Add stub methods for mips assembly matcher.
[oota-llvm.git] / utils / TableGen / EDEmitter.cpp
1 //===- EDEmitter.cpp - Generate instruction descriptions for ED -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This tablegen backend is responsible for emitting a description of each
11 // instruction in a format that the enhanced disassembler can use to tokenize
12 // and parse instructions.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "AsmWriterInst.h"
17 #include "CodeGenTarget.h"
18 #include "llvm/MC/EDInstInfo.h"
19 #include "llvm/Support/ErrorHandling.h"
20 #include "llvm/Support/Format.h"
21 #include "llvm/Support/raw_ostream.h"
22 #include "llvm/TableGen/Record.h"
23 #include "llvm/TableGen/TableGenBackend.h"
24 #include <string>
25 #include <vector>
26
27 using namespace llvm;
28
29 // TODO: There's a suspiciously large amount of "table" data in this
30 // backend which should probably be in the TableGen file itself.
31
32 ///////////////////////////////////////////////////////////
33 // Support classes for emitting nested C data structures //
34 ///////////////////////////////////////////////////////////
35
36 // TODO: These classes are probably generally useful to other backends;
37 // add them to TableGen's "helper" API's.
38
39 namespace {
40 class EnumEmitter {
41 private:
42   std::string Name;
43   std::vector<std::string> Entries;
44 public:
45   EnumEmitter(const char *N) : Name(N) {
46   }
47   int addEntry(const char *e) {
48     Entries.push_back(std::string(e));
49     return Entries.size() - 1;
50   }
51   void emit(raw_ostream &o, unsigned int &i) {
52     o.indent(i) << "enum " << Name.c_str() << " {" << "\n";
53     i += 2;
54
55     unsigned int index = 0;
56     unsigned int numEntries = Entries.size();
57     for (index = 0; index < numEntries; ++index) {
58       o.indent(i) << Entries[index];
59       if (index < (numEntries - 1))
60         o << ",";
61       o << "\n";
62     }
63
64     i -= 2;
65     o.indent(i) << "};" << "\n";
66   }
67
68   void emitAsFlags(raw_ostream &o, unsigned int &i) {
69     o.indent(i) << "enum " << Name.c_str() << " {" << "\n";
70     i += 2;
71
72     unsigned int index = 0;
73     unsigned int numEntries = Entries.size();
74     unsigned int flag = 1;
75     for (index = 0; index < numEntries; ++index) {
76       o.indent(i) << Entries[index] << " = " << format("0x%x", flag);
77       if (index < (numEntries - 1))
78         o << ",";
79       o << "\n";
80       flag <<= 1;
81     }
82
83     i -= 2;
84     o.indent(i) << "};" << "\n";
85   }
86 };
87 } // End anonymous namespace
88
89 namespace {
90 class ConstantEmitter {
91 public:
92   virtual ~ConstantEmitter() { }
93   virtual void emit(raw_ostream &o, unsigned int &i) = 0;
94 };
95 } // End anonymous namespace
96
97 namespace {
98 class LiteralConstantEmitter : public ConstantEmitter {
99 private:
100   bool IsNumber;
101   union {
102     int Number;
103     const char* String;
104   };
105 public:
106   LiteralConstantEmitter(int number = 0) :
107     IsNumber(true),
108     Number(number) {
109   }
110   void set(const char *string) {
111     IsNumber = false;
112     Number = 0;
113     String = string;
114   }
115   bool is(const char *string) {
116     return !strcmp(String, string);
117   }
118   void emit(raw_ostream &o, unsigned int &i) {
119     if (IsNumber)
120       o << Number;
121     else
122       o << String;
123   }
124 };
125 } // End anonymous namespace
126
127 namespace {
128 class CompoundConstantEmitter : public ConstantEmitter {
129 private:
130   unsigned int Padding;
131   std::vector<ConstantEmitter *> Entries;
132 public:
133   CompoundConstantEmitter(unsigned int padding = 0) : Padding(padding) {
134   }
135   CompoundConstantEmitter &addEntry(ConstantEmitter *e) {
136     Entries.push_back(e);
137
138     return *this;
139   }
140   ~CompoundConstantEmitter() {
141     while (Entries.size()) {
142       ConstantEmitter *entry = Entries.back();
143       Entries.pop_back();
144       delete entry;
145     }
146   }
147   void emit(raw_ostream &o, unsigned int &i) {
148     o << "{" << "\n";
149     i += 2;
150
151     unsigned int index;
152     unsigned int numEntries = Entries.size();
153
154     unsigned int numToPrint;
155
156     if (Padding) {
157       if (numEntries > Padding) {
158         fprintf(stderr, "%u entries but %u padding\n", numEntries, Padding);
159         llvm_unreachable("More entries than padding");
160       }
161       numToPrint = Padding;
162     } else {
163       numToPrint = numEntries;
164     }
165
166     for (index = 0; index < numToPrint; ++index) {
167       o.indent(i);
168       if (index < numEntries)
169         Entries[index]->emit(o, i);
170       else
171         o << "-1";
172
173       if (index < (numToPrint - 1))
174         o << ",";
175       o << "\n";
176     }
177
178     i -= 2;
179     o.indent(i) << "}";
180   }
181 };
182 } // End anonymous namespace
183
184 namespace {
185 class FlagsConstantEmitter : public ConstantEmitter {
186 private:
187   std::vector<std::string> Flags;
188 public:
189   FlagsConstantEmitter() {
190   }
191   FlagsConstantEmitter &addEntry(const char *f) {
192     Flags.push_back(std::string(f));
193     return *this;
194   }
195   void emit(raw_ostream &o, unsigned int &i) {
196     unsigned int index;
197     unsigned int numFlags = Flags.size();
198     if (numFlags == 0)
199       o << "0";
200
201     for (index = 0; index < numFlags; ++index) {
202       o << Flags[index].c_str();
203       if (index < (numFlags - 1))
204         o << " | ";
205     }
206   }
207 };
208 } // End anonymous namespace
209
210 /// populateOperandOrder - Accepts a CodeGenInstruction and generates its
211 ///   AsmWriterInst for the desired assembly syntax, giving an ordered list of
212 ///   operands in the order they appear in the printed instruction.  Then, for
213 ///   each entry in that list, determines the index of the same operand in the
214 ///   CodeGenInstruction, and emits the resulting mapping into an array, filling
215 ///   in unused slots with -1.
216 ///
217 /// @arg operandOrder - The array that will be populated with the operand
218 ///                     mapping.  Each entry will contain -1 (invalid index
219 ///                     into the operands present in the AsmString) or a number
220 ///                     representing an index in the operand descriptor array.
221 /// @arg inst         - The instruction to use when looking up the operands
222 /// @arg syntax       - The syntax to use, according to LLVM's enumeration
223 static void populateOperandOrder(CompoundConstantEmitter *operandOrder,
224                                  const CodeGenInstruction &inst,
225                                  unsigned syntax) {
226   unsigned int numArgs = 0;
227
228   AsmWriterInst awInst(inst, syntax, -1, -1);
229
230   std::vector<AsmWriterOperand>::iterator operandIterator;
231
232   for (operandIterator = awInst.Operands.begin();
233        operandIterator != awInst.Operands.end();
234        ++operandIterator) {
235     if (operandIterator->OperandType ==
236         AsmWriterOperand::isMachineInstrOperand) {
237       operandOrder->addEntry(
238         new LiteralConstantEmitter(operandIterator->CGIOpNo));
239       numArgs++;
240     }
241   }
242 }
243
244 /////////////////////////////////////////////////////
245 // Support functions for handling X86 instructions //
246 /////////////////////////////////////////////////////
247
248 #define SET(flag) { type->set(flag); return 0; }
249
250 #define REG(str) if (name == str) SET("kOperandTypeRegister");
251 #define MEM(str) if (name == str) SET("kOperandTypeX86Memory");
252 #define LEA(str) if (name == str) SET("kOperandTypeX86EffectiveAddress");
253 #define IMM(str) if (name == str) SET("kOperandTypeImmediate");
254 #define PCR(str) if (name == str) SET("kOperandTypeX86PCRelative");
255
256 /// X86TypeFromOpName - Processes the name of a single X86 operand (which is
257 ///   actually its type) and translates it into an operand type
258 ///
259 /// @arg flags    - The type object to set
260 /// @arg name     - The name of the operand
261 static int X86TypeFromOpName(LiteralConstantEmitter *type,
262                              const std::string &name) {
263   REG("GR8");
264   REG("GR8_NOREX");
265   REG("GR16");
266   REG("GR16_NOAX");
267   REG("GR32");
268   REG("GR32_NOAX");
269   REG("GR32_NOREX");
270   REG("GR32_TC");
271   REG("FR32");
272   REG("RFP32");
273   REG("GR64");
274   REG("GR64_NOAX");
275   REG("GR64_TC");
276   REG("FR64");
277   REG("VR64");
278   REG("RFP64");
279   REG("RFP80");
280   REG("VR128");
281   REG("VR256");
282   REG("RST");
283   REG("SEGMENT_REG");
284   REG("DEBUG_REG");
285   REG("CONTROL_REG");
286
287   IMM("i8imm");
288   IMM("i16imm");
289   IMM("i16i8imm");
290   IMM("i32imm");
291   IMM("i32i8imm");
292   IMM("u32u8imm");
293   IMM("i64imm");
294   IMM("i64i8imm");
295   IMM("i64i32imm");
296   IMM("SSECC");
297   IMM("AVXCC");
298
299   // all R, I, R, I, R
300   MEM("i8mem");
301   MEM("i8mem_NOREX");
302   MEM("i16mem");
303   MEM("i32mem");
304   MEM("i32mem_TC");
305   MEM("f32mem");
306   MEM("ssmem");
307   MEM("opaque32mem");
308   MEM("opaque48mem");
309   MEM("i64mem");
310   MEM("i64mem_TC");
311   MEM("f64mem");
312   MEM("sdmem");
313   MEM("f80mem");
314   MEM("opaque80mem");
315   MEM("i128mem");
316   MEM("i256mem");
317   MEM("f128mem");
318   MEM("f256mem");
319   MEM("opaque512mem");
320   // Gather
321   MEM("vx32mem")
322   MEM("vy32mem")
323   MEM("vx64mem")
324   MEM("vy64mem")
325
326   // all R, I, R, I
327   LEA("lea32mem");
328   LEA("lea64_32mem");
329   LEA("lea64mem");
330
331   // all I
332   PCR("i16imm_pcrel");
333   PCR("i32imm_pcrel");
334   PCR("i64i32imm_pcrel");
335   PCR("brtarget8");
336   PCR("offset8");
337   PCR("offset16");
338   PCR("offset32");
339   PCR("offset64");
340   PCR("brtarget");
341   PCR("uncondbrtarget");
342   PCR("bltarget");
343
344   // all I, ARM mode only, conditional/unconditional
345   PCR("br_target");
346   PCR("bl_target");
347   return 1;
348 }
349
350 #undef REG
351 #undef MEM
352 #undef LEA
353 #undef IMM
354 #undef PCR
355
356 #undef SET
357
358 /// X86PopulateOperands - Handles all the operands in an X86 instruction, adding
359 ///   the appropriate flags to their descriptors
360 ///
361 /// @operandFlags - A reference the array of operand flag objects
362 /// @inst         - The instruction to use as a source of information
363 static void X86PopulateOperands(
364   LiteralConstantEmitter *(&operandTypes)[EDIS_MAX_OPERANDS],
365   const CodeGenInstruction &inst) {
366   if (!inst.TheDef->isSubClassOf("X86Inst"))
367     return;
368
369   unsigned int index;
370   unsigned int numOperands = inst.Operands.size();
371
372   for (index = 0; index < numOperands; ++index) {
373     const CGIOperandList::OperandInfo &operandInfo = inst.Operands[index];
374     Record &rec = *operandInfo.Rec;
375
376     if (X86TypeFromOpName(operandTypes[index], rec.getName()) &&
377         !rec.isSubClassOf("PointerLikeRegClass")) {
378       errs() << "Operand type: " << rec.getName().c_str() << "\n";
379       errs() << "Operand name: " << operandInfo.Name.c_str() << "\n";
380       errs() << "Instruction name: " << inst.TheDef->getName().c_str() << "\n";
381       llvm_unreachable("Unhandled type");
382     }
383   }
384 }
385
386 /// decorate1 - Decorates a named operand with a new flag
387 ///
388 /// @operandFlags - The array of operand flag objects, which don't have names
389 /// @inst         - The CodeGenInstruction, which provides a way to translate
390 ///                 between names and operand indices
391 /// @opName       - The name of the operand
392 /// @flag         - The name of the flag to add
393 static inline void decorate1(
394   FlagsConstantEmitter *(&operandFlags)[EDIS_MAX_OPERANDS],
395   const CodeGenInstruction &inst,
396   const char *opName,
397   const char *opFlag) {
398   unsigned opIndex;
399
400   opIndex = inst.Operands.getOperandNamed(std::string(opName));
401
402   operandFlags[opIndex]->addEntry(opFlag);
403 }
404
405 #define DECORATE1(opName, opFlag) decorate1(operandFlags, inst, opName, opFlag)
406
407 #define MOV(source, target) {               \
408   instType.set("kInstructionTypeMove");     \
409   DECORATE1(source, "kOperandFlagSource");  \
410   DECORATE1(target, "kOperandFlagTarget");  \
411 }
412
413 #define BRANCH(target) {                    \
414   instType.set("kInstructionTypeBranch");   \
415   DECORATE1(target, "kOperandFlagTarget");  \
416 }
417
418 #define PUSH(source) {                      \
419   instType.set("kInstructionTypePush");     \
420   DECORATE1(source, "kOperandFlagSource");  \
421 }
422
423 #define POP(target) {                       \
424   instType.set("kInstructionTypePop");      \
425   DECORATE1(target, "kOperandFlagTarget");  \
426 }
427
428 #define CALL(target) {                      \
429   instType.set("kInstructionTypeCall");     \
430   DECORATE1(target, "kOperandFlagTarget");  \
431 }
432
433 #define RETURN() {                          \
434   instType.set("kInstructionTypeReturn");   \
435 }
436
437 /// X86ExtractSemantics - Performs various checks on the name of an X86
438 ///   instruction to determine what sort of an instruction it is and then adds
439 ///   the appropriate flags to the instruction and its operands
440 ///
441 /// @arg instType     - A reference to the type for the instruction as a whole
442 /// @arg operandFlags - A reference to the array of operand flag object pointers
443 /// @arg inst         - A reference to the original instruction
444 static void X86ExtractSemantics(
445   LiteralConstantEmitter &instType,
446   FlagsConstantEmitter *(&operandFlags)[EDIS_MAX_OPERANDS],
447   const CodeGenInstruction &inst) {
448   const std::string &name = inst.TheDef->getName();
449
450   if (name.find("MOV") != name.npos) {
451     if (name.find("MOV_V") != name.npos) {
452       // ignore (this is a pseudoinstruction)
453     } else if (name.find("MASK") != name.npos) {
454       // ignore (this is a masking move)
455     } else if (name.find("r0") != name.npos) {
456       // ignore (this is a pseudoinstruction)
457     } else if (name.find("PS") != name.npos ||
458              name.find("PD") != name.npos) {
459       // ignore (this is a shuffling move)
460     } else if (name.find("MOVS") != name.npos) {
461       // ignore (this is a string move)
462     } else if (name.find("_F") != name.npos) {
463       // TODO handle _F moves to ST(0)
464     } else if (name.find("a") != name.npos) {
465       // TODO handle moves to/from %ax
466     } else if (name.find("CMOV") != name.npos) {
467       MOV("src2", "dst");
468     } else if (name.find("PC") != name.npos) {
469       MOV("label", "reg")
470     } else {
471       MOV("src", "dst");
472     }
473   }
474
475   if (name.find("JMP") != name.npos ||
476       name.find("J") == 0) {
477     if (name.find("FAR") != name.npos && name.find("i") != name.npos) {
478       BRANCH("off");
479     } else {
480       BRANCH("dst");
481     }
482   }
483
484   if (name.find("PUSH") != name.npos) {
485     if (name.find("CS") != name.npos ||
486         name.find("DS") != name.npos ||
487         name.find("ES") != name.npos ||
488         name.find("FS") != name.npos ||
489         name.find("GS") != name.npos ||
490         name.find("SS") != name.npos) {
491       instType.set("kInstructionTypePush");
492       // TODO add support for fixed operands
493     } else if (name.find("F") != name.npos) {
494       // ignore (this pushes onto the FP stack)
495     } else if (name.find("A") != name.npos) {
496       // ignore (pushes all GP registoers onto the stack)
497     } else if (name[name.length() - 1] == 'm') {
498       PUSH("src");
499     } else if (name.find("i") != name.npos) {
500       PUSH("imm");
501     } else {
502       PUSH("reg");
503     }
504   }
505
506   if (name.find("POP") != name.npos) {
507     if (name.find("POPCNT") != name.npos) {
508       // ignore (not a real pop)
509     } else if (name.find("CS") != name.npos ||
510                name.find("DS") != name.npos ||
511                name.find("ES") != name.npos ||
512                name.find("FS") != name.npos ||
513                name.find("GS") != name.npos ||
514                name.find("SS") != name.npos) {
515       instType.set("kInstructionTypePop");
516       // TODO add support for fixed operands
517     } else if (name.find("F") != name.npos) {
518       // ignore (this pops from the FP stack)
519     } else if (name.find("A") != name.npos) {
520       // ignore (pushes all GP registoers onto the stack)
521     } else if (name[name.length() - 1] == 'm') {
522       POP("dst");
523     } else {
524       POP("reg");
525     }
526   }
527
528   if (name.find("CALL") != name.npos) {
529     if (name.find("ADJ") != name.npos) {
530       // ignore (not a call)
531     } else if (name.find("SYSCALL") != name.npos) {
532       // ignore (doesn't go anywhere we know about)
533     } else if (name.find("VMCALL") != name.npos) {
534       // ignore (rather different semantics than a regular call)
535     } else if (name.find("VMMCALL") != name.npos) {
536       // ignore (rather different semantics than a regular call)
537     } else if (name.find("FAR") != name.npos && name.find("i") != name.npos) {
538       CALL("off");
539     } else {
540       CALL("dst");
541     }
542   }
543
544   if (name.find("RET") != name.npos) {
545     RETURN();
546   }
547 }
548
549 #undef MOV
550 #undef BRANCH
551 #undef PUSH
552 #undef POP
553 #undef CALL
554 #undef RETURN
555
556 /////////////////////////////////////////////////////
557 // Support functions for handling ARM instructions //
558 /////////////////////////////////////////////////////
559
560 #define SET(flag) { type->set(flag); return 0; }
561
562 #define REG(str)    if (name == str) SET("kOperandTypeRegister");
563 #define IMM(str)    if (name == str) SET("kOperandTypeImmediate");
564
565 #define MISC(str, type)   if (name == str) SET(type);
566
567 /// ARMFlagFromOpName - Processes the name of a single ARM operand (which is
568 ///   actually its type) and translates it into an operand type
569 ///
570 /// @arg type     - The type object to set
571 /// @arg name     - The name of the operand
572 static int ARMFlagFromOpName(LiteralConstantEmitter *type,
573                              const std::string &name) {
574   REG("GPR");
575   REG("rGPR");
576   REG("GPRnopc");
577   REG("GPRsp");
578   REG("tcGPR");
579   REG("cc_out");
580   REG("s_cc_out");
581   REG("tGPR");
582   REG("DPR");
583   REG("DPR_VFP2");
584   REG("DPR_8");
585   REG("DPair");
586   REG("SPR");
587   REG("QPR");
588   REG("QQPR");
589   REG("QQQQPR");
590   REG("VecListOneD");
591   REG("VecListDPair");
592   REG("VecListDPairSpaced");
593   REG("VecListThreeD");
594   REG("VecListFourD");
595   REG("VecListOneDAllLanes");
596   REG("VecListDPairAllLanes");
597   REG("VecListDPairSpacedAllLanes");
598
599   IMM("i32imm");
600   IMM("fbits16");
601   IMM("fbits32");
602   IMM("i32imm_hilo16");
603   IMM("bf_inv_mask_imm");
604   IMM("lsb_pos_imm");
605   IMM("width_imm");
606   IMM("jtblock_operand");
607   IMM("nohash_imm");
608   IMM("p_imm");
609   IMM("pf_imm");
610   IMM("c_imm");
611   IMM("coproc_option_imm");
612   IMM("imod_op");
613   IMM("iflags_op");
614   IMM("cpinst_operand");
615   IMM("setend_op");
616   IMM("cps_opt");
617   IMM("vfp_f64imm");
618   IMM("vfp_f32imm");
619   IMM("memb_opt");
620   IMM("msr_mask");
621   IMM("neg_zero");
622   IMM("imm0_31");
623   IMM("imm0_31_m1");
624   IMM("imm1_16");
625   IMM("imm1_32");
626   IMM("nModImm");
627   IMM("nImmSplatI8");
628   IMM("nImmSplatI16");
629   IMM("nImmSplatI32");
630   IMM("nImmSplatI64");
631   IMM("nImmVMOVI32");
632   IMM("nImmVMOVF32");
633   IMM("imm8");
634   IMM("imm16");
635   IMM("imm32");
636   IMM("imm1_7");
637   IMM("imm1_15");
638   IMM("imm1_31");
639   IMM("imm0_1");
640   IMM("imm0_3");
641   IMM("imm0_7");
642   IMM("imm0_15");
643   IMM("imm0_255");
644   IMM("imm0_4095");
645   IMM("imm0_65535");
646   IMM("imm0_65535_expr");
647   IMM("imm24b");
648   IMM("pkh_lsl_amt");
649   IMM("pkh_asr_amt");
650   IMM("jt2block_operand");
651   IMM("t_imm0_1020s4");
652   IMM("t_imm0_508s4");
653   IMM("pclabel");
654   IMM("adrlabel");
655   IMM("t_adrlabel");
656   IMM("t2adrlabel");
657   IMM("shift_imm");
658   IMM("t2_shift_imm");
659   IMM("neon_vcvt_imm32");
660   IMM("shr_imm8");
661   IMM("shr_imm16");
662   IMM("shr_imm32");
663   IMM("shr_imm64");
664   IMM("t2ldrlabel");
665   IMM("postidx_imm8");
666   IMM("postidx_imm8s4");
667   IMM("imm_sr");
668   IMM("imm1_31");
669   IMM("VectorIndex8");
670   IMM("VectorIndex16");
671   IMM("VectorIndex32");
672
673   MISC("brtarget", "kOperandTypeARMBranchTarget");                // ?
674   MISC("uncondbrtarget", "kOperandTypeARMBranchTarget");           // ?
675   MISC("t_brtarget", "kOperandTypeARMBranchTarget");              // ?
676   MISC("t_bcctarget", "kOperandTypeARMBranchTarget");             // ?
677   MISC("t_cbtarget", "kOperandTypeARMBranchTarget");              // ?
678   MISC("bltarget", "kOperandTypeARMBranchTarget");                // ?
679
680   MISC("br_target", "kOperandTypeARMBranchTarget");                // ?
681   MISC("bl_target", "kOperandTypeARMBranchTarget");                // ?
682   MISC("blx_target", "kOperandTypeARMBranchTarget");                // ?
683
684   MISC("t_bltarget", "kOperandTypeARMBranchTarget");              // ?
685   MISC("t_blxtarget", "kOperandTypeARMBranchTarget");             // ?
686   MISC("so_reg_imm", "kOperandTypeARMSoRegReg");                         // R, R, I
687   MISC("so_reg_reg", "kOperandTypeARMSoRegImm");                         // R, R, I
688   MISC("shift_so_reg_reg", "kOperandTypeARMSoRegReg");                   // R, R, I
689   MISC("shift_so_reg_imm", "kOperandTypeARMSoRegImm");                   // R, R, I
690   MISC("t2_so_reg", "kOperandTypeThumb2SoReg");                   // R, I
691   MISC("so_imm", "kOperandTypeARMSoImm");                         // I
692   MISC("rot_imm", "kOperandTypeARMRotImm");                       // I
693   MISC("t2_so_imm", "kOperandTypeThumb2SoImm");                   // I
694   MISC("so_imm2part", "kOperandTypeARMSoImm2Part");               // I
695   MISC("pred", "kOperandTypeARMPredicate");                       // I, R
696   MISC("it_pred", "kOperandTypeARMPredicate");                    // I
697   MISC("addrmode_imm12", "kOperandTypeAddrModeImm12");            // R, I
698   MISC("ldst_so_reg", "kOperandTypeLdStSOReg");                   // R, R, I
699   MISC("postidx_reg", "kOperandTypeARMAddrMode3Offset");          // R, I
700   MISC("addrmode2", "kOperandTypeARMAddrMode2");                  // R, R, I
701   MISC("am2offset_reg", "kOperandTypeARMAddrMode2Offset");        // R, I
702   MISC("am2offset_imm", "kOperandTypeARMAddrMode2Offset");        // R, I
703   MISC("addrmode3", "kOperandTypeARMAddrMode3");                  // R, R, I
704   MISC("am3offset", "kOperandTypeARMAddrMode3Offset");            // R, I
705   MISC("ldstm_mode", "kOperandTypeARMLdStmMode");                 // I
706   MISC("addrmode5", "kOperandTypeARMAddrMode5");                  // R, I
707   MISC("addrmode6", "kOperandTypeARMAddrMode6");                  // R, R, I, I
708   MISC("am6offset", "kOperandTypeARMAddrMode6Offset");            // R, I, I
709   MISC("addrmode6dup", "kOperandTypeARMAddrMode6");               // R, R, I, I
710   MISC("addrmode6oneL32", "kOperandTypeARMAddrMode6");            // R, R, I, I
711   MISC("addrmodepc", "kOperandTypeARMAddrModePC");                // R, I
712   MISC("addr_offset_none", "kOperandTypeARMAddrMode7");           // R
713   MISC("reglist", "kOperandTypeARMRegisterList");                 // I, R, ...
714   MISC("dpr_reglist", "kOperandTypeARMDPRRegisterList");          // I, R, ...
715   MISC("spr_reglist", "kOperandTypeARMSPRRegisterList");          // I, R, ...
716   MISC("it_mask", "kOperandTypeThumbITMask");                     // I
717   MISC("t2addrmode_reg", "kOperandTypeThumb2AddrModeReg");        // R
718   MISC("t2addrmode_posimm8", "kOperandTypeThumb2AddrModeImm8");   // R, I
719   MISC("t2addrmode_negimm8", "kOperandTypeThumb2AddrModeImm8");   // R, I
720   MISC("t2addrmode_imm8", "kOperandTypeThumb2AddrModeImm8");      // R, I
721   MISC("t2am_imm8_offset", "kOperandTypeThumb2AddrModeImm8Offset");//I
722   MISC("t2addrmode_imm12", "kOperandTypeThumb2AddrModeImm12");    // R, I
723   MISC("t2addrmode_so_reg", "kOperandTypeThumb2AddrModeSoReg");   // R, R, I
724   MISC("t2addrmode_imm8s4", "kOperandTypeThumb2AddrModeImm8s4");  // R, I
725   MISC("t2addrmode_imm0_1020s4", "kOperandTypeThumb2AddrModeImm8s4");  // R, I
726   MISC("t2am_imm8s4_offset", "kOperandTypeThumb2AddrModeImm8s4Offset");
727                                                                   // R, I
728   MISC("tb_addrmode", "kOperandTypeARMTBAddrMode");               // I
729   MISC("t_addrmode_rrs1", "kOperandTypeThumbAddrModeRegS1");      // R, R
730   MISC("t_addrmode_rrs2", "kOperandTypeThumbAddrModeRegS2");      // R, R
731   MISC("t_addrmode_rrs4", "kOperandTypeThumbAddrModeRegS4");      // R, R
732   MISC("t_addrmode_is1", "kOperandTypeThumbAddrModeImmS1");       // R, I
733   MISC("t_addrmode_is2", "kOperandTypeThumbAddrModeImmS2");       // R, I
734   MISC("t_addrmode_is4", "kOperandTypeThumbAddrModeImmS4");       // R, I
735   MISC("t_addrmode_rr", "kOperandTypeThumbAddrModeRR");           // R, R
736   MISC("t_addrmode_sp", "kOperandTypeThumbAddrModeSP");           // R, I
737   MISC("t_addrmode_pc", "kOperandTypeThumbAddrModePC");           // R, I
738   MISC("addrmode_tbb", "kOperandTypeThumbAddrModeRR");            // R, R
739   MISC("addrmode_tbh", "kOperandTypeThumbAddrModeRR");            // R, R
740
741   return 1;
742 }
743
744 #undef REG
745 #undef MEM
746 #undef MISC
747
748 #undef SET
749
750 /// ARMPopulateOperands - Handles all the operands in an ARM instruction, adding
751 ///   the appropriate flags to their descriptors
752 ///
753 /// @operandFlags - A reference the array of operand flag objects
754 /// @inst         - The instruction to use as a source of information
755 static void ARMPopulateOperands(
756   LiteralConstantEmitter *(&operandTypes)[EDIS_MAX_OPERANDS],
757   const CodeGenInstruction &inst) {
758   if (!inst.TheDef->isSubClassOf("InstARM") &&
759       !inst.TheDef->isSubClassOf("InstThumb"))
760     return;
761
762   unsigned int index;
763   unsigned int numOperands = inst.Operands.size();
764
765   if (numOperands > EDIS_MAX_OPERANDS) {
766     errs() << "numOperands == " << numOperands << " > " <<
767       EDIS_MAX_OPERANDS << '\n';
768     llvm_unreachable("Too many operands");
769   }
770
771   for (index = 0; index < numOperands; ++index) {
772     const CGIOperandList::OperandInfo &operandInfo = inst.Operands[index];
773     Record &rec = *operandInfo.Rec;
774
775     if (ARMFlagFromOpName(operandTypes[index], rec.getName())) {
776       errs() << "Operand type: " << rec.getName() << '\n';
777       errs() << "Operand name: " << operandInfo.Name << '\n';
778       errs() << "Instruction name: " << inst.TheDef->getName() << '\n';
779       throw("Unhandled type in EDEmitter");
780     }
781   }
782 }
783
784 #define BRANCH(target) {                    \
785   instType.set("kInstructionTypeBranch");   \
786   DECORATE1(target, "kOperandFlagTarget");  \
787 }
788
789 /// ARMExtractSemantics - Performs various checks on the name of an ARM
790 ///   instruction to determine what sort of an instruction it is and then adds
791 ///   the appropriate flags to the instruction and its operands
792 ///
793 /// @arg instType     - A reference to the type for the instruction as a whole
794 /// @arg operandTypes - A reference to the array of operand type object pointers
795 /// @arg operandFlags - A reference to the array of operand flag object pointers
796 /// @arg inst         - A reference to the original instruction
797 static void ARMExtractSemantics(
798   LiteralConstantEmitter &instType,
799   LiteralConstantEmitter *(&operandTypes)[EDIS_MAX_OPERANDS],
800   FlagsConstantEmitter *(&operandFlags)[EDIS_MAX_OPERANDS],
801   const CodeGenInstruction &inst) {
802   const std::string &name = inst.TheDef->getName();
803
804   if (name == "tBcc"   ||
805       name == "tB"     ||
806       name == "t2Bcc"  ||
807       name == "Bcc"    ||
808       name == "tCBZ"   ||
809       name == "tCBNZ") {
810     BRANCH("target");
811   }
812
813   if (name == "tBLr9"      ||
814       name == "BLr9_pred"  ||
815       name == "tBLXi_r9"   ||
816       name == "tBLXr_r9"   ||
817       name == "BLXr9"      ||
818       name == "t2BXJ"      ||
819       name == "BXJ") {
820     BRANCH("func");
821
822     unsigned opIndex;
823     opIndex = inst.Operands.getOperandNamed("func");
824     if (operandTypes[opIndex]->is("kOperandTypeImmediate"))
825       operandTypes[opIndex]->set("kOperandTypeARMBranchTarget");
826   }
827 }
828
829 #undef BRANCH
830
831 /// populateInstInfo - Fills an array of InstInfos with information about each
832 ///   instruction in a target
833 ///
834 /// @arg infoArray  - The array of InstInfo objects to populate
835 /// @arg target     - The CodeGenTarget to use as a source of instructions
836 static void populateInstInfo(CompoundConstantEmitter &infoArray,
837                              CodeGenTarget &target) {
838   const std::vector<const CodeGenInstruction*> &numberedInstructions =
839     target.getInstructionsByEnumValue();
840
841   unsigned int index;
842   unsigned int numInstructions = numberedInstructions.size();
843
844   for (index = 0; index < numInstructions; ++index) {
845     const CodeGenInstruction& inst = *numberedInstructions[index];
846
847     CompoundConstantEmitter *infoStruct = new CompoundConstantEmitter;
848     infoArray.addEntry(infoStruct);
849
850     LiteralConstantEmitter *instType = new LiteralConstantEmitter;
851     infoStruct->addEntry(instType);
852
853     LiteralConstantEmitter *numOperandsEmitter =
854       new LiteralConstantEmitter(inst.Operands.size());
855     infoStruct->addEntry(numOperandsEmitter);
856
857     CompoundConstantEmitter *operandTypeArray = new CompoundConstantEmitter;
858     infoStruct->addEntry(operandTypeArray);
859
860     LiteralConstantEmitter *operandTypes[EDIS_MAX_OPERANDS];
861
862     CompoundConstantEmitter *operandFlagArray = new CompoundConstantEmitter;
863     infoStruct->addEntry(operandFlagArray);
864
865     FlagsConstantEmitter *operandFlags[EDIS_MAX_OPERANDS];
866
867     for (unsigned operandIndex = 0;
868          operandIndex < EDIS_MAX_OPERANDS;
869          ++operandIndex) {
870       operandTypes[operandIndex] = new LiteralConstantEmitter;
871       operandTypeArray->addEntry(operandTypes[operandIndex]);
872
873       operandFlags[operandIndex] = new FlagsConstantEmitter;
874       operandFlagArray->addEntry(operandFlags[operandIndex]);
875     }
876
877     unsigned numSyntaxes = 0;
878
879     // We don't need to do anything for pseudo-instructions, as we'll never
880     // see them here. We'll only see real instructions.
881     // We still need to emit null initializers for everything.
882     if (!inst.isPseudo) {
883       if (target.getName() == "X86") {
884         X86PopulateOperands(operandTypes, inst);
885         X86ExtractSemantics(*instType, operandFlags, inst);
886         numSyntaxes = 2;
887       }
888       else if (target.getName() == "ARM") {
889         ARMPopulateOperands(operandTypes, inst);
890         ARMExtractSemantics(*instType, operandTypes, operandFlags, inst);
891         numSyntaxes = 1;
892       }
893     }
894
895     CompoundConstantEmitter *operandOrderArray = new CompoundConstantEmitter;
896
897     infoStruct->addEntry(operandOrderArray);
898
899     for (unsigned syntaxIndex = 0;
900          syntaxIndex < EDIS_MAX_SYNTAXES;
901          ++syntaxIndex) {
902       CompoundConstantEmitter *operandOrder =
903         new CompoundConstantEmitter(EDIS_MAX_OPERANDS);
904
905       operandOrderArray->addEntry(operandOrder);
906
907       if (syntaxIndex < numSyntaxes) {
908         populateOperandOrder(operandOrder, inst, syntaxIndex);
909       }
910     }
911
912     infoStruct = NULL;
913   }
914 }
915
916 static void emitCommonEnums(raw_ostream &o, unsigned int &i) {
917   EnumEmitter operandTypes("OperandTypes");
918   operandTypes.addEntry("kOperandTypeNone");
919   operandTypes.addEntry("kOperandTypeImmediate");
920   operandTypes.addEntry("kOperandTypeRegister");
921   operandTypes.addEntry("kOperandTypeX86Memory");
922   operandTypes.addEntry("kOperandTypeX86EffectiveAddress");
923   operandTypes.addEntry("kOperandTypeX86PCRelative");
924   operandTypes.addEntry("kOperandTypeARMBranchTarget");
925   operandTypes.addEntry("kOperandTypeARMSoRegReg");
926   operandTypes.addEntry("kOperandTypeARMSoRegImm");
927   operandTypes.addEntry("kOperandTypeARMSoImm");
928   operandTypes.addEntry("kOperandTypeARMRotImm");
929   operandTypes.addEntry("kOperandTypeARMSoImm2Part");
930   operandTypes.addEntry("kOperandTypeARMPredicate");
931   operandTypes.addEntry("kOperandTypeAddrModeImm12");
932   operandTypes.addEntry("kOperandTypeLdStSOReg");
933   operandTypes.addEntry("kOperandTypeARMAddrMode2");
934   operandTypes.addEntry("kOperandTypeARMAddrMode2Offset");
935   operandTypes.addEntry("kOperandTypeARMAddrMode3");
936   operandTypes.addEntry("kOperandTypeARMAddrMode3Offset");
937   operandTypes.addEntry("kOperandTypeARMLdStmMode");
938   operandTypes.addEntry("kOperandTypeARMAddrMode5");
939   operandTypes.addEntry("kOperandTypeARMAddrMode6");
940   operandTypes.addEntry("kOperandTypeARMAddrMode6Offset");
941   operandTypes.addEntry("kOperandTypeARMAddrMode7");
942   operandTypes.addEntry("kOperandTypeARMAddrModePC");
943   operandTypes.addEntry("kOperandTypeARMRegisterList");
944   operandTypes.addEntry("kOperandTypeARMDPRRegisterList");
945   operandTypes.addEntry("kOperandTypeARMSPRRegisterList");
946   operandTypes.addEntry("kOperandTypeARMTBAddrMode");
947   operandTypes.addEntry("kOperandTypeThumbITMask");
948   operandTypes.addEntry("kOperandTypeThumbAddrModeImmS1");
949   operandTypes.addEntry("kOperandTypeThumbAddrModeImmS2");
950   operandTypes.addEntry("kOperandTypeThumbAddrModeImmS4");
951   operandTypes.addEntry("kOperandTypeThumbAddrModeRegS1");
952   operandTypes.addEntry("kOperandTypeThumbAddrModeRegS2");
953   operandTypes.addEntry("kOperandTypeThumbAddrModeRegS4");
954   operandTypes.addEntry("kOperandTypeThumbAddrModeRR");
955   operandTypes.addEntry("kOperandTypeThumbAddrModeSP");
956   operandTypes.addEntry("kOperandTypeThumbAddrModePC");
957   operandTypes.addEntry("kOperandTypeThumb2AddrModeReg");
958   operandTypes.addEntry("kOperandTypeThumb2SoReg");
959   operandTypes.addEntry("kOperandTypeThumb2SoImm");
960   operandTypes.addEntry("kOperandTypeThumb2AddrModeImm8");
961   operandTypes.addEntry("kOperandTypeThumb2AddrModeImm8Offset");
962   operandTypes.addEntry("kOperandTypeThumb2AddrModeImm12");
963   operandTypes.addEntry("kOperandTypeThumb2AddrModeSoReg");
964   operandTypes.addEntry("kOperandTypeThumb2AddrModeImm8s4");
965   operandTypes.addEntry("kOperandTypeThumb2AddrModeImm8s4Offset");
966   operandTypes.emit(o, i);
967
968   o << "\n";
969
970   EnumEmitter operandFlags("OperandFlags");
971   operandFlags.addEntry("kOperandFlagSource");
972   operandFlags.addEntry("kOperandFlagTarget");
973   operandFlags.emitAsFlags(o, i);
974
975   o << "\n";
976
977   EnumEmitter instructionTypes("InstructionTypes");
978   instructionTypes.addEntry("kInstructionTypeNone");
979   instructionTypes.addEntry("kInstructionTypeMove");
980   instructionTypes.addEntry("kInstructionTypeBranch");
981   instructionTypes.addEntry("kInstructionTypePush");
982   instructionTypes.addEntry("kInstructionTypePop");
983   instructionTypes.addEntry("kInstructionTypeCall");
984   instructionTypes.addEntry("kInstructionTypeReturn");
985   instructionTypes.emit(o, i);
986
987   o << "\n";
988 }
989
990 namespace llvm {
991
992 void EmitEnhancedDisassemblerInfo(RecordKeeper &RK, raw_ostream &OS) {
993   emitSourceFileHeader("Enhanced Disassembler Info", OS);
994   unsigned int i = 0;
995
996   CompoundConstantEmitter infoArray;
997   CodeGenTarget target(RK);
998
999   populateInstInfo(infoArray, target);
1000
1001   emitCommonEnums(OS, i);
1002
1003   OS << "static const llvm::EDInstInfo instInfo"
1004      << target.getName() << "[] = ";
1005   infoArray.emit(OS, i);
1006   OS << ";" << "\n";
1007 }
1008
1009 } // End llvm namespace