Add an initial implementation of archive symbol table generation.
[oota-llvm.git] / tools / llvm-objdump / MachODump.cpp
1 //===-- MachODump.cpp - Object file dumping utility for llvm --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the MachO-specific dumper for llvm-objdump.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm-objdump.h"
15 #include "llvm/ADT/OwningPtr.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/DebugInfo/DIContext.h"
20 #include "llvm/MC/MCAsmInfo.h"
21 #include "llvm/MC/MCDisassembler.h"
22 #include "llvm/MC/MCInst.h"
23 #include "llvm/MC/MCInstPrinter.h"
24 #include "llvm/MC/MCInstrAnalysis.h"
25 #include "llvm/MC/MCInstrDesc.h"
26 #include "llvm/MC/MCInstrInfo.h"
27 #include "llvm/MC/MCRegisterInfo.h"
28 #include "llvm/MC/MCSubtargetInfo.h"
29 #include "llvm/Object/MachO.h"
30 #include "llvm/Support/Casting.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/Format.h"
34 #include "llvm/Support/GraphWriter.h"
35 #include "llvm/Support/MachO.h"
36 #include "llvm/Support/MemoryBuffer.h"
37 #include "llvm/Support/TargetRegistry.h"
38 #include "llvm/Support/TargetSelect.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include "llvm/Support/system_error.h"
41 #include <algorithm>
42 #include <cstring>
43 using namespace llvm;
44 using namespace object;
45
46 static cl::opt<bool>
47   UseDbg("g", cl::desc("Print line information from debug info if available"));
48
49 static cl::opt<std::string>
50   DSYMFile("dsym", cl::desc("Use .dSYM file for debug info"));
51
52 static const Target *GetTarget(const MachOObjectFile *MachOObj) {
53   // Figure out the target triple.
54   if (TripleName.empty()) {
55     llvm::Triple TT("unknown-unknown-unknown");
56     TT.setArch(Triple::ArchType(MachOObj->getArch()));
57     TripleName = TT.str();
58   }
59
60   // Get the target specific parser.
61   std::string Error;
62   const Target *TheTarget = TargetRegistry::lookupTarget(TripleName, Error);
63   if (TheTarget)
64     return TheTarget;
65
66   errs() << "llvm-objdump: error: unable to get target for '" << TripleName
67          << "', see --version and --triple.\n";
68   return 0;
69 }
70
71 struct SymbolSorter {
72   bool operator()(const SymbolRef &A, const SymbolRef &B) {
73     SymbolRef::Type AType, BType;
74     A.getType(AType);
75     B.getType(BType);
76
77     uint64_t AAddr, BAddr;
78     if (AType != SymbolRef::ST_Function)
79       AAddr = 0;
80     else
81       A.getAddress(AAddr);
82     if (BType != SymbolRef::ST_Function)
83       BAddr = 0;
84     else
85       B.getAddress(BAddr);
86     return AAddr < BAddr;
87   }
88 };
89
90 // Types for the storted data in code table that is built before disassembly
91 // and the predicate function to sort them.
92 typedef std::pair<uint64_t, DiceRef> DiceTableEntry;
93 typedef std::vector<DiceTableEntry> DiceTable;
94 typedef DiceTable::iterator dice_table_iterator;
95
96 static bool
97 compareDiceTableEntries(const DiceTableEntry i,
98                         const DiceTableEntry j) {
99   return i.first == j.first;
100 }
101
102 static void DumpDataInCode(const char *bytes, uint64_t Size,
103                            unsigned short Kind) {
104   uint64_t Value;
105
106   switch (Kind) {
107   case macho::Data:
108     switch (Size) {
109     case 4:
110       Value = bytes[3] << 24 |
111               bytes[2] << 16 |
112               bytes[1] << 8 |
113               bytes[0];
114       outs() << "\t.long " << Value;
115       break;
116     case 2:
117       Value = bytes[1] << 8 |
118               bytes[0];
119       outs() << "\t.short " << Value;
120       break;
121     case 1:
122       Value = bytes[0];
123       outs() << "\t.byte " << Value;
124       break;
125     }
126     outs() << "\t@ KIND_DATA\n";
127     break;
128   case macho::JumpTable8:
129     Value = bytes[0];
130     outs() << "\t.byte " << Value << "\t@ KIND_JUMP_TABLE8";
131     break;
132   case macho::JumpTable16:
133     Value = bytes[1] << 8 |
134             bytes[0];
135     outs() << "\t.short " << Value << "\t@ KIND_JUMP_TABLE16";
136     break;
137   case macho::JumpTable32:
138     Value = bytes[3] << 24 |
139             bytes[2] << 16 |
140             bytes[1] << 8 |
141             bytes[0];
142     outs() << "\t.long " << Value << "\t@ KIND_JUMP_TABLE32";
143     break;
144   default:
145     outs() << "\t@ data in code kind = " << Kind << "\n";
146     break;
147   }
148 }
149
150 static void
151 getSectionsAndSymbols(const macho::Header Header,
152                       MachOObjectFile *MachOObj,
153                       std::vector<SectionRef> &Sections,
154                       std::vector<SymbolRef> &Symbols,
155                       SmallVectorImpl<uint64_t> &FoundFns,
156                       uint64_t &BaseSegmentAddress) {
157   error_code ec;
158   for (symbol_iterator SI = MachOObj->begin_symbols(),
159        SE = MachOObj->end_symbols(); SI != SE; SI.increment(ec))
160     Symbols.push_back(*SI);
161
162   for (section_iterator SI = MachOObj->begin_sections(),
163        SE = MachOObj->end_sections(); SI != SE; SI.increment(ec)) {
164     SectionRef SR = *SI;
165     StringRef SectName;
166     SR.getName(SectName);
167     Sections.push_back(*SI);
168   }
169
170   MachOObjectFile::LoadCommandInfo Command =
171     MachOObj->getFirstLoadCommandInfo();
172   bool BaseSegmentAddressSet = false;
173   for (unsigned i = 0; ; ++i) {
174     if (Command.C.Type == macho::LCT_FunctionStarts) {
175       // We found a function starts segment, parse the addresses for later
176       // consumption.
177       macho::LinkeditDataLoadCommand LLC =
178         MachOObj->getLinkeditDataLoadCommand(Command);
179
180       MachOObj->ReadULEB128s(LLC.DataOffset, FoundFns);
181     }
182     else if (Command.C.Type == macho::LCT_Segment) {
183       macho::SegmentLoadCommand SLC =
184         MachOObj->getSegmentLoadCommand(Command);
185       StringRef SegName = SLC.Name;
186       if(!BaseSegmentAddressSet && SegName != "__PAGEZERO") {
187         BaseSegmentAddressSet = true;
188         BaseSegmentAddress = SLC.VMAddress;
189       }
190     }
191
192     if (i == Header.NumLoadCommands - 1)
193       break;
194     else
195       Command = MachOObj->getNextLoadCommandInfo(Command);
196   }
197 }
198
199 static void DisassembleInputMachO2(StringRef Filename,
200                                    MachOObjectFile *MachOOF);
201
202 void llvm::DisassembleInputMachO(StringRef Filename) {
203   OwningPtr<MemoryBuffer> Buff;
204
205   if (error_code ec = MemoryBuffer::getFileOrSTDIN(Filename, Buff)) {
206     errs() << "llvm-objdump: " << Filename << ": " << ec.message() << "\n";
207     return;
208   }
209
210   OwningPtr<MachOObjectFile> MachOOF(static_cast<MachOObjectFile*>(
211         ObjectFile::createMachOObjectFile(Buff.take())));
212
213   DisassembleInputMachO2(Filename, MachOOF.get());
214 }
215
216 static void DisassembleInputMachO2(StringRef Filename,
217                                    MachOObjectFile *MachOOF) {
218   const Target *TheTarget = GetTarget(MachOOF);
219   if (!TheTarget) {
220     // GetTarget prints out stuff.
221     return;
222   }
223   OwningPtr<const MCInstrInfo> InstrInfo(TheTarget->createMCInstrInfo());
224   OwningPtr<MCInstrAnalysis>
225     InstrAnalysis(TheTarget->createMCInstrAnalysis(InstrInfo.get()));
226
227   // Set up disassembler.
228   OwningPtr<const MCRegisterInfo> MRI(TheTarget->createMCRegInfo(TripleName));
229   OwningPtr<const MCAsmInfo> AsmInfo(
230       TheTarget->createMCAsmInfo(*MRI, TripleName));
231   OwningPtr<const MCSubtargetInfo>
232     STI(TheTarget->createMCSubtargetInfo(TripleName, "", ""));
233   OwningPtr<const MCDisassembler> DisAsm(TheTarget->createMCDisassembler(*STI));
234   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
235   OwningPtr<MCInstPrinter>
236     IP(TheTarget->createMCInstPrinter(AsmPrinterVariant, *AsmInfo, *InstrInfo,
237                                       *MRI, *STI));
238
239   if (!InstrAnalysis || !AsmInfo || !STI || !DisAsm || !IP) {
240     errs() << "error: couldn't initialize disassembler for target "
241            << TripleName << '\n';
242     return;
243   }
244
245   outs() << '\n' << Filename << ":\n\n";
246
247   macho::Header Header = MachOOF->getHeader();
248
249   // FIXME: FoundFns isn't used anymore. Using symbols/LC_FUNCTION_STARTS to
250   // determine function locations will eventually go in MCObjectDisassembler.
251   // FIXME: Using the -cfg command line option, this code used to be able to
252   // annotate relocations with the referenced symbol's name, and if this was
253   // inside a __[cf]string section, the data it points to. This is now replaced
254   // by the upcoming MCSymbolizer, which needs the appropriate setup done above.
255   std::vector<SectionRef> Sections;
256   std::vector<SymbolRef> Symbols;
257   SmallVector<uint64_t, 8> FoundFns;
258   uint64_t BaseSegmentAddress;
259
260   getSectionsAndSymbols(Header, MachOOF, Sections, Symbols, FoundFns,
261                         BaseSegmentAddress);
262
263   // Make a copy of the unsorted symbol list. FIXME: duplication
264   std::vector<SymbolRef> UnsortedSymbols(Symbols);
265   // Sort the symbols by address, just in case they didn't come in that way.
266   std::sort(Symbols.begin(), Symbols.end(), SymbolSorter());
267
268   // Build a data in code table that is sorted on by the address of each entry.
269   uint64_t BaseAddress = 0;
270   if (Header.FileType == macho::HFT_Object)
271     Sections[0].getAddress(BaseAddress);
272   else
273     BaseAddress = BaseSegmentAddress;
274   DiceTable Dices;
275   error_code ec;
276   for (dice_iterator DI = MachOOF->begin_dices(), DE = MachOOF->end_dices();
277        DI != DE; DI.increment(ec)){
278     uint32_t Offset;
279     DI->getOffset(Offset);
280     Dices.push_back(std::make_pair(BaseAddress + Offset, *DI));
281   }
282   array_pod_sort(Dices.begin(), Dices.end());
283
284 #ifndef NDEBUG
285   raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls();
286 #else
287   raw_ostream &DebugOut = nulls();
288 #endif
289
290   OwningPtr<DIContext> diContext;
291   ObjectFile *DbgObj = MachOOF;
292   // Try to find debug info and set up the DIContext for it.
293   if (UseDbg) {
294     // A separate DSym file path was specified, parse it as a macho file,
295     // get the sections and supply it to the section name parsing machinery.
296     if (!DSYMFile.empty()) {
297       OwningPtr<MemoryBuffer> Buf;
298       if (error_code ec = MemoryBuffer::getFileOrSTDIN(DSYMFile, Buf)) {
299         errs() << "llvm-objdump: " << Filename << ": " << ec.message() << '\n';
300         return;
301       }
302       DbgObj = ObjectFile::createMachOObjectFile(Buf.take());
303     }
304
305     // Setup the DIContext
306     diContext.reset(DIContext::getDWARFContext(DbgObj));
307   }
308
309   for (unsigned SectIdx = 0; SectIdx != Sections.size(); SectIdx++) {
310
311     bool SectIsText = false;
312     Sections[SectIdx].isText(SectIsText);
313     if (SectIsText == false)
314       continue;
315
316     StringRef SectName;
317     if (Sections[SectIdx].getName(SectName) ||
318         SectName != "__text")
319       continue; // Skip non-text sections
320
321     DataRefImpl DR = Sections[SectIdx].getRawDataRefImpl();
322
323     StringRef SegmentName = MachOOF->getSectionFinalSegmentName(DR);
324     if (SegmentName != "__TEXT")
325       continue;
326
327     StringRef Bytes;
328     Sections[SectIdx].getContents(Bytes);
329     StringRefMemoryObject memoryObject(Bytes);
330     bool symbolTableWorked = false;
331
332     // Parse relocations.
333     std::vector<std::pair<uint64_t, SymbolRef> > Relocs;
334     error_code ec;
335     for (relocation_iterator RI = Sections[SectIdx].begin_relocations(),
336          RE = Sections[SectIdx].end_relocations(); RI != RE; RI.increment(ec)) {
337       uint64_t RelocOffset, SectionAddress;
338       RI->getOffset(RelocOffset);
339       Sections[SectIdx].getAddress(SectionAddress);
340       RelocOffset -= SectionAddress;
341
342       symbol_iterator RelocSym = RI->getSymbol();
343
344       Relocs.push_back(std::make_pair(RelocOffset, *RelocSym));
345     }
346     array_pod_sort(Relocs.begin(), Relocs.end());
347
348     // Disassemble symbol by symbol.
349     for (unsigned SymIdx = 0; SymIdx != Symbols.size(); SymIdx++) {
350       StringRef SymName;
351       Symbols[SymIdx].getName(SymName);
352
353       SymbolRef::Type ST;
354       Symbols[SymIdx].getType(ST);
355       if (ST != SymbolRef::ST_Function)
356         continue;
357
358       // Make sure the symbol is defined in this section.
359       bool containsSym = false;
360       Sections[SectIdx].containsSymbol(Symbols[SymIdx], containsSym);
361       if (!containsSym)
362         continue;
363
364       // Start at the address of the symbol relative to the section's address.
365       uint64_t SectionAddress = 0;
366       uint64_t Start = 0;
367       Sections[SectIdx].getAddress(SectionAddress);
368       Symbols[SymIdx].getAddress(Start);
369       Start -= SectionAddress;
370
371       // Stop disassembling either at the beginning of the next symbol or at
372       // the end of the section.
373       bool containsNextSym = false;
374       uint64_t NextSym = 0;
375       uint64_t NextSymIdx = SymIdx+1;
376       while (Symbols.size() > NextSymIdx) {
377         SymbolRef::Type NextSymType;
378         Symbols[NextSymIdx].getType(NextSymType);
379         if (NextSymType == SymbolRef::ST_Function) {
380           Sections[SectIdx].containsSymbol(Symbols[NextSymIdx],
381                                            containsNextSym);
382           Symbols[NextSymIdx].getAddress(NextSym);
383           NextSym -= SectionAddress;
384           break;
385         }
386         ++NextSymIdx;
387       }
388
389       uint64_t SectSize;
390       Sections[SectIdx].getSize(SectSize);
391       uint64_t End = containsNextSym ?  NextSym : SectSize;
392       uint64_t Size;
393
394       symbolTableWorked = true;
395
396       outs() << SymName << ":\n";
397       DILineInfo lastLine;
398       for (uint64_t Index = Start; Index < End; Index += Size) {
399         MCInst Inst;
400
401         uint64_t SectAddress = 0;
402         Sections[SectIdx].getAddress(SectAddress);
403         outs() << format("%8" PRIx64 ":\t", SectAddress + Index);
404
405         // Check the data in code table here to see if this is data not an
406         // instruction to be disassembled.
407         DiceTable Dice;
408         Dice.push_back(std::make_pair(SectAddress + Index, DiceRef()));
409         dice_table_iterator DTI = std::search(Dices.begin(), Dices.end(),
410                                               Dice.begin(), Dice.end(),
411                                               compareDiceTableEntries);
412         if (DTI != Dices.end()){
413           uint16_t Length;
414           DTI->second.getLength(Length);
415           DumpBytes(StringRef(Bytes.data() + Index, Length));
416           uint16_t Kind;
417           DTI->second.getKind(Kind);
418           DumpDataInCode(Bytes.data() + Index, Length, Kind);
419           continue;
420         }
421
422         if (DisAsm->getInstruction(Inst, Size, memoryObject, Index,
423                                    DebugOut, nulls())) {
424           DumpBytes(StringRef(Bytes.data() + Index, Size));
425           IP->printInst(&Inst, outs(), "");
426
427           // Print debug info.
428           if (diContext) {
429             DILineInfo dli =
430               diContext->getLineInfoForAddress(SectAddress + Index);
431             // Print valid line info if it changed.
432             if (dli != lastLine && dli.getLine() != 0)
433               outs() << "\t## " << dli.getFileName() << ':'
434                 << dli.getLine() << ':' << dli.getColumn();
435             lastLine = dli;
436           }
437           outs() << "\n";
438         } else {
439           errs() << "llvm-objdump: warning: invalid instruction encoding\n";
440           if (Size == 0)
441             Size = 1; // skip illegible bytes
442         }
443       }
444     }
445     if (!symbolTableWorked) {
446       // Reading the symbol table didn't work, disassemble the whole section. 
447       uint64_t SectAddress;
448       Sections[SectIdx].getAddress(SectAddress);
449       uint64_t SectSize;
450       Sections[SectIdx].getSize(SectSize);
451       uint64_t InstSize;
452       for (uint64_t Index = 0; Index < SectSize; Index += InstSize) {
453         MCInst Inst;
454
455         if (DisAsm->getInstruction(Inst, InstSize, memoryObject, Index,
456                                    DebugOut, nulls())) {
457           outs() << format("%8" PRIx64 ":\t", SectAddress + Index);
458           DumpBytes(StringRef(Bytes.data() + Index, InstSize));
459           IP->printInst(&Inst, outs(), "");
460           outs() << "\n";
461         } else {
462           errs() << "llvm-objdump: warning: invalid instruction encoding\n";
463           if (InstSize == 0)
464             InstSize = 1; // skip illegible bytes
465         }
466       }
467     }
468   }
469 }