriteProcResources.size();
1031       SchedTables.WriteProcResources.insert(WPRPos, WriteProcResources.begin(),
1032                                             WriteProcResources.end());
1033     }
1034     // Latency entries must remain in operand order.
1035     SCDesc.NumWriteLatencyEntries = WriteLatencies.size();
1036     std::vector<MCWriteLatencyEntry>::iterator WLPos =
1037       std::search(SchedTables.WriteLatencies.begin(),
1038                   SchedTables.WriteLatencies.end(),
1039                   WriteLatencies.begin(), WriteLatencies.end());
1040     if (WLPos != SchedTables.WriteLatencies.end()) {
1041       unsigned idx = WLPos - SchedTables.WriteLatencies.begin();
1042       SCDesc.WriteLatencyIdx = idx;
1043       for (unsigned i = 0, e = WriteLatencies.size(); i < e; ++i)
1044         if (SchedTables.WriterNames[idx + i].find(WriterNames[i]) ==
1045             std::string::npos) {
1046           SchedTables.WriterNames[idx + i] += std::string("_") + WriterNames[i];
1047         }
1048     }
1049     else {
1050       SCDesc.WriteLatencyIdx = SchedTables.WriteLatencies.size();
1051       SchedTables.WriteLatencies.insert(SchedTables.WriteLatencies.end(),
1052                                         WriteLatencies.begin(),
1053                                         WriteLatencies.end());
1054       SchedTables.WriterNames.insert(SchedTables.WriterNames.end(),
1055                                      WriterNames.begin(), WriterNames.end());
1056     }
1057     // ReadAdvanceEntries must remain in operand order.
1058     SCDesc.NumReadAdvanceEntries = ReadAdvanceEntries.size();
1059     std::vector<MCReadAdvanceEntry>::iterator RAPos =
1060       std::search(SchedTables.ReadAdvanceEntries.begin(),
1061                   SchedTables.ReadAdvanceEntries.end(),
1062                   ReadAdvanceEntries.begin(), ReadAdvanceEntries.end());
1063     if (RAPos != SchedTables.ReadAdvanceEntries.end())
1064       SCDesc.ReadAdvanceIdx = RAPos - SchedTables.ReadAdvanceEntries.begin();
1065     else {
1066       SCDesc.ReadAdvanceIdx = SchedTables.ReadAdvanceEntries.size();
1067       SchedTables.ReadAdvanceEntries.insert(RAPos, ReadAdvanceEntries.begin(),
1068                                             ReadAdvanceEntries.end());
1069     }
1070   }
1071 }
1072
1073 // Emit SchedClass tables for all processors and associated global tables.
1074 void SubtargetEmitter::EmitSchedClassTables(SchedClassTables &SchedTables,
1075                                             raw_ostream &OS) {
1076   // Emit global WriteProcResTable.
1077   OS << "\n// {ProcResourceIdx, Cycles}\n"
1078      << "extern const llvm::MCWriteProcResEntry "
1079      << Target << "WriteProcResTable[] = {\n"
1080      << "  { 0,  0}, // Invalid\n";
1081   for (unsigned WPRIdx = 1, WPREnd = SchedTables.WriteProcResources.size();
1082        WPRIdx != WPREnd; ++WPRIdx) {
1083     MCWriteProcResEntry &WPREntry = SchedTables.WriteProcResources[WPRIdx];
1084     OS << "  {" << format("%2d", WPREntry.ProcResourceIdx) << ", "
1085        << format("%2d", WPREntry.Cycles) << "}";
1086     if (WPRIdx + 1 < WPREnd)
1087       OS << ',';
1088     OS << " // #" << WPRIdx << '\n';
1089   }
1090   OS << "}; // " << Target << "WriteProcResTable\n";
1091
1092   // Emit global WriteLatencyTable.
1093   OS << "\n// {Cycles, WriteResourceID}\n"
1094      << "extern const llvm::MCWriteLatencyEntry "
1095      << Target << "WriteLatencyTable[] = {\n"
1096      << "  { 0,  0}, // Invalid\n";
1097   for (unsigned WLIdx = 1, WLEnd = SchedTables.WriteLatencies.size();
1098        WLIdx != WLEnd; ++WLIdx) {
1099     MCWriteLatencyEntry &WLEntry = SchedTables.WriteLatencies[WLIdx];
1100     OS << "  {" << format("%2d", WLEntry.Cycles) << ", "
1101        << format("%2d", WLEntry.WriteResourceID) << "}";
1102     if (WLIdx + 1 < WLEnd)
1103       OS << ',';
1104     OS << " // #" << WLIdx << " " << SchedTables.WriterNames[WLIdx] << '\n';
1105   }
1106   OS << "}; // " << Target << "WriteLatencyTable\n";
1107
1108   // Emit global ReadAdvanceTable.
1109   OS << "\n// {UseIdx, WriteResourceID, Cycles}\n"
1110      << "extern const llvm::MCReadAdvanceEntry "
1111      << Target << "ReadAdvanceTable[] = {\n"
1112      << "  {0,  0,  0}, // Invalid\n";
1113   for (unsigned RAIdx = 1, RAEnd = SchedTables.ReadAdvanceEntries.size();
1114        RAIdx != RAEnd; ++RAIdx) {
1115     MCReadAdvanceEntry &RAEntry = SchedTables.ReadAdvanceEntries[RAIdx];
1116     OS << "  {" << RAEntry.UseIdx << ", "
1117        << format("%2d", RAEntry.WriteResourceID) << ", "
1118        << format("%2d", RAEntry.Cycles) << "}";
1119     if (RAIdx + 1 < RAEnd)
1120       OS << ',';
1121     OS << " // #" << RAIdx << '\n';
1122   }
1123   OS << "}; // " << Target << "ReadAdvanceTable\n";
1124
1125   // Emit a SchedClass table for each processor.
1126   for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
1127          PE = SchedModels.procModelEnd(); PI != PE; ++PI) {
1128     if (!PI->hasInstrSchedModel())
1129       continue;
1130
1131     std::vector<MCSchedClassDesc> &SCTab =
1132       SchedTables.ProcSchedClasses[1 + (PI - SchedModels.procModelBegin())];
1133
1134     OS << "\n// {Name, NumMicroOps, BeginGroup, EndGroup,"
1135        << " WriteProcResIdx,#, WriteLatencyIdx,#, ReadAdvanceIdx,#}\n";
1136     OS << "static const llvm::MCSchedClassDesc "
1137        << PI->ModelName << "SchedClasses[] = {\n";
1138
1139     // The first class is always invalid. We no way to distinguish it except by
1140     // name and position.
1141     assert(SchedModels.getSchedClass(0).Name == "NoItinerary"
1142            && "invalid class not first");
1143     OS << "  {DBGFIELD(\"InvalidSchedClass\")  "
1144        << MCSchedClassDesc::InvalidNumMicroOps
1145        << ", 0, 0,  0, 0,  0, 0,  0, 0},\n";
1146
1147     for (unsigned SCIdx = 1, SCEnd = SCTab.size(); SCIdx != SCEnd; ++SCIdx) {
1148       MCSchedClassDesc &MCDesc = SCTab[SCIdx];
1149       const CodeGenSchedClass &SchedClass = SchedModels.getSchedClass(SCIdx);
1150       OS << "  {DBGFIELD(\"" << SchedClass.Name << "\") ";
1151       if (SchedClass.Name.size() < 18)
1152         OS.indent(18 - SchedClass.Name.size());
1153       OS << MCDesc.NumMicroOps
1154          << ", " << MCDesc.BeginGroup << ", " << MCDesc.EndGroup
1155          << ", " << format("%2d", MCDesc.WriteProcResIdx)
1156          << ", " << MCDesc.NumWriteProcResEntries
1157          << ", " << format("%2d", MCDesc.WriteLatencyIdx)
1158          << ", " << MCDesc.NumWriteLatencyEntries
1159          << ", " << format("%2d", MCDesc.ReadAdvanceIdx)
1160          << ", " << MCDesc.NumReadAdvanceEntries << "}";
1161       if (SCIdx + 1 < SCEnd)
1162         OS << ',';
1163       OS << " // #" << SCIdx << '\n';
1164     }
1165     OS << "}; // " << PI->ModelName << "SchedClasses\n";
1166   }
1167 }
1168
1169 void SubtargetEmitter::EmitProcessorModels(raw_ostream &OS) {
1170   // For each processor model.
1171   for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
1172          PE = SchedModels.procModelEnd(); PI != PE; ++PI) {
1173     // Emit processor resource table.
1174     if (PI->hasInstrSchedModel())
1175       EmitProcessorResources(*PI, OS);
1176     else if(!PI->ProcResourceDefs.empty())
1177       PrintFatalError(PI->ModelDef->getLoc(), "SchedMachineModel defines "
1178                     "ProcResources without defining WriteRes SchedWriteRes");
1179
1180     // Begin processor itinerary properties
1181     OS << "\n";
1182     OS << "static const llvm::MCSchedModel " << PI->ModelName << "(\n";
1183     EmitProcessorProp(OS, PI->ModelDef, "IssueWidth", ',');
1184     EmitProcessorProp(OS, PI->ModelDef, "MinLatency", ',');
1185     EmitProcessorProp(OS, PI->ModelDef, "LoadLatency", ',');
1186     EmitProcessorProp(OS, PI->ModelDef, "HighLatency", ',');
1187     EmitProcessorProp(OS, PI->ModelDef, "ILPWindow", ',');
1188     EmitProcessorProp(OS, PI->ModelDef, "MispredictPenalty", ',');
1189     OS << "  " << PI->Index << ", // Processor ID\n";
1190     if (PI->hasInstrSchedModel())
1191       OS << "  " << PI->ModelName << "ProcResources" << ",\n"
1192          << "  " << PI->ModelName << "SchedClasses" << ",\n"
1193          << "  " << PI->ProcResourceDefs.size()+1 << ",\n"
1194          << "  " << (SchedModels.schedClassEnd()
1195                      - SchedModels.schedClassBegin()) << ",\n";
1196     else
1197       OS << "  0, 0, 0, 0, // No instruction-level machine model.\n";
1198     if (SchedModels.hasItineraryClasses())
1199       OS << "  " << PI->ItinsDef->getName() << ");\n";
1200     else
1201       OS << "  0); // No Itinerary\n";
1202   }
1203 }
1204
1205 //
1206 // EmitProcessorLookup - generate cpu name to itinerary lookup table.
1207 //
1208 void SubtargetEmitter::EmitProcessorLookup(raw_ostream &OS) {
1209   // Gather and sort processor information
1210   std::vector<Record*> ProcessorList =
1211                           Records.getAllDerivedDefinitions("Processor");
1212   std::sort(ProcessorList.begin(), ProcessorList.end(), LessRecordFieldName());
1213
1214   // Begin processor table
1215   OS << "\n";
1216   OS << "// Sorted (by key) array of itineraries for CPU subtype.\n"
1217      << "extern const llvm::SubtargetInfoKV "
1218      << Target << "ProcSchedKV[] = {\n";
1219
1220   // For each processor
1221   for (unsigned i = 0, N = ProcessorList.size(); i < N;) {
1222     // Next processor
1223     Record *Processor = ProcessorList[i];
1224
1225     const std::string &Name = Processor->getValueAsString("Name");
1226     const std::string &ProcModelName =
1227       SchedModels.getModelForProc(Processor).ModelName;
1228
1229     // Emit as { "cpu", procinit },
1230     OS << "  { \"" << Name << "\", (const void *)&" << ProcModelName << " }";
1231
1232     // Depending on ''if more in the list'' emit comma
1233     if (++i < N) OS << ",";
1234
1235     OS << "\n";
1236   }
1237
1238   // End processor table
1239   OS << "};\n";
1240 }
1241
1242 //
1243 // EmitSchedModel - Emits all scheduling model tables, folding common patterns.
1244 //
1245 void SubtargetEmitter::EmitSchedModel(raw_ostream &OS) {
1246   OS << "#ifdef DBGFIELD\n"
1247      << "#error \"<target>GenSubtargetInfo.inc requires a DBGFIELD macro\"\n"
1248      << "#endif\n"
1249      << "#ifndef NDEBUG\n"
1250      << "#define DBGFIELD(x) x,\n"
1251      << "#else\n"
1252      << "#define DBGFIELD(x)\n"
1253      << "#endif\n";
1254
1255   if (SchedModels.hasItineraryClasses()) {
1256     std::vector<std::vector<InstrItinerary> > ProcItinLists;
1257     // Emit the stage data
1258     EmitStageAndOperandCycleData(OS, ProcItinLists);
1259     EmitItineraries(OS, ProcItinLists);
1260   }
1261   OS << "\n// ===============================================================\n"
1262      << "// Data tables for the new per-operand machine model.\n";
1263
1264   SchedClassTables SchedTables;
1265   for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
1266          PE = SchedModels.procModelEnd(); PI != PE; ++PI) {
1267     GenSchedClassTables(*PI, SchedTables);
1268   }
1269   EmitSchedClassTables(SchedTables, OS);
1270
1271   // Emit the processor machine model
1272   EmitProcessorModels(OS);
1273   // Emit the processor lookup data
1274   EmitProcessorLookup(OS);
1275
1276   OS << "#undef DBGFIELD";
1277 }
1278
1279 void SubtargetEmitter::EmitSchedModelHelpers(std::string ClassName,
1280                                              raw_ostream &OS) {
1281   OS << "unsigned " << ClassName
1282      << "\n::resolveSchedClass(unsigned SchedClass, const MachineInstr *MI,"
1283      << " const TargetSchedModel *SchedModel) const {\n";
1284
1285   std::vector<Record*> Prologs = Records.getAllDerivedDefinitions("PredicateProlog");
1286   std::sort(Prologs.begin(), Prologs.end(), LessRecord());
1287   for (std::vector<Record*>::const_iterator
1288          PI = Prologs.begin(), PE = Prologs.end(); PI != PE; ++PI) {
1289     OS << (*PI)->getValueAsString("Code") << '\n';
1290   }
1291   IdxVec VariantClasses;
1292   for (CodeGenSchedModels::SchedClassIter SCI = SchedModels.schedClassBegin(),
1293          SCE = SchedModels.schedClassEnd(); SCI != SCE; ++SCI) {
1294     if (SCI->Transitions.empty())
1295       continue;
1296     VariantClasses.push_back(SCI - SchedModels.schedClassBegin());
1297   }
1298   if (!VariantClasses.empty()) {
1299     OS << "  switch (SchedClass) {\n";
1300     for (IdxIter VCI = VariantClasses.begin(), VCE = VariantClasses.end();
1301          VCI != VCE; ++VCI) {
1302       const CodeGenSchedClass &SC = SchedModels.getSchedClass(*VCI);
1303       OS << "  case " << *VCI << ": // " << SC.Name << '\n';
1304       IdxVec ProcIndices;
1305       for (std::vector<CodeGenSchedTransition>::const_iterator
1306              TI = SC.Transitions.begin(), TE = SC.Transitions.end();
1307            TI != TE; ++TI) {
1308         IdxVec PI;
1309         std::set_union(TI->ProcIndices.begin(), TI->ProcIndices.end(),
1310                        ProcIndices.begin(), ProcIndices.end(),
1311                        std::back_inserter(PI));
1312         ProcIndices.swap(PI);
1313       }
1314       for (IdxIter PI = ProcIndices.begin(), PE = ProcIndices.end();
1315            PI != PE; ++PI) {
1316         OS << "    ";
1317         if (*PI != 0)
1318           OS << "if (SchedModel->getProcessorID() == " << *PI << ") ";
1319         OS << "{ // " << (SchedModels.procModelBegin() + *PI)->ModelName
1320            << '\n';
1321         for (std::vector<CodeGenSchedTransition>::const_iterator
1322                TI = SC.Transitions.begin(), TE = SC.Transitions.end();
1323              TI != TE; ++TI) {
1324           OS << "      if (";
1325           if (*PI != 0 && !std::count(TI->ProcIndices.begin(),
1326                                       TI->ProcIndices.end(), *PI)) {
1327               continue;
1328           }
1329           for (RecIter RI = TI->PredTerm.begin(), RE = TI->PredTerm.end();
1330                RI != RE; ++RI) {
1331             if (RI != TI->PredTerm.begin())
1332               OS << "\n          && ";
1333             OS << "(" << (*RI)->getValueAsString("Predicate") << ")";
1334           }
1335           OS << ")\n"
1336              << "        return " << TI->ToClassIdx << "; // "
1337              << SchedModels.getSchedClass(TI->ToClassIdx).Name << '\n';
1338         }
1339         OS << "    }\n";
1340         if (*PI == 0)
1341           break;
1342       }
1343       unsigned SCIdx = 0;
1344       if (SC.ItinClassDef)
1345         SCIdx = SchedModels.getSchedClassIdxForItin(SC.ItinClassDef);
1346       else
1347         SCIdx = SchedModels.findSchedClassIdx(SC.Writes, SC.Reads);
1348       if (SCIdx != *VCI)
1349         OS << "    return " << SCIdx << ";\n";
1350       OS << "    break;\n";
1351     }
1352     OS << "  };\n";
1353   }
1354   OS << "  report_fatal_error(\"Expected a variant SchedClass\");\n"
1355      << "} // " << ClassName << "::resolveSchedClass\n";
1356 }
1357
1358 //
1359 // ParseFeaturesFunction - Produces a subtarget specific function for parsing
1360 // the subtarget features string.
1361 //
1362 void SubtargetEmitter::ParseFeaturesFunction(raw_ostream &OS,
1363                                              unsigned NumFeatures,
1364                                              unsigned NumProcs) {
1365   std::vector<Record*> Features =
1366                        Records.getAllDerivedDefinitions("SubtargetFeature");
1367   std::sort(Features.begin(), Features.end(), LessRecord());
1368
1369   OS << "// ParseSubtargetFeatures - Parses features string setting specified\n"
1370      << "// subtarget options.\n"
1371      << "void llvm::";
1372   OS << Target;
1373   OS << "Subtarget::ParseSubtargetFeatures(StringRef CPU, StringRef FS) {\n"
1374      << "  DEBUG(dbgs() << \"\\nFeatures:\" << FS);\n"
1375      << "  DEBUG(dbgs() << \"\\nCPU:\" << CPU << \"\\n\\n\");\n";
1376
1377   if (Features.empty()) {
1378     OS << "}\n";
1379     return;
1380   }
1381
1382   OS << "  InitMCProcessorInfo(CPU, FS);\n"
1383      << "  uint64_t Bits = getFeatureBits();\n";
1384
1385   for (unsigned i = 0; i < Features.size(); i++) {
1386     // Next record
1387     Record *R = Features[i];
1388     const std::string &Instance = R->getName();
1389     const std::string &Value = R->getValueAsString("Value");
1390     const std::string &Attribute = R->getValueAsString("Attribute");
1391
1392     if (Value=="true" || Value=="false")
1393       OS << "  if ((Bits & " << Target << "::"
1394          << Instance << ") != 0) "
1395          << Attribute << " = " << Value << ";\n";
1396     else
1397       OS << "  if ((Bits & " << Target << "::"
1398          << Instance << ") != 0 && "
1399          << Attribute << " < " << Value << ") "
1400          << Attribute << " = " << Value << ";\n";
1401   }
1402
1403   OS << "}\n";
1404 }
1405
1406 //
1407 // SubtargetEmitter::run - Main subtarget enumeration emitter.
1408 //
1409 void SubtargetEmitter::run(raw_ostream &OS) {
1410   emitSourceFileHeader("Subtarget Enumeration Source Fragment", OS);
1411
1412   OS << "\n#ifdef GET_SUBTARGETINFO_ENUM\n";
1413   OS << "#undef GET_SUBTARGETINFO_ENUM\n";
1414
1415   OS << "namespace llvm {\n";
1416   Enumeration(OS, "SubtargetFeature", true);
1417   OS << "} // End llvm namespace \n";
1418   OS << "#endif // GET_SUBTARGETINFO_ENUM\n\n";
1419
1420   OS << "\n#ifdef GET_SUBTARGETINFO_MC_DESC\n";
1421   OS << "#undef GET_SUBTARGETINFO_MC_DESC\n";
1422
1423   OS << "namespace llvm {\n";
1424 #if 0
1425   OS << "namespace {\n";
1426 #endif
1427   unsigned NumFeatures = FeatureKeyValues(OS);
1428   OS << "\n";
1429   unsigned NumProcs = CPUKeyValues(OS);
1430   OS << "\n";
1431   EmitSchedModel(OS);
1432   OS << "\n";
1433 #if 0
1434   OS << "}\n";
1435 #endif
1436
1437   // MCInstrInfo initialization routine.
1438   OS << "static inline void Init" << Target
1439      << "MCSubtargetInfo(MCSubtargetInfo *II, "
1440      << "StringRef TT, StringRef CPU, StringRef FS) {\n";
1441   OS << "  II->InitMCSubtargetInfo(TT, CPU, FS, ";
1442   if (NumFeatures)
1443     OS << Target << "FeatureKV, ";
1444   else
1445     OS << "0, ";
1446   if (NumProcs)
1447     OS << Target << "SubTypeKV, ";
1448   else
1449     OS << "0, ";
1450   OS << '\n'; OS.indent(22);
1451   OS << Target << "ProcSchedKV, "
1452      << Target << "WriteProcResTable, "
1453      << Target << "WriteLatencyTable, "
1454      << Target << "ReadAdvanceTable, ";
1455   if (SchedModels.hasItineraryClasses()) {
1456     OS << '\n'; OS.indent(22);
1457     OS << Target << "Stages, "
1458        << Target << "OperandCycles, "
1459        << Target << "ForwardingPaths, ";
1460   } else
1461     OS << "0, 0, 0, ";
1462   OS << NumFeatures << ", " << NumProcs << ");\n}\n\n";
1463
1464   OS << "} // End llvm namespace \n";
1465
1466   OS << "#endif // GET_SUBTARGETINFO_MC_DESC\n\n";
1467
1468   OS << "\n#ifdef GET_SUBTARGETINFO_TARGET_DESC\n";
1469   OS << "#undef GET_SUBTARGETINFO_TARGET_DESC\n";
1470
1471   OS << "#include \"llvm/Support/Debug.h\"\n";
1472   OS << "#include \"llvm/Support/raw_ostream.h\"\n";
1473   ParseFeaturesFunction(OS, NumFeatures, NumProcs);
1474
1475   OS << "#endif // GET_SUBTARGETINFO_TARGET_DESC\n\n";
1476
1477   // Create a TargetSubtargetInfo subclass to hide the MC layer initialization.
1478   OS << "\n#ifdef GET_SUBTARGETINFO_HEADER\n";
1479   OS << "#undef GET_SUBTARGETINFO_HEADER\n";
1480
1481   std::string ClassName = Target + "GenSubtargetInfo";
1482   OS << "namespace llvm {\n";
1483   OS << "class DFAPacketizer;\n";
1484   OS << "struct " << ClassName << " : public TargetSubtargetInfo {\n"
1485      << "  explicit " << ClassName << "(StringRef TT, StringRef CPU, "
1486      << "StringRef FS);\n"
1487      << "public:\n"
1488      << "  unsigned resolveSchedClass(unsigned SchedClass, const MachineInstr *DefMI,"
1489      << " const TargetSchedModel *SchedModel) const;\n"
1490      << "  DFAPacketizer *createDFAPacketizer(const InstrItineraryData *IID)"
1491      << " const;\n"
1492      << "};\n";
1493   OS << "} // End llvm namespace \n";
1494
1495   OS << "#endif // GET_SUBTARGETINFO_HEADER\n\n";
1496
1497   OS << "\n#ifdef GET_SUBTARGETINFO_CTOR\n";
1498   OS << "#undef GET_SUBTARGETINFO_CTOR\n";
1499
1500   OS << "#include \"llvm/CodeGen/TargetSchedule.h\"\n";
1501   OS << "namespace llvm {\n";
1502   OS << "extern const llvm::SubtargetFeatureKV " << Target << "FeatureKV[];\n";
1503   OS << "extern const llvm::SubtargetFeatureKV " << Target << "SubTypeKV[];\n";
1504   OS << "extern const llvm::SubtargetInfoKV " << Target << "ProcSchedKV[];\n";
1505   OS << "extern const llvm::MCWriteProcResEntry "
1506      << Target << "WriteProcResTable[];\n";
1507   OS << "extern const llvm::MCWriteLatencyEntry "
1508      << Target << "WriteLatencyTable[];\n";
1509   OS << "extern const llvm::MCReadAdvanceEntry "
1510      << Target << "ReadAdvanceTable[];\n";
1511
1512   if (SchedModels.hasItineraryClasses()) {
1513     OS << "extern const llvm::InstrStage " << Target << "Stages[];\n";
1514     OS << "extern const unsigned " << Target << "OperandCycles[];\n";
1515     OS << "extern const unsigned " << Target << "ForwardingPaths[];\n";
1516   }
1517
1518   OS << ClassName << "::" << ClassName << "(StringRef TT, StringRef CPU, "
1519      << "StringRef FS)\n"
1520      << "  : TargetSubtargetInfo() {\n"
1521      << "  InitMCSubtargetInfo(TT, CPU, FS, ";
1522   if (NumFeatures)
1523     OS << Target << "FeatureKV, ";
1524   else
1525     OS << "0, ";
1526   if (NumProcs)
1527     OS << Target << "SubTypeKV, ";
1528   else
1529     OS << "0, ";
1530   OS << '\n'; OS.indent(22);
1531   OS << Target << "ProcSchedKV, "
1532      << Target << "WriteProcResTable, "
1533      << Target << "WriteLatencyTable, "
1534      << Target << "ReadAdvanceTable, ";
1535   OS << '\n'; OS.indent(22);
1536   if (SchedModels.hasItineraryClasses()) {
1537     OS << Target << "Stages, "
1538        << Target << "OperandCycles, "
1539        << Target << "ForwardingPaths, ";
1540   } else
1541     OS << "0, 0, 0, ";
1542   OS << NumFeatures << ", " << NumProcs << ");\n}\n\n";
1543
1544   EmitSchedModelHelpers(ClassName, OS);
1545
1546   OS << "} // End llvm namespace \n";
1547
1548   OS << "#endif // GET_SUBTARGETINFO_CTOR\n\n";
1549 }
1550
1551 namespace llvm {
1552
1553 void EmitSubtarget(RecordKeeper &RK, raw_ostream &OS) {
1554   CodeGenTarget CGTarget(RK);
1555   SubtargetEmitter(RK, CGTarget).run(OS);
1556 }
1557
1558 } // End llvm namespace