Fix uses of the C99 PRI format macros not to conflict with C++11 UDLs.
[oota-llvm.git] / tools / llvm-objdump / MachODump.cpp
1 //===-- MachODump.cpp - Object file dumping utility for llvm --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the MachO-specific dumper for llvm-objdump.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm-objdump.h"
15 #include "MCFunction.h"
16 #include "llvm/Support/MachO.h"
17 #include "llvm/Object/MachO.h"
18 #include "llvm/ADT/OwningPtr.h"
19 #include "llvm/ADT/Triple.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/DebugInfo/DIContext.h"
22 #include "llvm/MC/MCAsmInfo.h"
23 #include "llvm/MC/MCDisassembler.h"
24 #include "llvm/MC/MCInst.h"
25 #include "llvm/MC/MCInstPrinter.h"
26 #include "llvm/MC/MCInstrAnalysis.h"
27 #include "llvm/MC/MCInstrDesc.h"
28 #include "llvm/MC/MCInstrInfo.h"
29 #include "llvm/MC/MCRegisterInfo.h"
30 #include "llvm/MC/MCSubtargetInfo.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/Format.h"
34 #include "llvm/Support/GraphWriter.h"
35 #include "llvm/Support/MemoryBuffer.h"
36 #include "llvm/Support/TargetRegistry.h"
37 #include "llvm/Support/TargetSelect.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "llvm/Support/system_error.h"
40 #include <algorithm>
41 #include <cstring>
42 using namespace llvm;
43 using namespace object;
44
45 static cl::opt<bool>
46   CFG("cfg", cl::desc("Create a CFG for every symbol in the object file and"
47                       "write it to a graphviz file (MachO-only)"));
48
49 static cl::opt<bool>
50   UseDbg("g", cl::desc("Print line information from debug info if available"));
51
52 static cl::opt<std::string>
53   DSYMFile("dsym", cl::desc("Use .dSYM file for debug info"));
54
55 static const Target *GetTarget(const MachOObject *MachOObj) {
56   // Figure out the target triple.
57   if (TripleName.empty()) {
58     llvm::Triple TT("unknown-unknown-unknown");
59     switch (MachOObj->getHeader().CPUType) {
60     case llvm::MachO::CPUTypeI386:
61       TT.setArch(Triple::ArchType(Triple::x86));
62       break;
63     case llvm::MachO::CPUTypeX86_64:
64       TT.setArch(Triple::ArchType(Triple::x86_64));
65       break;
66     case llvm::MachO::CPUTypeARM:
67       TT.setArch(Triple::ArchType(Triple::arm));
68       break;
69     case llvm::MachO::CPUTypePowerPC:
70       TT.setArch(Triple::ArchType(Triple::ppc));
71       break;
72     case llvm::MachO::CPUTypePowerPC64:
73       TT.setArch(Triple::ArchType(Triple::ppc64));
74       break;
75     }
76     TripleName = TT.str();
77   }
78
79   // Get the target specific parser.
80   std::string Error;
81   const Target *TheTarget = TargetRegistry::lookupTarget(TripleName, Error);
82   if (TheTarget)
83     return TheTarget;
84
85   errs() << "llvm-objdump: error: unable to get target for '" << TripleName
86          << "', see --version and --triple.\n";
87   return 0;
88 }
89
90 struct SymbolSorter {
91   bool operator()(const SymbolRef &A, const SymbolRef &B) {
92     SymbolRef::Type AType, BType;
93     A.getType(AType);
94     B.getType(BType);
95
96     uint64_t AAddr, BAddr;
97     if (AType != SymbolRef::ST_Function)
98       AAddr = 0;
99     else
100       A.getAddress(AAddr);
101     if (BType != SymbolRef::ST_Function)
102       BAddr = 0;
103     else
104       B.getAddress(BAddr);
105     return AAddr < BAddr;
106   }
107 };
108
109 // Print additional information about an address, if available.
110 static void DumpAddress(uint64_t Address, ArrayRef<SectionRef> Sections,
111                         MachOObject *MachOObj, raw_ostream &OS) {
112   for (unsigned i = 0; i != Sections.size(); ++i) {
113     uint64_t SectAddr = 0, SectSize = 0;
114     Sections[i].getAddress(SectAddr);
115     Sections[i].getSize(SectSize);
116     uint64_t addr = SectAddr;
117     if (SectAddr <= Address &&
118         SectAddr + SectSize > Address) {
119       StringRef bytes, name;
120       Sections[i].getContents(bytes);
121       Sections[i].getName(name);
122       // Print constant strings.
123       if (!name.compare("__cstring"))
124         OS << '"' << bytes.substr(addr, bytes.find('\0', addr)) << '"';
125       // Print constant CFStrings.
126       if (!name.compare("__cfstring"))
127         OS << "@\"" << bytes.substr(addr, bytes.find('\0', addr)) << '"';
128     }
129   }
130 }
131
132 typedef std::map<uint64_t, MCFunction*> FunctionMapTy;
133 typedef SmallVector<MCFunction, 16> FunctionListTy;
134 static void createMCFunctionAndSaveCalls(StringRef Name,
135                                          const MCDisassembler *DisAsm,
136                                          MemoryObject &Object, uint64_t Start,
137                                          uint64_t End,
138                                          MCInstrAnalysis *InstrAnalysis,
139                                          uint64_t Address,
140                                          raw_ostream &DebugOut,
141                                          FunctionMapTy &FunctionMap,
142                                          FunctionListTy &Functions) {
143   SmallVector<uint64_t, 16> Calls;
144   MCFunction f =
145     MCFunction::createFunctionFromMC(Name, DisAsm, Object, Start, End,
146                                      InstrAnalysis, DebugOut, Calls);
147   Functions.push_back(f);
148   FunctionMap[Address] = &Functions.back();
149
150   // Add the gathered callees to the map.
151   for (unsigned i = 0, e = Calls.size(); i != e; ++i)
152     FunctionMap.insert(std::make_pair(Calls[i], (MCFunction*)0));
153 }
154
155 // Write a graphviz file for the CFG inside an MCFunction.
156 static void emitDOTFile(const char *FileName, const MCFunction &f,
157                         MCInstPrinter *IP) {
158   // Start a new dot file.
159   std::string Error;
160   raw_fd_ostream Out(FileName, Error);
161   if (!Error.empty()) {
162     errs() << "llvm-objdump: warning: " << Error << '\n';
163     return;
164   }
165
166   Out << "digraph " << f.getName() << " {\n";
167   Out << "graph [ rankdir = \"LR\" ];\n";
168   for (MCFunction::iterator i = f.begin(), e = f.end(); i != e; ++i) {
169     bool hasPreds = false;
170     // Only print blocks that have predecessors.
171     // FIXME: Slow.
172     for (MCFunction::iterator pi = f.begin(), pe = f.end(); pi != pe;
173         ++pi)
174       if (pi->second.contains(i->first)) {
175         hasPreds = true;
176         break;
177       }
178
179     if (!hasPreds && i != f.begin())
180       continue;
181
182     Out << '"' << i->first << "\" [ label=\"<a>";
183     // Print instructions.
184     for (unsigned ii = 0, ie = i->second.getInsts().size(); ii != ie;
185         ++ii) {
186       // Escape special chars and print the instruction in mnemonic form.
187       std::string Str;
188       raw_string_ostream OS(Str);
189       IP->printInst(&i->second.getInsts()[ii].Inst, OS, "");
190       Out << DOT::EscapeString(OS.str()) << '|';
191     }
192     Out << "<o>\" shape=\"record\" ];\n";
193
194     // Add edges.
195     for (MCBasicBlock::succ_iterator si = i->second.succ_begin(),
196         se = i->second.succ_end(); si != se; ++si)
197       Out << i->first << ":o -> " << *si <<":a\n";
198   }
199   Out << "}\n";
200 }
201
202 static void getSectionsAndSymbols(const macho::Header &Header,
203                                   MachOObjectFile *MachOObj,
204                              InMemoryStruct<macho::SymtabLoadCommand> *SymtabLC,
205                                   std::vector<SectionRef> &Sections,
206                                   std::vector<SymbolRef> &Symbols,
207                                   SmallVectorImpl<uint64_t> &FoundFns) {
208   error_code ec;
209   for (symbol_iterator SI = MachOObj->begin_symbols(),
210        SE = MachOObj->end_symbols(); SI != SE; SI.increment(ec))
211     Symbols.push_back(*SI);
212
213   for (section_iterator SI = MachOObj->begin_sections(),
214        SE = MachOObj->end_sections(); SI != SE; SI.increment(ec)) {
215     SectionRef SR = *SI;
216     StringRef SectName;
217     SR.getName(SectName);
218     Sections.push_back(*SI);
219   }
220
221   for (unsigned i = 0; i != Header.NumLoadCommands; ++i) {
222     const MachOObject::LoadCommandInfo &LCI =
223        MachOObj->getObject()->getLoadCommandInfo(i);
224     if (LCI.Command.Type == macho::LCT_FunctionStarts) {
225       // We found a function starts segment, parse the addresses for later
226       // consumption.
227       InMemoryStruct<macho::LinkeditDataLoadCommand> LLC;
228       MachOObj->getObject()->ReadLinkeditDataLoadCommand(LCI, LLC);
229
230       MachOObj->getObject()->ReadULEB128s(LLC->DataOffset, FoundFns);
231     }
232   }
233 }
234
235 void llvm::DisassembleInputMachO(StringRef Filename) {
236   OwningPtr<MemoryBuffer> Buff;
237
238   if (error_code ec = MemoryBuffer::getFileOrSTDIN(Filename, Buff)) {
239     errs() << "llvm-objdump: " << Filename << ": " << ec.message() << "\n";
240     return;
241   }
242
243   OwningPtr<MachOObjectFile> MachOOF(static_cast<MachOObjectFile*>(
244         ObjectFile::createMachOObjectFile(Buff.take())));
245   MachOObject *MachOObj = MachOOF->getObject();
246
247   const Target *TheTarget = GetTarget(MachOObj);
248   if (!TheTarget) {
249     // GetTarget prints out stuff.
250     return;
251   }
252   OwningPtr<const MCInstrInfo> InstrInfo(TheTarget->createMCInstrInfo());
253   OwningPtr<MCInstrAnalysis>
254     InstrAnalysis(TheTarget->createMCInstrAnalysis(InstrInfo.get()));
255
256   // Set up disassembler.
257   OwningPtr<const MCAsmInfo> AsmInfo(TheTarget->createMCAsmInfo(TripleName));
258   OwningPtr<const MCSubtargetInfo>
259     STI(TheTarget->createMCSubtargetInfo(TripleName, "", ""));
260   OwningPtr<const MCDisassembler> DisAsm(TheTarget->createMCDisassembler(*STI));
261   OwningPtr<const MCRegisterInfo> MRI(TheTarget->createMCRegInfo(TripleName));
262   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
263   OwningPtr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
264                               AsmPrinterVariant, *AsmInfo, *MRI, *STI));
265
266   if (!InstrAnalysis || !AsmInfo || !STI || !DisAsm || !IP) {
267     errs() << "error: couldn't initialize disassembler for target "
268            << TripleName << '\n';
269     return;
270   }
271
272   outs() << '\n' << Filename << ":\n\n";
273
274   const macho::Header &Header = MachOObj->getHeader();
275
276   const MachOObject::LoadCommandInfo *SymtabLCI = 0;
277   // First, find the symbol table segment.
278   for (unsigned i = 0; i != Header.NumLoadCommands; ++i) {
279     const MachOObject::LoadCommandInfo &LCI = MachOObj->getLoadCommandInfo(i);
280     if (LCI.Command.Type == macho::LCT_Symtab) {
281       SymtabLCI = &LCI;
282       break;
283     }
284   }
285
286   // Read and register the symbol table data.
287   InMemoryStruct<macho::SymtabLoadCommand> SymtabLC;
288   MachOObj->ReadSymtabLoadCommand(*SymtabLCI, SymtabLC);
289   MachOObj->RegisterStringTable(*SymtabLC);
290
291   std::vector<SectionRef> Sections;
292   std::vector<SymbolRef> Symbols;
293   SmallVector<uint64_t, 8> FoundFns;
294
295   getSectionsAndSymbols(Header, MachOOF.get(), &SymtabLC, Sections, Symbols,
296                         FoundFns);
297
298   // Make a copy of the unsorted symbol list. FIXME: duplication
299   std::vector<SymbolRef> UnsortedSymbols(Symbols);
300   // Sort the symbols by address, just in case they didn't come in that way.
301   std::sort(Symbols.begin(), Symbols.end(), SymbolSorter());
302
303 #ifndef NDEBUG
304   raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls();
305 #else
306   raw_ostream &DebugOut = nulls();
307 #endif
308
309   StringRef DebugAbbrevSection, DebugInfoSection, DebugArangesSection,
310             DebugLineSection, DebugStrSection;
311   OwningPtr<DIContext> diContext;
312   OwningPtr<MachOObjectFile> DSYMObj;
313   MachOObject *DbgInfoObj = MachOObj;
314   // Try to find debug info and set up the DIContext for it.
315   if (UseDbg) {
316     ArrayRef<SectionRef> DebugSections = Sections;
317     std::vector<SectionRef> DSYMSections;
318
319     // A separate DSym file path was specified, parse it as a macho file,
320     // get the sections and supply it to the section name parsing machinery.
321     if (!DSYMFile.empty()) {
322       OwningPtr<MemoryBuffer> Buf;
323       if (error_code ec = MemoryBuffer::getFileOrSTDIN(DSYMFile.c_str(), Buf)) {
324         errs() << "llvm-objdump: " << Filename << ": " << ec.message() << '\n';
325         return;
326       }
327       DSYMObj.reset(static_cast<MachOObjectFile*>(
328             ObjectFile::createMachOObjectFile(Buf.take())));
329       const macho::Header &Header = DSYMObj->getObject()->getHeader();
330
331       std::vector<SymbolRef> Symbols;
332       SmallVector<uint64_t, 8> FoundFns;
333       getSectionsAndSymbols(Header, DSYMObj.get(), 0, DSYMSections, Symbols,
334                             FoundFns);
335       DebugSections = DSYMSections;
336       DbgInfoObj = DSYMObj.get()->getObject();
337     }
338
339     // Find the named debug info sections.
340     for (unsigned SectIdx = 0; SectIdx != DebugSections.size(); SectIdx++) {
341       StringRef SectName;
342       if (!DebugSections[SectIdx].getName(SectName)) {
343         if (SectName.equals("__DWARF,__debug_abbrev"))
344           DebugSections[SectIdx].getContents(DebugAbbrevSection);
345         else if (SectName.equals("__DWARF,__debug_info"))
346           DebugSections[SectIdx].getContents(DebugInfoSection);
347         else if (SectName.equals("__DWARF,__debug_aranges"))
348           DebugSections[SectIdx].getContents(DebugArangesSection);
349         else if (SectName.equals("__DWARF,__debug_line"))
350           DebugSections[SectIdx].getContents(DebugLineSection);
351         else if (SectName.equals("__DWARF,__debug_str"))
352           DebugSections[SectIdx].getContents(DebugStrSection);
353       }
354     }
355
356     // Setup the DIContext.
357     diContext.reset(DIContext::getDWARFContext(DbgInfoObj->isLittleEndian(),
358                                                DebugInfoSection,
359                                                DebugAbbrevSection,
360                                                DebugArangesSection,
361                                                DebugLineSection,
362                                                DebugStrSection));
363   }
364
365   FunctionMapTy FunctionMap;
366   FunctionListTy Functions;
367
368   for (unsigned SectIdx = 0; SectIdx != Sections.size(); SectIdx++) {
369     StringRef SectName;
370     if (Sections[SectIdx].getName(SectName) ||
371         SectName.compare("__TEXT,__text"))
372       continue; // Skip non-text sections
373
374     // Insert the functions from the function starts segment into our map.
375     uint64_t VMAddr;
376     Sections[SectIdx].getAddress(VMAddr);
377     for (unsigned i = 0, e = FoundFns.size(); i != e; ++i) {
378       StringRef SectBegin;
379       Sections[SectIdx].getContents(SectBegin);
380       uint64_t Offset = (uint64_t)SectBegin.data();
381       FunctionMap.insert(std::make_pair(VMAddr + FoundFns[i]-Offset,
382                                         (MCFunction*)0));
383     }
384
385     StringRef Bytes;
386     Sections[SectIdx].getContents(Bytes);
387     StringRefMemoryObject memoryObject(Bytes);
388     bool symbolTableWorked = false;
389
390     // Parse relocations.
391     std::vector<std::pair<uint64_t, SymbolRef> > Relocs;
392     error_code ec;
393     for (relocation_iterator RI = Sections[SectIdx].begin_relocations(),
394          RE = Sections[SectIdx].end_relocations(); RI != RE; RI.increment(ec)) {
395       uint64_t RelocOffset, SectionAddress;
396       RI->getAddress(RelocOffset);
397       Sections[SectIdx].getAddress(SectionAddress);
398       RelocOffset -= SectionAddress;
399
400       SymbolRef RelocSym;
401       RI->getSymbol(RelocSym);
402
403       Relocs.push_back(std::make_pair(RelocOffset, RelocSym));
404     }
405     array_pod_sort(Relocs.begin(), Relocs.end());
406
407     // Disassemble symbol by symbol.
408     for (unsigned SymIdx = 0; SymIdx != Symbols.size(); SymIdx++) {
409       StringRef SymName;
410       Symbols[SymIdx].getName(SymName);
411
412       SymbolRef::Type ST;
413       Symbols[SymIdx].getType(ST);
414       if (ST != SymbolRef::ST_Function)
415         continue;
416
417       // Make sure the symbol is defined in this section.
418       bool containsSym = false;
419       Sections[SectIdx].containsSymbol(Symbols[SymIdx], containsSym);
420       if (!containsSym)
421         continue;
422
423       // Start at the address of the symbol relative to the section's address.
424       uint64_t SectionAddress = 0;
425       uint64_t Start = 0;
426       Sections[SectIdx].getAddress(SectionAddress);
427       Symbols[SymIdx].getAddress(Start);
428       Start -= SectionAddress;
429
430       // Stop disassembling either at the beginning of the next symbol or at
431       // the end of the section.
432       bool containsNextSym = true;
433       uint64_t NextSym = 0;
434       uint64_t NextSymIdx = SymIdx+1;
435       while (Symbols.size() > NextSymIdx) {
436         SymbolRef::Type NextSymType;
437         Symbols[NextSymIdx].getType(NextSymType);
438         if (NextSymType == SymbolRef::ST_Function) {
439           Sections[SectIdx].containsSymbol(Symbols[NextSymIdx],
440                                            containsNextSym);
441           Symbols[NextSymIdx].getAddress(NextSym);
442           NextSym -= SectionAddress;
443           break;
444         }
445         ++NextSymIdx;
446       }
447
448       uint64_t SectSize;
449       Sections[SectIdx].getSize(SectSize);
450       uint64_t End = containsNextSym ?  NextSym : SectSize;
451       uint64_t Size;
452
453       symbolTableWorked = true;
454
455       if (!CFG) {
456         // Normal disassembly, print addresses, bytes and mnemonic form.
457         StringRef SymName;
458         Symbols[SymIdx].getName(SymName);
459
460         outs() << SymName << ":\n";
461         DILineInfo lastLine;
462         for (uint64_t Index = Start; Index < End; Index += Size) {
463           MCInst Inst;
464
465           if (DisAsm->getInstruction(Inst, Size, memoryObject, Index,
466                                      DebugOut, nulls())) {
467             uint64_t SectAddress = 0;
468             Sections[SectIdx].getAddress(SectAddress);
469             outs() << format("%8" PRIx64 ":\t", SectAddress + Index);
470
471             DumpBytes(StringRef(Bytes.data() + Index, Size));
472             IP->printInst(&Inst, outs(), "");
473
474             // Print debug info.
475             if (diContext) {
476               DILineInfo dli =
477                 diContext->getLineInfoForAddress(SectAddress + Index);
478               // Print valid line info if it changed.
479               if (dli != lastLine && dli.getLine() != 0)
480                 outs() << "\t## " << dli.getFileName() << ':'
481                        << dli.getLine() << ':' << dli.getColumn();
482               lastLine = dli;
483             }
484             outs() << "\n";
485           } else {
486             errs() << "llvm-objdump: warning: invalid instruction encoding\n";
487             if (Size == 0)
488               Size = 1; // skip illegible bytes
489           }
490         }
491       } else {
492         // Create CFG and use it for disassembly.
493         StringRef SymName;
494         Symbols[SymIdx].getName(SymName);
495         createMCFunctionAndSaveCalls(
496             SymName, DisAsm.get(), memoryObject, Start, End,
497             InstrAnalysis.get(), Start, DebugOut, FunctionMap, Functions);
498       }
499     }
500
501     if (CFG) {
502       if (!symbolTableWorked) {
503         // Reading the symbol table didn't work, create a big __TEXT symbol.
504         uint64_t SectSize = 0, SectAddress = 0;
505         Sections[SectIdx].getSize(SectSize);
506         Sections[SectIdx].getAddress(SectAddress);
507         createMCFunctionAndSaveCalls("__TEXT", DisAsm.get(), memoryObject,
508                                      0, SectSize,
509                                      InstrAnalysis.get(),
510                                      SectAddress, DebugOut,
511                                      FunctionMap, Functions);
512       }
513       for (std::map<uint64_t, MCFunction*>::iterator mi = FunctionMap.begin(),
514            me = FunctionMap.end(); mi != me; ++mi)
515         if (mi->second == 0) {
516           // Create functions for the remaining callees we have gathered,
517           // but we didn't find a name for them.
518           uint64_t SectSize = 0;
519           Sections[SectIdx].getSize(SectSize);
520
521           SmallVector<uint64_t, 16> Calls;
522           MCFunction f =
523             MCFunction::createFunctionFromMC("unknown", DisAsm.get(),
524                                              memoryObject, mi->first,
525                                              SectSize,
526                                              InstrAnalysis.get(), DebugOut,
527                                              Calls);
528           Functions.push_back(f);
529           mi->second = &Functions.back();
530           for (unsigned i = 0, e = Calls.size(); i != e; ++i) {
531             std::pair<uint64_t, MCFunction*> p(Calls[i], (MCFunction*)0);
532             if (FunctionMap.insert(p).second)
533               mi = FunctionMap.begin();
534           }
535         }
536
537       DenseSet<uint64_t> PrintedBlocks;
538       for (unsigned ffi = 0, ffe = Functions.size(); ffi != ffe; ++ffi) {
539         MCFunction &f = Functions[ffi];
540         for (MCFunction::iterator fi = f.begin(), fe = f.end(); fi != fe; ++fi){
541           if (!PrintedBlocks.insert(fi->first).second)
542             continue; // We already printed this block.
543
544           // We assume a block has predecessors when it's the first block after
545           // a symbol.
546           bool hasPreds = FunctionMap.find(fi->first) != FunctionMap.end();
547
548           // See if this block has predecessors.
549           // FIXME: Slow.
550           for (MCFunction::iterator pi = f.begin(), pe = f.end(); pi != pe;
551               ++pi)
552             if (pi->second.contains(fi->first)) {
553               hasPreds = true;
554               break;
555             }
556
557           uint64_t SectSize = 0, SectAddress;
558           Sections[SectIdx].getSize(SectSize);
559           Sections[SectIdx].getAddress(SectAddress);
560
561           // No predecessors, this is a data block. Print as .byte directives.
562           if (!hasPreds) {
563             uint64_t End = llvm::next(fi) == fe ? SectSize :
564                                                   llvm::next(fi)->first;
565             outs() << "# " << End-fi->first << " bytes of data:\n";
566             for (unsigned pos = fi->first; pos != End; ++pos) {
567               outs() << format("%8x:\t", SectAddress + pos);
568               DumpBytes(StringRef(Bytes.data() + pos, 1));
569               outs() << format("\t.byte 0x%02x\n", (uint8_t)Bytes[pos]);
570             }
571             continue;
572           }
573
574           if (fi->second.contains(fi->first)) // Print a header for simple loops
575             outs() << "# Loop begin:\n";
576
577           DILineInfo lastLine;
578           // Walk over the instructions and print them.
579           for (unsigned ii = 0, ie = fi->second.getInsts().size(); ii != ie;
580                ++ii) {
581             const MCDecodedInst &Inst = fi->second.getInsts()[ii];
582
583             // If there's a symbol at this address, print its name.
584             if (FunctionMap.find(SectAddress + Inst.Address) !=
585                 FunctionMap.end())
586               outs() << FunctionMap[SectAddress + Inst.Address]-> getName()
587                      << ":\n";
588
589             outs() << format("%8" PRIx64 ":\t", SectAddress + Inst.Address);
590             DumpBytes(StringRef(Bytes.data() + Inst.Address, Inst.Size));
591
592             if (fi->second.contains(fi->first)) // Indent simple loops.
593               outs() << '\t';
594
595             IP->printInst(&Inst.Inst, outs(), "");
596
597             // Look for relocations inside this instructions, if there is one
598             // print its target and additional information if available.
599             for (unsigned j = 0; j != Relocs.size(); ++j)
600               if (Relocs[j].first >= SectAddress + Inst.Address &&
601                   Relocs[j].first < SectAddress + Inst.Address + Inst.Size) {
602                 StringRef SymName;
603                 uint64_t Addr;
604                 Relocs[j].second.getAddress(Addr);
605                 Relocs[j].second.getName(SymName);
606
607                 outs() << "\t# " << SymName << ' ';
608                 DumpAddress(Addr, Sections, MachOObj, outs());
609               }
610
611             // If this instructions contains an address, see if we can evaluate
612             // it and print additional information.
613             uint64_t targ = InstrAnalysis->evaluateBranch(Inst.Inst,
614                                                           Inst.Address,
615                                                           Inst.Size);
616             if (targ != -1ULL)
617               DumpAddress(targ, Sections, MachOObj, outs());
618
619             // Print debug info.
620             if (diContext) {
621               DILineInfo dli =
622                 diContext->getLineInfoForAddress(SectAddress + Inst.Address);
623               // Print valid line info if it changed.
624               if (dli != lastLine && dli.getLine() != 0)
625                 outs() << "\t## " << dli.getFileName() << ':'
626                        << dli.getLine() << ':' << dli.getColumn();
627               lastLine = dli;
628             }
629
630             outs() << '\n';
631           }
632         }
633
634         emitDOTFile((f.getName().str() + ".dot").c_str(), f, IP.get());
635       }
636     }
637   }
638 }