Don't declare all text sections at the start of the .s
[oota-llvm.git] / tools / dsymutil / DwarfLinker.cpp
1 //===- tools/dsymutil/DwarfLinker.cpp - Dwarf debug info linker -----------===//
2 //
3 //                             The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 #include "DebugMap.h"
10 #include "BinaryHolder.h"
11 #include "DebugMap.h"
12 #include "dsymutil.h"
13 #include "llvm/ADT/IntervalMap.h"
14 #include "llvm/ADT/StringMap.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/CodeGen/AsmPrinter.h"
17 #include "llvm/CodeGen/DIE.h"
18 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
19 #include "llvm/DebugInfo/DWARF/DWARFDebugInfoEntry.h"
20 #include "llvm/DebugInfo/DWARF/DWARFFormValue.h"
21 #include "llvm/MC/MCAsmBackend.h"
22 #include "llvm/MC/MCAsmInfo.h"
23 #include "llvm/MC/MCContext.h"
24 #include "llvm/MC/MCCodeEmitter.h"
25 #include "llvm/MC/MCDwarf.h"
26 #include "llvm/MC/MCInstrInfo.h"
27 #include "llvm/MC/MCObjectFileInfo.h"
28 #include "llvm/MC/MCRegisterInfo.h"
29 #include "llvm/MC/MCStreamer.h"
30 #include "llvm/Object/MachO.h"
31 #include "llvm/Support/Dwarf.h"
32 #include "llvm/Support/LEB128.h"
33 #include "llvm/Support/TargetRegistry.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include "llvm/Target/TargetOptions.h"
36 #include <string>
37 #include <tuple>
38
39 namespace llvm {
40 namespace dsymutil {
41
42 namespace {
43
44 void warn(const Twine &Warning, const Twine &Context) {
45   errs() << Twine("while processing ") + Context + ":\n";
46   errs() << Twine("warning: ") + Warning + "\n";
47 }
48
49 bool error(const Twine &Error, const Twine &Context) {
50   errs() << Twine("while processing ") + Context + ":\n";
51   errs() << Twine("error: ") + Error + "\n";
52   return false;
53 }
54
55 template <typename KeyT, typename ValT>
56 using HalfOpenIntervalMap =
57     IntervalMap<KeyT, ValT, IntervalMapImpl::NodeSizer<KeyT, ValT>::LeafSize,
58                 IntervalMapHalfOpenInfo<KeyT>>;
59
60 typedef HalfOpenIntervalMap<uint64_t, int64_t> FunctionIntervals;
61
62 /// \brief Stores all information relating to a compile unit, be it in
63 /// its original instance in the object file to its brand new cloned
64 /// and linked DIE tree.
65 class CompileUnit {
66 public:
67   /// \brief Information gathered about a DIE in the object file.
68   struct DIEInfo {
69     int64_t AddrAdjust; ///< Address offset to apply to the described entity.
70     DIE *Clone;         ///< Cloned version of that DIE.
71     uint32_t ParentIdx; ///< The index of this DIE's parent.
72     bool Keep;          ///< Is the DIE part of the linked output?
73     bool InDebugMap;    ///< Was this DIE's entity found in the map?
74   };
75
76   CompileUnit(DWARFUnit &OrigUnit, unsigned ID)
77       : OrigUnit(OrigUnit), ID(ID), LowPc(UINT64_MAX), HighPc(0), RangeAlloc(),
78         Ranges(RangeAlloc), UnitRangeAttribute(nullptr) {
79     Info.resize(OrigUnit.getNumDIEs());
80   }
81
82   CompileUnit(CompileUnit &&RHS)
83       : OrigUnit(RHS.OrigUnit), Info(std::move(RHS.Info)),
84         CUDie(std::move(RHS.CUDie)), StartOffset(RHS.StartOffset),
85         NextUnitOffset(RHS.NextUnitOffset), RangeAlloc(), Ranges(RangeAlloc) {
86     // The CompileUnit container has been 'reserve()'d with the right
87     // size. We cannot move the IntervalMap anyway.
88     llvm_unreachable("CompileUnits should not be moved.");
89   }
90
91   DWARFUnit &getOrigUnit() const { return OrigUnit; }
92
93   unsigned getUniqueID() const { return ID; }
94
95   DIE *getOutputUnitDIE() const { return CUDie.get(); }
96   void setOutputUnitDIE(DIE *Die) { CUDie.reset(Die); }
97
98   DIEInfo &getInfo(unsigned Idx) { return Info[Idx]; }
99   const DIEInfo &getInfo(unsigned Idx) const { return Info[Idx]; }
100
101   uint64_t getStartOffset() const { return StartOffset; }
102   uint64_t getNextUnitOffset() const { return NextUnitOffset; }
103   void setStartOffset(uint64_t DebugInfoSize) { StartOffset = DebugInfoSize; }
104
105   uint64_t getLowPc() const { return LowPc; }
106   uint64_t getHighPc() const { return HighPc; }
107
108   DIEInteger *getUnitRangesAttribute() const { return UnitRangeAttribute; }
109   const FunctionIntervals &getFunctionRanges() const { return Ranges; }
110   const std::vector<DIEInteger *> &getRangesAttributes() const {
111     return RangeAttributes;
112   }
113
114   const std::vector<std::pair<DIEInteger *, int64_t>> &
115   getLocationAttributes() const {
116     return LocationAttributes;
117   }
118
119   /// \brief Compute the end offset for this unit. Must be
120   /// called after the CU's DIEs have been cloned.
121   /// \returns the next unit offset (which is also the current
122   /// debug_info section size).
123   uint64_t computeNextUnitOffset();
124
125   /// \brief Keep track of a forward reference to DIE \p Die in \p
126   /// RefUnit by \p Attr. The attribute should be fixed up later to
127   /// point to the absolute offset of \p Die in the debug_info section.
128   void noteForwardReference(DIE *Die, const CompileUnit *RefUnit,
129                             DIEInteger *Attr);
130
131   /// \brief Apply all fixups recored by noteForwardReference().
132   void fixupForwardReferences();
133
134   /// \brief Add a function range [\p LowPC, \p HighPC) that is
135   /// relocatad by applying offset \p PCOffset.
136   void addFunctionRange(uint64_t LowPC, uint64_t HighPC, int64_t PCOffset);
137
138   /// \brief Keep track of a DW_AT_range attribute that we will need to
139   /// patch up later.
140   void noteRangeAttribute(const DIE &Die, DIEInteger *Attr);
141
142   /// \brief Keep track of a location attribute pointing to a location
143   /// list in the debug_loc section.
144   void noteLocationAttribute(DIEInteger *Attr, int64_t PcOffset);
145
146   /// \brief Add a name accelerator entry for \p Die with \p Name
147   /// which is stored in the string table at \p Offset.
148   void addNameAccelerator(const DIE *Die, const char *Name, uint32_t Offset,
149                           bool SkipPubnamesSection = false);
150
151   /// \brief Add a type accelerator entry for \p Die with \p Name
152   /// which is stored in the string table at \p Offset.
153   void addTypeAccelerator(const DIE *Die, const char *Name, uint32_t Offset);
154
155   struct AccelInfo {
156     StringRef Name; ///< Name of the entry.
157     const DIE *Die; ///< DIE this entry describes.
158     uint32_t NameOffset; ///< Offset of Name in the string pool.
159     bool SkipPubSection; ///< Emit this entry only in the apple_* sections.
160
161     AccelInfo(StringRef Name, const DIE *Die, uint32_t NameOffset,
162               bool SkipPubSection = false)
163         : Name(Name), Die(Die), NameOffset(NameOffset),
164           SkipPubSection(SkipPubSection) {}
165   };
166
167   const std::vector<AccelInfo> &getPubnames() const { return Pubnames; }
168   const std::vector<AccelInfo> &getPubtypes() const { return Pubtypes; }
169
170 private:
171   DWARFUnit &OrigUnit;
172   unsigned ID;
173   std::vector<DIEInfo> Info;  ///< DIE info indexed by DIE index.
174   std::unique_ptr<DIE> CUDie; ///< Root of the linked DIE tree.
175
176   uint64_t StartOffset;
177   uint64_t NextUnitOffset;
178
179   uint64_t LowPc;
180   uint64_t HighPc;
181
182   /// \brief A list of attributes to fixup with the absolute offset of
183   /// a DIE in the debug_info section.
184   ///
185   /// The offsets for the attributes in this array couldn't be set while
186   /// cloning because for cross-cu forward refences the target DIE's
187   /// offset isn't known you emit the reference attribute.
188   std::vector<std::tuple<DIE *, const CompileUnit *, DIEInteger *>>
189       ForwardDIEReferences;
190
191   FunctionIntervals::Allocator RangeAlloc;
192   /// \brief The ranges in that interval map are the PC ranges for
193   /// functions in this unit, associated with the PC offset to apply
194   /// to the addresses to get the linked address.
195   FunctionIntervals Ranges;
196
197   /// \brief DW_AT_ranges attributes to patch after we have gathered
198   /// all the unit's function addresses.
199   /// @{
200   std::vector<DIEInteger *> RangeAttributes;
201   DIEInteger *UnitRangeAttribute;
202   /// @}
203
204   /// \brief Location attributes that need to be transfered from th
205   /// original debug_loc section to the liked one. They are stored
206   /// along with the PC offset that is to be applied to their
207   /// function's address.
208   std::vector<std::pair<DIEInteger *, int64_t>> LocationAttributes;
209
210   /// \brief Accelerator entries for the unit, both for the pub*
211   /// sections and the apple* ones.
212   /// @{
213   std::vector<AccelInfo> Pubnames;
214   std::vector<AccelInfo> Pubtypes;
215   /// @}
216 };
217
218 uint64_t CompileUnit::computeNextUnitOffset() {
219   NextUnitOffset = StartOffset + 11 /* Header size */;
220   // The root DIE might be null, meaning that the Unit had nothing to
221   // contribute to the linked output. In that case, we will emit the
222   // unit header without any actual DIE.
223   if (CUDie)
224     NextUnitOffset += CUDie->getSize();
225   return NextUnitOffset;
226 }
227
228 /// \brief Keep track of a forward cross-cu reference from this unit
229 /// to \p Die that lives in \p RefUnit.
230 void CompileUnit::noteForwardReference(DIE *Die, const CompileUnit *RefUnit,
231                                        DIEInteger *Attr) {
232   ForwardDIEReferences.emplace_back(Die, RefUnit, Attr);
233 }
234
235 /// \brief Apply all fixups recorded by noteForwardReference().
236 void CompileUnit::fixupForwardReferences() {
237   for (const auto &Ref : ForwardDIEReferences) {
238     DIE *RefDie;
239     const CompileUnit *RefUnit;
240     DIEInteger *Attr;
241     std::tie(RefDie, RefUnit, Attr) = Ref;
242     Attr->setValue(RefDie->getOffset() + RefUnit->getStartOffset());
243   }
244 }
245
246 void CompileUnit::addFunctionRange(uint64_t FuncLowPc, uint64_t FuncHighPc,
247                                    int64_t PcOffset) {
248   Ranges.insert(FuncLowPc, FuncHighPc, PcOffset);
249   this->LowPc = std::min(LowPc, FuncLowPc + PcOffset);
250   this->HighPc = std::max(HighPc, FuncHighPc + PcOffset);
251 }
252
253 void CompileUnit::noteRangeAttribute(const DIE &Die, DIEInteger *Attr) {
254   if (Die.getTag() != dwarf::DW_TAG_compile_unit)
255     RangeAttributes.push_back(Attr);
256   else
257     UnitRangeAttribute = Attr;
258 }
259
260 void CompileUnit::noteLocationAttribute(DIEInteger *Attr, int64_t PcOffset) {
261   LocationAttributes.emplace_back(Attr, PcOffset);
262 }
263
264 /// \brief Add a name accelerator entry for \p Die with \p Name
265 /// which is stored in the string table at \p Offset.
266 void CompileUnit::addNameAccelerator(const DIE *Die, const char *Name,
267                                      uint32_t Offset, bool SkipPubSection) {
268   Pubnames.emplace_back(Name, Die, Offset, SkipPubSection);
269 }
270
271 /// \brief Add a type accelerator entry for \p Die with \p Name
272 /// which is stored in the string table at \p Offset.
273 void CompileUnit::addTypeAccelerator(const DIE *Die, const char *Name,
274                                      uint32_t Offset) {
275   Pubtypes.emplace_back(Name, Die, Offset, false);
276 }
277
278 /// \brief A string table that doesn't need relocations.
279 ///
280 /// We are doing a final link, no need for a string table that
281 /// has relocation entries for every reference to it. This class
282 /// provides this ablitity by just associating offsets with
283 /// strings.
284 class NonRelocatableStringpool {
285 public:
286   /// \brief Entries are stored into the StringMap and simply linked
287   /// together through the second element of this pair in order to
288   /// keep track of insertion order.
289   typedef StringMap<std::pair<uint32_t, StringMapEntryBase *>, BumpPtrAllocator>
290       MapTy;
291
292   NonRelocatableStringpool()
293       : CurrentEndOffset(0), Sentinel(0), Last(&Sentinel) {
294     // Legacy dsymutil puts an empty string at the start of the line
295     // table.
296     getStringOffset("");
297   }
298
299   /// \brief Get the offset of string \p S in the string table. This
300   /// can insert a new element or return the offset of a preexisitng
301   /// one.
302   uint32_t getStringOffset(StringRef S);
303
304   /// \brief Get permanent storage for \p S (but do not necessarily
305   /// emit \p S in the output section).
306   /// \returns The StringRef that points to permanent storage to use
307   /// in place of \p S.
308   StringRef internString(StringRef S);
309
310   // \brief Return the first entry of the string table.
311   const MapTy::MapEntryTy *getFirstEntry() const {
312     return getNextEntry(&Sentinel);
313   }
314
315   // \brief Get the entry following \p E in the string table or null
316   // if \p E was the last entry.
317   const MapTy::MapEntryTy *getNextEntry(const MapTy::MapEntryTy *E) const {
318     return static_cast<const MapTy::MapEntryTy *>(E->getValue().second);
319   }
320
321   uint64_t getSize() { return CurrentEndOffset; }
322
323 private:
324   MapTy Strings;
325   uint32_t CurrentEndOffset;
326   MapTy::MapEntryTy Sentinel, *Last;
327 };
328
329 /// \brief Get the offset of string \p S in the string table. This
330 /// can insert a new element or return the offset of a preexisitng
331 /// one.
332 uint32_t NonRelocatableStringpool::getStringOffset(StringRef S) {
333   if (S.empty() && !Strings.empty())
334     return 0;
335
336   std::pair<uint32_t, StringMapEntryBase *> Entry(0, nullptr);
337   MapTy::iterator It;
338   bool Inserted;
339
340   // A non-empty string can't be at offset 0, so if we have an entry
341   // with a 0 offset, it must be a previously interned string.
342   std::tie(It, Inserted) = Strings.insert(std::make_pair(S, Entry));
343   if (Inserted || It->getValue().first == 0) {
344     // Set offset and chain at the end of the entries list.
345     It->getValue().first = CurrentEndOffset;
346     CurrentEndOffset += S.size() + 1; // +1 for the '\0'.
347     Last->getValue().second = &*It;
348     Last = &*It;
349   }
350   return It->getValue().first;
351 }
352
353 /// \brief Put \p S into the StringMap so that it gets permanent
354 /// storage, but do not actually link it in the chain of elements
355 /// that go into the output section. A latter call to
356 /// getStringOffset() with the same string will chain it though.
357 StringRef NonRelocatableStringpool::internString(StringRef S) {
358   std::pair<uint32_t, StringMapEntryBase *> Entry(0, nullptr);
359   auto InsertResult = Strings.insert(std::make_pair(S, Entry));
360   return InsertResult.first->getKey();
361 }
362
363 /// \brief The Dwarf streaming logic
364 ///
365 /// All interactions with the MC layer that is used to build the debug
366 /// information binary representation are handled in this class.
367 class DwarfStreamer {
368   /// \defgroup MCObjects MC layer objects constructed by the streamer
369   /// @{
370   std::unique_ptr<MCRegisterInfo> MRI;
371   std::unique_ptr<MCAsmInfo> MAI;
372   std::unique_ptr<MCObjectFileInfo> MOFI;
373   std::unique_ptr<MCContext> MC;
374   MCAsmBackend *MAB; // Owned by MCStreamer
375   std::unique_ptr<MCInstrInfo> MII;
376   std::unique_ptr<MCSubtargetInfo> MSTI;
377   MCCodeEmitter *MCE; // Owned by MCStreamer
378   MCStreamer *MS;     // Owned by AsmPrinter
379   std::unique_ptr<TargetMachine> TM;
380   std::unique_ptr<AsmPrinter> Asm;
381   /// @}
382
383   /// \brief the file we stream the linked Dwarf to.
384   std::unique_ptr<raw_fd_ostream> OutFile;
385
386   uint32_t RangesSectionSize;
387   uint32_t LocSectionSize;
388   uint32_t LineSectionSize;
389
390   /// \brief Emit the pubnames or pubtypes section contribution for \p
391   /// Unit into \p Sec. The data is provided in \p Names.
392   void emitPubSectionForUnit(const MCSection *Sec, StringRef Name,
393                              const CompileUnit &Unit,
394                              const std::vector<CompileUnit::AccelInfo> &Names);
395
396 public:
397   /// \brief Actually create the streamer and the ouptut file.
398   ///
399   /// This could be done directly in the constructor, but it feels
400   /// more natural to handle errors through return value.
401   bool init(Triple TheTriple, StringRef OutputFilename);
402
403   /// \brief Dump the file to the disk.
404   bool finish();
405
406   AsmPrinter &getAsmPrinter() const { return *Asm; }
407
408   /// \brief Set the current output section to debug_info and change
409   /// the MC Dwarf version to \p DwarfVersion.
410   void switchToDebugInfoSection(unsigned DwarfVersion);
411
412   /// \brief Emit the compilation unit header for \p Unit in the
413   /// debug_info section.
414   ///
415   /// As a side effect, this also switches the current Dwarf version
416   /// of the MC layer to the one of U.getOrigUnit().
417   void emitCompileUnitHeader(CompileUnit &Unit);
418
419   /// \brief Recursively emit the DIE tree rooted at \p Die.
420   void emitDIE(DIE &Die);
421
422   /// \brief Emit the abbreviation table \p Abbrevs to the
423   /// debug_abbrev section.
424   void emitAbbrevs(const std::vector<DIEAbbrev *> &Abbrevs);
425
426   /// \brief Emit the string table described by \p Pool.
427   void emitStrings(const NonRelocatableStringpool &Pool);
428
429   /// \brief Emit debug_ranges for \p FuncRange by translating the
430   /// original \p Entries.
431   void emitRangesEntries(
432       int64_t UnitPcOffset, uint64_t OrigLowPc,
433       FunctionIntervals::const_iterator FuncRange,
434       const std::vector<DWARFDebugRangeList::RangeListEntry> &Entries,
435       unsigned AddressSize);
436
437   /// \brief Emit debug_aranges entries for \p Unit and if \p
438   /// DoRangesSection is true, also emit the debug_ranges entries for
439   /// the DW_TAG_compile_unit's DW_AT_ranges attribute.
440   void emitUnitRangesEntries(CompileUnit &Unit, bool DoRangesSection);
441
442   uint32_t getRangesSectionSize() const { return RangesSectionSize; }
443
444   /// \brief Emit the debug_loc contribution for \p Unit by copying
445   /// the entries from \p Dwarf and offseting them. Update the
446   /// location attributes to point to the new entries.
447   void emitLocationsForUnit(const CompileUnit &Unit, DWARFContext &Dwarf);
448
449   /// \brief Emit the line table described in \p Rows into the
450   /// debug_line section.
451   void emitLineTableForUnit(StringRef PrologueBytes, unsigned MinInstLength,
452                             std::vector<DWARFDebugLine::Row> &Rows,
453                             unsigned AdddressSize);
454
455   uint32_t getLineSectionSize() const { return LineSectionSize; }
456
457   /// \brief Emit the .debug_pubnames contribution for \p Unit.
458   void emitPubNamesForUnit(const CompileUnit &Unit);
459
460   /// \brief Emit the .debug_pubtypes contribution for \p Unit.
461   void emitPubTypesForUnit(const CompileUnit &Unit);
462 };
463
464 bool DwarfStreamer::init(Triple TheTriple, StringRef OutputFilename) {
465   std::string ErrorStr;
466   std::string TripleName;
467   StringRef Context = "dwarf streamer init";
468
469   // Get the target.
470   const Target *TheTarget =
471       TargetRegistry::lookupTarget(TripleName, TheTriple, ErrorStr);
472   if (!TheTarget)
473     return error(ErrorStr, Context);
474   TripleName = TheTriple.getTriple();
475
476   // Create all the MC Objects.
477   MRI.reset(TheTarget->createMCRegInfo(TripleName));
478   if (!MRI)
479     return error(Twine("no register info for target ") + TripleName, Context);
480
481   MAI.reset(TheTarget->createMCAsmInfo(*MRI, TripleName));
482   if (!MAI)
483     return error("no asm info for target " + TripleName, Context);
484
485   MOFI.reset(new MCObjectFileInfo);
486   MC.reset(new MCContext(MAI.get(), MRI.get(), MOFI.get()));
487   MOFI->InitMCObjectFileInfo(TripleName, Reloc::Default, CodeModel::Default,
488                              *MC);
489
490   MAB = TheTarget->createMCAsmBackend(*MRI, TripleName, "");
491   if (!MAB)
492     return error("no asm backend for target " + TripleName, Context);
493
494   MII.reset(TheTarget->createMCInstrInfo());
495   if (!MII)
496     return error("no instr info info for target " + TripleName, Context);
497
498   MSTI.reset(TheTarget->createMCSubtargetInfo(TripleName, "", ""));
499   if (!MSTI)
500     return error("no subtarget info for target " + TripleName, Context);
501
502   MCE = TheTarget->createMCCodeEmitter(*MII, *MRI, *MC);
503   if (!MCE)
504     return error("no code emitter for target " + TripleName, Context);
505
506   // Create the output file.
507   std::error_code EC;
508   OutFile =
509       llvm::make_unique<raw_fd_ostream>(OutputFilename, EC, sys::fs::F_None);
510   if (EC)
511     return error(Twine(OutputFilename) + ": " + EC.message(), Context);
512
513   MS = TheTarget->createMCObjectStreamer(TheTriple, *MC, *MAB, *OutFile, MCE,
514                                          *MSTI, false,
515                                          /*DWARFMustBeAtTheEnd*/ false);
516   if (!MS)
517     return error("no object streamer for target " + TripleName, Context);
518
519   // Finally create the AsmPrinter we'll use to emit the DIEs.
520   TM.reset(TheTarget->createTargetMachine(TripleName, "", "", TargetOptions()));
521   if (!TM)
522     return error("no target machine for target " + TripleName, Context);
523
524   Asm.reset(TheTarget->createAsmPrinter(*TM, std::unique_ptr<MCStreamer>(MS)));
525   if (!Asm)
526     return error("no asm printer for target " + TripleName, Context);
527
528   RangesSectionSize = 0;
529   LocSectionSize = 0;
530   LineSectionSize = 0;
531
532   return true;
533 }
534
535 bool DwarfStreamer::finish() {
536   MS->Finish();
537   return true;
538 }
539
540 /// \brief Set the current output section to debug_info and change
541 /// the MC Dwarf version to \p DwarfVersion.
542 void DwarfStreamer::switchToDebugInfoSection(unsigned DwarfVersion) {
543   MS->SwitchSection(MOFI->getDwarfInfoSection());
544   MC->setDwarfVersion(DwarfVersion);
545 }
546
547 /// \brief Emit the compilation unit header for \p Unit in the
548 /// debug_info section.
549 ///
550 /// A Dwarf scetion header is encoded as:
551 ///  uint32_t   Unit length (omiting this field)
552 ///  uint16_t   Version
553 ///  uint32_t   Abbreviation table offset
554 ///  uint8_t    Address size
555 ///
556 /// Leading to a total of 11 bytes.
557 void DwarfStreamer::emitCompileUnitHeader(CompileUnit &Unit) {
558   unsigned Version = Unit.getOrigUnit().getVersion();
559   switchToDebugInfoSection(Version);
560
561   // Emit size of content not including length itself. The size has
562   // already been computed in CompileUnit::computeOffsets(). Substract
563   // 4 to that size to account for the length field.
564   Asm->EmitInt32(Unit.getNextUnitOffset() - Unit.getStartOffset() - 4);
565   Asm->EmitInt16(Version);
566   // We share one abbreviations table across all units so it's always at the
567   // start of the section.
568   Asm->EmitInt32(0);
569   Asm->EmitInt8(Unit.getOrigUnit().getAddressByteSize());
570 }
571
572 /// \brief Emit the \p Abbrevs array as the shared abbreviation table
573 /// for the linked Dwarf file.
574 void DwarfStreamer::emitAbbrevs(const std::vector<DIEAbbrev *> &Abbrevs) {
575   MS->SwitchSection(MOFI->getDwarfAbbrevSection());
576   Asm->emitDwarfAbbrevs(Abbrevs);
577 }
578
579 /// \brief Recursively emit the DIE tree rooted at \p Die.
580 void DwarfStreamer::emitDIE(DIE &Die) {
581   MS->SwitchSection(MOFI->getDwarfInfoSection());
582   Asm->emitDwarfDIE(Die);
583 }
584
585 /// \brief Emit the debug_str section stored in \p Pool.
586 void DwarfStreamer::emitStrings(const NonRelocatableStringpool &Pool) {
587   Asm->OutStreamer.SwitchSection(MOFI->getDwarfStrSection());
588   for (auto *Entry = Pool.getFirstEntry(); Entry;
589        Entry = Pool.getNextEntry(Entry))
590     Asm->OutStreamer.EmitBytes(
591         StringRef(Entry->getKey().data(), Entry->getKey().size() + 1));
592 }
593
594 /// \brief Emit the debug_range section contents for \p FuncRange by
595 /// translating the original \p Entries. The debug_range section
596 /// format is totally trivial, consisting just of pairs of address
597 /// sized addresses describing the ranges.
598 void DwarfStreamer::emitRangesEntries(
599     int64_t UnitPcOffset, uint64_t OrigLowPc,
600     FunctionIntervals::const_iterator FuncRange,
601     const std::vector<DWARFDebugRangeList::RangeListEntry> &Entries,
602     unsigned AddressSize) {
603   MS->SwitchSection(MC->getObjectFileInfo()->getDwarfRangesSection());
604
605   // Offset each range by the right amount.
606   int64_t PcOffset = FuncRange.value() + UnitPcOffset;
607   for (const auto &Range : Entries) {
608     if (Range.isBaseAddressSelectionEntry(AddressSize)) {
609       warn("unsupported base address selection operation",
610            "emitting debug_ranges");
611       break;
612     }
613     // Do not emit empty ranges.
614     if (Range.StartAddress == Range.EndAddress)
615       continue;
616
617     // All range entries should lie in the function range.
618     if (!(Range.StartAddress + OrigLowPc >= FuncRange.start() &&
619           Range.EndAddress + OrigLowPc <= FuncRange.stop()))
620       warn("inconsistent range data.", "emitting debug_ranges");
621     MS->EmitIntValue(Range.StartAddress + PcOffset, AddressSize);
622     MS->EmitIntValue(Range.EndAddress + PcOffset, AddressSize);
623     RangesSectionSize += 2 * AddressSize;
624   }
625
626   // Add the terminator entry.
627   MS->EmitIntValue(0, AddressSize);
628   MS->EmitIntValue(0, AddressSize);
629   RangesSectionSize += 2 * AddressSize;
630 }
631
632 /// \brief Emit the debug_aranges contribution of a unit and
633 /// if \p DoDebugRanges is true the debug_range contents for a
634 /// compile_unit level DW_AT_ranges attribute (Which are basically the
635 /// same thing with a different base address).
636 /// Just aggregate all the ranges gathered inside that unit.
637 void DwarfStreamer::emitUnitRangesEntries(CompileUnit &Unit,
638                                           bool DoDebugRanges) {
639   unsigned AddressSize = Unit.getOrigUnit().getAddressByteSize();
640   // Gather the ranges in a vector, so that we can simplify them. The
641   // IntervalMap will have coalesced the non-linked ranges, but here
642   // we want to coalesce the linked addresses.
643   std::vector<std::pair<uint64_t, uint64_t>> Ranges;
644   const auto &FunctionRanges = Unit.getFunctionRanges();
645   for (auto Range = FunctionRanges.begin(), End = FunctionRanges.end();
646        Range != End; ++Range)
647     Ranges.push_back(std::make_pair(Range.start() + Range.value(),
648                                     Range.stop() + Range.value()));
649
650   // The object addresses where sorted, but again, the linked
651   // addresses might end up in a different order.
652   std::sort(Ranges.begin(), Ranges.end());
653
654   if (!Ranges.empty()) {
655     MS->SwitchSection(MC->getObjectFileInfo()->getDwarfARangesSection());
656
657     MCSymbol *BeginLabel = Asm->createTempSymbol("Barange");
658     MCSymbol *EndLabel = Asm->createTempSymbol("Earange");
659
660     unsigned HeaderSize =
661         sizeof(int32_t) + // Size of contents (w/o this field
662         sizeof(int16_t) + // DWARF ARange version number
663         sizeof(int32_t) + // Offset of CU in the .debug_info section
664         sizeof(int8_t) +  // Pointer Size (in bytes)
665         sizeof(int8_t);   // Segment Size (in bytes)
666
667     unsigned TupleSize = AddressSize * 2;
668     unsigned Padding = OffsetToAlignment(HeaderSize, TupleSize);
669
670     Asm->EmitLabelDifference(EndLabel, BeginLabel, 4); // Arange length
671     Asm->OutStreamer.EmitLabel(BeginLabel);
672     Asm->EmitInt16(dwarf::DW_ARANGES_VERSION); // Version number
673     Asm->EmitInt32(Unit.getStartOffset());     // Corresponding unit's offset
674     Asm->EmitInt8(AddressSize);                // Address size
675     Asm->EmitInt8(0);                          // Segment size
676
677     Asm->OutStreamer.EmitFill(Padding, 0x0);
678
679     for (auto Range = Ranges.begin(), End = Ranges.end(); Range != End;
680          ++Range) {
681       uint64_t RangeStart = Range->first;
682       MS->EmitIntValue(RangeStart, AddressSize);
683       while ((Range + 1) != End && Range->second == (Range + 1)->first)
684         ++Range;
685       MS->EmitIntValue(Range->second - RangeStart, AddressSize);
686     }
687
688     // Emit terminator
689     Asm->OutStreamer.EmitIntValue(0, AddressSize);
690     Asm->OutStreamer.EmitIntValue(0, AddressSize);
691     Asm->OutStreamer.EmitLabel(EndLabel);
692   }
693
694   if (!DoDebugRanges)
695     return;
696
697   MS->SwitchSection(MC->getObjectFileInfo()->getDwarfRangesSection());
698   // Offset each range by the right amount.
699   int64_t PcOffset = -Unit.getLowPc();
700   // Emit coalesced ranges.
701   for (auto Range = Ranges.begin(), End = Ranges.end(); Range != End; ++Range) {
702     MS->EmitIntValue(Range->first + PcOffset, AddressSize);
703     while (Range + 1 != End && Range->second == (Range + 1)->first)
704       ++Range;
705     MS->EmitIntValue(Range->second + PcOffset, AddressSize);
706     RangesSectionSize += 2 * AddressSize;
707   }
708
709   // Add the terminator entry.
710   MS->EmitIntValue(0, AddressSize);
711   MS->EmitIntValue(0, AddressSize);
712   RangesSectionSize += 2 * AddressSize;
713 }
714
715 /// \brief Emit location lists for \p Unit and update attribtues to
716 /// point to the new entries.
717 void DwarfStreamer::emitLocationsForUnit(const CompileUnit &Unit,
718                                          DWARFContext &Dwarf) {
719   const std::vector<std::pair<DIEInteger *, int64_t>> &Attributes =
720       Unit.getLocationAttributes();
721
722   if (Attributes.empty())
723     return;
724
725   MS->SwitchSection(MC->getObjectFileInfo()->getDwarfLocSection());
726
727   unsigned AddressSize = Unit.getOrigUnit().getAddressByteSize();
728   const DWARFSection &InputSec = Dwarf.getLocSection();
729   DataExtractor Data(InputSec.Data, Dwarf.isLittleEndian(), AddressSize);
730   DWARFUnit &OrigUnit = Unit.getOrigUnit();
731   const auto *OrigUnitDie = OrigUnit.getCompileUnitDIE(false);
732   int64_t UnitPcOffset = 0;
733   uint64_t OrigLowPc = OrigUnitDie->getAttributeValueAsAddress(
734       &OrigUnit, dwarf::DW_AT_low_pc, -1ULL);
735   if (OrigLowPc != -1ULL)
736     UnitPcOffset = int64_t(OrigLowPc) - Unit.getLowPc();
737
738   for (const auto &Attr : Attributes) {
739     uint32_t Offset = Attr.first->getValue();
740     Attr.first->setValue(LocSectionSize);
741     // This is the quantity to add to the old location address to get
742     // the correct address for the new one.
743     int64_t LocPcOffset = Attr.second + UnitPcOffset;
744     while (Data.isValidOffset(Offset)) {
745       uint64_t Low = Data.getUnsigned(&Offset, AddressSize);
746       uint64_t High = Data.getUnsigned(&Offset, AddressSize);
747       LocSectionSize += 2 * AddressSize;
748       if (Low == 0 && High == 0) {
749         Asm->OutStreamer.EmitIntValue(0, AddressSize);
750         Asm->OutStreamer.EmitIntValue(0, AddressSize);
751         break;
752       }
753       Asm->OutStreamer.EmitIntValue(Low + LocPcOffset, AddressSize);
754       Asm->OutStreamer.EmitIntValue(High + LocPcOffset, AddressSize);
755       uint64_t Length = Data.getU16(&Offset);
756       Asm->OutStreamer.EmitIntValue(Length, 2);
757       // Just copy the bytes over.
758       Asm->OutStreamer.EmitBytes(
759           StringRef(InputSec.Data.substr(Offset, Length)));
760       Offset += Length;
761       LocSectionSize += Length + 2;
762     }
763   }
764 }
765
766 void DwarfStreamer::emitLineTableForUnit(StringRef PrologueBytes,
767                                          unsigned MinInstLength,
768                                          std::vector<DWARFDebugLine::Row> &Rows,
769                                          unsigned PointerSize) {
770   // Switch to the section where the table will be emitted into.
771   MS->SwitchSection(MC->getObjectFileInfo()->getDwarfLineSection());
772   MCSymbol *LineStartSym = MC->CreateTempSymbol();
773   MCSymbol *LineEndSym = MC->CreateTempSymbol();
774
775   // The first 4 bytes is the total length of the information for this
776   // compilation unit (not including these 4 bytes for the length).
777   Asm->EmitLabelDifference(LineEndSym, LineStartSym, 4);
778   Asm->OutStreamer.EmitLabel(LineStartSym);
779   // Copy Prologue.
780   MS->EmitBytes(PrologueBytes);
781   LineSectionSize += PrologueBytes.size() + 4;
782
783   SmallString<128> EncodingBuffer;
784   raw_svector_ostream EncodingOS(EncodingBuffer);
785
786   if (Rows.empty()) {
787     // We only have the dummy entry, dsymutil emits an entry with a 0
788     // address in that case.
789     MCDwarfLineAddr::Encode(*MC, INT64_MAX, 0, EncodingOS);
790     MS->EmitBytes(EncodingOS.str());
791     LineSectionSize += EncodingBuffer.size();
792     MS->EmitLabel(LineEndSym);
793     return;
794   }
795
796   // Line table state machine fields
797   unsigned FileNum = 1;
798   unsigned LastLine = 1;
799   unsigned Column = 0;
800   unsigned IsStatement = 1;
801   unsigned Isa = 0;
802   uint64_t Address = -1ULL;
803
804   unsigned RowsSinceLastSequence = 0;
805
806   for (unsigned Idx = 0; Idx < Rows.size(); ++Idx) {
807     auto &Row = Rows[Idx];
808
809     int64_t AddressDelta;
810     if (Address == -1ULL) {
811       MS->EmitIntValue(dwarf::DW_LNS_extended_op, 1);
812       MS->EmitULEB128IntValue(PointerSize + 1);
813       MS->EmitIntValue(dwarf::DW_LNE_set_address, 1);
814       MS->EmitIntValue(Row.Address, PointerSize);
815       LineSectionSize += 2 + PointerSize + getULEB128Size(PointerSize + 1);
816       AddressDelta = 0;
817     } else {
818       AddressDelta = (Row.Address - Address) / MinInstLength;
819     }
820
821     // FIXME: code copied and transfromed from
822     // MCDwarf.cpp::EmitDwarfLineTable. We should find a way to share
823     // this code, but the current compatibility requirement with
824     // classic dsymutil makes it hard. Revisit that once this
825     // requirement is dropped.
826
827     if (FileNum != Row.File) {
828       FileNum = Row.File;
829       MS->EmitIntValue(dwarf::DW_LNS_set_file, 1);
830       MS->EmitULEB128IntValue(FileNum);
831       LineSectionSize += 1 + getULEB128Size(FileNum);
832     }
833     if (Column != Row.Column) {
834       Column = Row.Column;
835       MS->EmitIntValue(dwarf::DW_LNS_set_column, 1);
836       MS->EmitULEB128IntValue(Column);
837       LineSectionSize += 1 + getULEB128Size(Column);
838     }
839
840     // FIXME: We should handle the discriminator here, but dsymutil
841     // doesn' consider it, thus ignore it for now.
842
843     if (Isa != Row.Isa) {
844       Isa = Row.Isa;
845       MS->EmitIntValue(dwarf::DW_LNS_set_isa, 1);
846       MS->EmitULEB128IntValue(Isa);
847       LineSectionSize += 1 + getULEB128Size(Isa);
848     }
849     if (IsStatement != Row.IsStmt) {
850       IsStatement = Row.IsStmt;
851       MS->EmitIntValue(dwarf::DW_LNS_negate_stmt, 1);
852       LineSectionSize += 1;
853     }
854     if (Row.BasicBlock) {
855       MS->EmitIntValue(dwarf::DW_LNS_set_basic_block, 1);
856       LineSectionSize += 1;
857     }
858
859     if (Row.PrologueEnd) {
860       MS->EmitIntValue(dwarf::DW_LNS_set_prologue_end, 1);
861       LineSectionSize += 1;
862     }
863
864     if (Row.EpilogueBegin) {
865       MS->EmitIntValue(dwarf::DW_LNS_set_epilogue_begin, 1);
866       LineSectionSize += 1;
867     }
868
869     int64_t LineDelta = int64_t(Row.Line) - LastLine;
870     if (!Row.EndSequence) {
871       MCDwarfLineAddr::Encode(*MC, LineDelta, AddressDelta, EncodingOS);
872       MS->EmitBytes(EncodingOS.str());
873       LineSectionSize += EncodingBuffer.size();
874       EncodingBuffer.resize(0);
875       EncodingOS.resync();
876       Address = Row.Address;
877       LastLine = Row.Line;
878       RowsSinceLastSequence++;
879     } else {
880       if (LineDelta) {
881         MS->EmitIntValue(dwarf::DW_LNS_advance_line, 1);
882         MS->EmitSLEB128IntValue(LineDelta);
883         LineSectionSize += 1 + getSLEB128Size(LineDelta);
884       }
885       if (AddressDelta) {
886         MS->EmitIntValue(dwarf::DW_LNS_advance_pc, 1);
887         MS->EmitULEB128IntValue(AddressDelta);
888         LineSectionSize += 1 + getULEB128Size(AddressDelta);
889       }
890       MCDwarfLineAddr::Encode(*MC, INT64_MAX, 0, EncodingOS);
891       MS->EmitBytes(EncodingOS.str());
892       LineSectionSize += EncodingBuffer.size();
893       EncodingBuffer.resize(0);
894       EncodingOS.resync();
895       Address = -1ULL;
896       LastLine = FileNum = IsStatement = 1;
897       RowsSinceLastSequence = Column = Isa = 0;
898     }
899   }
900
901   if (RowsSinceLastSequence) {
902     MCDwarfLineAddr::Encode(*MC, INT64_MAX, 0, EncodingOS);
903     MS->EmitBytes(EncodingOS.str());
904     LineSectionSize += EncodingBuffer.size();
905     EncodingBuffer.resize(0);
906     EncodingOS.resync();
907   }
908
909   MS->EmitLabel(LineEndSym);
910 }
911
912 /// \brief Emit the pubnames or pubtypes section contribution for \p
913 /// Unit into \p Sec. The data is provided in \p Names.
914 void DwarfStreamer::emitPubSectionForUnit(
915     const MCSection *Sec, StringRef SecName, const CompileUnit &Unit,
916     const std::vector<CompileUnit::AccelInfo> &Names) {
917   if (Names.empty())
918     return;
919
920   // Start the dwarf pubnames section.
921   Asm->OutStreamer.SwitchSection(Sec);
922   MCSymbol *BeginLabel = Asm->createTempSymbol("pub" + SecName + "_begin");
923   MCSymbol *EndLabel = Asm->createTempSymbol("pub" + SecName + "_end");
924
925   bool HeaderEmitted = false;
926   // Emit the pubnames for this compilation unit.
927   for (const auto &Name : Names) {
928     if (Name.SkipPubSection)
929       continue;
930
931     if (!HeaderEmitted) {
932       // Emit the header.
933       Asm->EmitLabelDifference(EndLabel, BeginLabel, 4); // Length
934       Asm->OutStreamer.EmitLabel(BeginLabel);
935       Asm->EmitInt16(dwarf::DW_PUBNAMES_VERSION); // Version
936       Asm->EmitInt32(Unit.getStartOffset()); // Unit offset
937       Asm->EmitInt32(Unit.getNextUnitOffset() - Unit.getStartOffset()); // Size
938       HeaderEmitted = true;
939     }
940     Asm->EmitInt32(Name.Die->getOffset());
941     Asm->OutStreamer.EmitBytes(
942         StringRef(Name.Name.data(), Name.Name.size() + 1));
943   }
944
945   if (!HeaderEmitted)
946     return;
947   Asm->EmitInt32(0); // End marker.
948   Asm->OutStreamer.EmitLabel(EndLabel);
949 }
950
951 /// \brief Emit .debug_pubnames for \p Unit.
952 void DwarfStreamer::emitPubNamesForUnit(const CompileUnit &Unit) {
953   emitPubSectionForUnit(MC->getObjectFileInfo()->getDwarfPubNamesSection(),
954                         "names", Unit, Unit.getPubnames());
955 }
956
957 /// \brief Emit .debug_pubtypes for \p Unit.
958 void DwarfStreamer::emitPubTypesForUnit(const CompileUnit &Unit) {
959   emitPubSectionForUnit(MC->getObjectFileInfo()->getDwarfPubTypesSection(),
960                         "types", Unit, Unit.getPubtypes());
961 }
962
963 /// \brief The core of the Dwarf linking logic.
964 ///
965 /// The link of the dwarf information from the object files will be
966 /// driven by the selection of 'root DIEs', which are DIEs that
967 /// describe variables or functions that are present in the linked
968 /// binary (and thus have entries in the debug map). All the debug
969 /// information that will be linked (the DIEs, but also the line
970 /// tables, ranges, ...) is derived from that set of root DIEs.
971 ///
972 /// The root DIEs are identified because they contain relocations that
973 /// correspond to a debug map entry at specific places (the low_pc for
974 /// a function, the location for a variable). These relocations are
975 /// called ValidRelocs in the DwarfLinker and are gathered as a very
976 /// first step when we start processing a DebugMapObject.
977 class DwarfLinker {
978 public:
979   DwarfLinker(StringRef OutputFilename, const LinkOptions &Options)
980       : OutputFilename(OutputFilename), Options(Options),
981         BinHolder(Options.Verbose) {}
982
983   ~DwarfLinker() {
984     for (auto *Abbrev : Abbreviations)
985       delete Abbrev;
986   }
987
988   /// \brief Link the contents of the DebugMap.
989   bool link(const DebugMap &);
990
991 private:
992   /// \brief Called at the start of a debug object link.
993   void startDebugObject(DWARFContext &, DebugMapObject &);
994
995   /// \brief Called at the end of a debug object link.
996   void endDebugObject();
997
998   /// \defgroup FindValidRelocations Translate debug map into a list
999   /// of relevant relocations
1000   ///
1001   /// @{
1002   struct ValidReloc {
1003     uint32_t Offset;
1004     uint32_t Size;
1005     uint64_t Addend;
1006     const DebugMapObject::DebugMapEntry *Mapping;
1007
1008     ValidReloc(uint32_t Offset, uint32_t Size, uint64_t Addend,
1009                const DebugMapObject::DebugMapEntry *Mapping)
1010         : Offset(Offset), Size(Size), Addend(Addend), Mapping(Mapping) {}
1011
1012     bool operator<(const ValidReloc &RHS) const { return Offset < RHS.Offset; }
1013   };
1014
1015   /// \brief The valid relocations for the current DebugMapObject.
1016   /// This vector is sorted by relocation offset.
1017   std::vector<ValidReloc> ValidRelocs;
1018
1019   /// \brief Index into ValidRelocs of the next relocation to
1020   /// consider. As we walk the DIEs in acsending file offset and as
1021   /// ValidRelocs is sorted by file offset, keeping this index
1022   /// uptodate is all we have to do to have a cheap lookup during the
1023   /// root DIE selection and during DIE cloning.
1024   unsigned NextValidReloc;
1025
1026   bool findValidRelocsInDebugInfo(const object::ObjectFile &Obj,
1027                                   const DebugMapObject &DMO);
1028
1029   bool findValidRelocs(const object::SectionRef &Section,
1030                        const object::ObjectFile &Obj,
1031                        const DebugMapObject &DMO);
1032
1033   void findValidRelocsMachO(const object::SectionRef &Section,
1034                             const object::MachOObjectFile &Obj,
1035                             const DebugMapObject &DMO);
1036   /// @}
1037
1038   /// \defgroup FindRootDIEs Find DIEs corresponding to debug map entries.
1039   ///
1040   /// @{
1041   /// \brief Recursively walk the \p DIE tree and look for DIEs to
1042   /// keep. Store that information in \p CU's DIEInfo.
1043   void lookForDIEsToKeep(const DWARFDebugInfoEntryMinimal &DIE,
1044                          const DebugMapObject &DMO, CompileUnit &CU,
1045                          unsigned Flags);
1046
1047   /// \brief Flags passed to DwarfLinker::lookForDIEsToKeep
1048   enum TravesalFlags {
1049     TF_Keep = 1 << 0,            ///< Mark the traversed DIEs as kept.
1050     TF_InFunctionScope = 1 << 1, ///< Current scope is a fucntion scope.
1051     TF_DependencyWalk = 1 << 2,  ///< Walking the dependencies of a kept DIE.
1052     TF_ParentWalk = 1 << 3,      ///< Walking up the parents of a kept DIE.
1053   };
1054
1055   /// \brief Mark the passed DIE as well as all the ones it depends on
1056   /// as kept.
1057   void keepDIEAndDenpendencies(const DWARFDebugInfoEntryMinimal &DIE,
1058                                CompileUnit::DIEInfo &MyInfo,
1059                                const DebugMapObject &DMO, CompileUnit &CU,
1060                                unsigned Flags);
1061
1062   unsigned shouldKeepDIE(const DWARFDebugInfoEntryMinimal &DIE,
1063                          CompileUnit &Unit, CompileUnit::DIEInfo &MyInfo,
1064                          unsigned Flags);
1065
1066   unsigned shouldKeepVariableDIE(const DWARFDebugInfoEntryMinimal &DIE,
1067                                  CompileUnit &Unit,
1068                                  CompileUnit::DIEInfo &MyInfo, unsigned Flags);
1069
1070   unsigned shouldKeepSubprogramDIE(const DWARFDebugInfoEntryMinimal &DIE,
1071                                    CompileUnit &Unit,
1072                                    CompileUnit::DIEInfo &MyInfo,
1073                                    unsigned Flags);
1074
1075   bool hasValidRelocation(uint32_t StartOffset, uint32_t EndOffset,
1076                           CompileUnit::DIEInfo &Info);
1077   /// @}
1078
1079   /// \defgroup Linking Methods used to link the debug information
1080   ///
1081   /// @{
1082   /// \brief Recursively clone \p InputDIE into an tree of DIE objects
1083   /// where useless (as decided by lookForDIEsToKeep()) bits have been
1084   /// stripped out and addresses have been rewritten according to the
1085   /// debug map.
1086   ///
1087   /// \param OutOffset is the offset the cloned DIE in the output
1088   /// compile unit.
1089   /// \param PCOffset (while cloning a function scope) is the offset
1090   /// applied to the entry point of the function to get the linked address.
1091   ///
1092   /// \returns the root of the cloned tree.
1093   DIE *cloneDIE(const DWARFDebugInfoEntryMinimal &InputDIE, CompileUnit &U,
1094                 int64_t PCOffset, uint32_t OutOffset);
1095
1096   typedef DWARFAbbreviationDeclaration::AttributeSpec AttributeSpec;
1097
1098   /// \brief Information gathered and exchanged between the various
1099   /// clone*Attributes helpers about the attributes of a particular DIE.
1100   struct AttributesInfo {
1101     const char *Name, *MangledName;         ///< Names.
1102     uint32_t NameOffset, MangledNameOffset; ///< Offsets in the string pool.
1103
1104     uint64_t OrigHighPc; ///< Value of AT_high_pc in the input DIE
1105     int64_t PCOffset;    ///< Offset to apply to PC addresses inside a function.
1106
1107     bool HasLowPc;      ///< Does the DIE have a low_pc attribute?
1108     bool IsDeclaration; ///< Is this DIE only a declaration?
1109
1110     AttributesInfo()
1111         : Name(nullptr), MangledName(nullptr), NameOffset(0),
1112           MangledNameOffset(0), OrigHighPc(0), PCOffset(0), HasLowPc(false),
1113           IsDeclaration(false) {}
1114   };
1115
1116   /// \brief Helper for cloneDIE.
1117   unsigned cloneAttribute(DIE &Die, const DWARFDebugInfoEntryMinimal &InputDIE,
1118                           CompileUnit &U, const DWARFFormValue &Val,
1119                           const AttributeSpec AttrSpec, unsigned AttrSize,
1120                           AttributesInfo &AttrInfo);
1121
1122   /// \brief Helper for cloneDIE.
1123   unsigned cloneStringAttribute(DIE &Die, AttributeSpec AttrSpec,
1124                                 const DWARFFormValue &Val, const DWARFUnit &U);
1125
1126   /// \brief Helper for cloneDIE.
1127   unsigned
1128   cloneDieReferenceAttribute(DIE &Die,
1129                              const DWARFDebugInfoEntryMinimal &InputDIE,
1130                              AttributeSpec AttrSpec, unsigned AttrSize,
1131                              const DWARFFormValue &Val, CompileUnit &Unit);
1132
1133   /// \brief Helper for cloneDIE.
1134   unsigned cloneBlockAttribute(DIE &Die, AttributeSpec AttrSpec,
1135                                const DWARFFormValue &Val, unsigned AttrSize);
1136
1137   /// \brief Helper for cloneDIE.
1138   unsigned cloneAddressAttribute(DIE &Die, AttributeSpec AttrSpec,
1139                                  const DWARFFormValue &Val,
1140                                  const CompileUnit &Unit, AttributesInfo &Info);
1141
1142   /// \brief Helper for cloneDIE.
1143   unsigned cloneScalarAttribute(DIE &Die,
1144                                 const DWARFDebugInfoEntryMinimal &InputDIE,
1145                                 CompileUnit &U, AttributeSpec AttrSpec,
1146                                 const DWARFFormValue &Val, unsigned AttrSize,
1147                                 AttributesInfo &Info);
1148
1149   /// \brief Helper for cloneDIE.
1150   bool applyValidRelocs(MutableArrayRef<char> Data, uint32_t BaseOffset,
1151                         bool isLittleEndian);
1152
1153   /// \brief Assign an abbreviation number to \p Abbrev
1154   void AssignAbbrev(DIEAbbrev &Abbrev);
1155
1156   /// \brief FoldingSet that uniques the abbreviations.
1157   FoldingSet<DIEAbbrev> AbbreviationsSet;
1158   /// \brief Storage for the unique Abbreviations.
1159   /// This is passed to AsmPrinter::emitDwarfAbbrevs(), thus it cannot
1160   /// be changed to a vecot of unique_ptrs.
1161   std::vector<DIEAbbrev *> Abbreviations;
1162
1163   /// \brief Compute and emit debug_ranges section for \p Unit, and
1164   /// patch the attributes referencing it.
1165   void patchRangesForUnit(const CompileUnit &Unit, DWARFContext &Dwarf) const;
1166
1167   /// \brief Generate and emit the DW_AT_ranges attribute for a
1168   /// compile_unit if it had one.
1169   void generateUnitRanges(CompileUnit &Unit) const;
1170
1171   /// \brief Extract the line tables fromt he original dwarf, extract
1172   /// the relevant parts according to the linked function ranges and
1173   /// emit the result in the debug_line section.
1174   void patchLineTableForUnit(CompileUnit &Unit, DWARFContext &OrigDwarf);
1175
1176   /// \brief Emit the accelerator entries for \p Unit.
1177   void emitAcceleratorEntriesForUnit(CompileUnit &Unit);
1178
1179   /// \brief DIELoc objects that need to be destructed (but not freed!).
1180   std::vector<DIELoc *> DIELocs;
1181   /// \brief DIEBlock objects that need to be destructed (but not freed!).
1182   std::vector<DIEBlock *> DIEBlocks;
1183   /// \brief Allocator used for all the DIEValue objects.
1184   BumpPtrAllocator DIEAlloc;
1185   /// @}
1186
1187   /// \defgroup Helpers Various helper methods.
1188   ///
1189   /// @{
1190   const DWARFDebugInfoEntryMinimal *
1191   resolveDIEReference(DWARFFormValue &RefValue, const DWARFUnit &Unit,
1192                       const DWARFDebugInfoEntryMinimal &DIE,
1193                       CompileUnit *&ReferencedCU);
1194
1195   CompileUnit *getUnitForOffset(unsigned Offset);
1196
1197   bool getDIENames(const DWARFDebugInfoEntryMinimal &Die, DWARFUnit &U,
1198                    AttributesInfo &Info);
1199
1200   void reportWarning(const Twine &Warning, const DWARFUnit *Unit = nullptr,
1201                      const DWARFDebugInfoEntryMinimal *DIE = nullptr) const;
1202
1203   bool createStreamer(Triple TheTriple, StringRef OutputFilename);
1204   /// @}
1205
1206 private:
1207   std::string OutputFilename;
1208   LinkOptions Options;
1209   BinaryHolder BinHolder;
1210   std::unique_ptr<DwarfStreamer> Streamer;
1211
1212   /// The units of the current debug map object.
1213   std::vector<CompileUnit> Units;
1214
1215   /// The debug map object curently under consideration.
1216   DebugMapObject *CurrentDebugObject;
1217
1218   /// \brief The Dwarf string pool
1219   NonRelocatableStringpool StringPool;
1220
1221   /// \brief This map is keyed by the entry PC of functions in that
1222   /// debug object and the associated value is a pair storing the
1223   /// corresponding end PC and the offset to apply to get the linked
1224   /// address.
1225   ///
1226   /// See startDebugObject() for a more complete description of its use.
1227   std::map<uint64_t, std::pair<uint64_t, int64_t>> Ranges;
1228 };
1229
1230 /// \brief Similar to DWARFUnitSection::getUnitForOffset(), but
1231 /// returning our CompileUnit object instead.
1232 CompileUnit *DwarfLinker::getUnitForOffset(unsigned Offset) {
1233   auto CU =
1234       std::upper_bound(Units.begin(), Units.end(), Offset,
1235                        [](uint32_t LHS, const CompileUnit &RHS) {
1236                          return LHS < RHS.getOrigUnit().getNextUnitOffset();
1237                        });
1238   return CU != Units.end() ? &*CU : nullptr;
1239 }
1240
1241 /// \brief Resolve the DIE attribute reference that has been
1242 /// extracted in \p RefValue. The resulting DIE migh be in another
1243 /// CompileUnit which is stored into \p ReferencedCU.
1244 /// \returns null if resolving fails for any reason.
1245 const DWARFDebugInfoEntryMinimal *DwarfLinker::resolveDIEReference(
1246     DWARFFormValue &RefValue, const DWARFUnit &Unit,
1247     const DWARFDebugInfoEntryMinimal &DIE, CompileUnit *&RefCU) {
1248   assert(RefValue.isFormClass(DWARFFormValue::FC_Reference));
1249   uint64_t RefOffset = *RefValue.getAsReference(&Unit);
1250
1251   if ((RefCU = getUnitForOffset(RefOffset)))
1252     if (const auto *RefDie = RefCU->getOrigUnit().getDIEForOffset(RefOffset))
1253       return RefDie;
1254
1255   reportWarning("could not find referenced DIE", &Unit, &DIE);
1256   return nullptr;
1257 }
1258
1259 /// \brief Get the potential name and mangled name for the entity
1260 /// described by \p Die and store them in \Info if they are not
1261 /// already there.
1262 /// \returns is a name was found.
1263 bool DwarfLinker::getDIENames(const DWARFDebugInfoEntryMinimal &Die,
1264                               DWARFUnit &U, AttributesInfo &Info) {
1265   // FIXME: a bit wastefull as the first getName might return the
1266   // short name.
1267   if (!Info.MangledName &&
1268       (Info.MangledName = Die.getName(&U, DINameKind::LinkageName)))
1269     Info.MangledNameOffset = StringPool.getStringOffset(Info.MangledName);
1270
1271   if (!Info.Name && (Info.Name = Die.getName(&U, DINameKind::ShortName)))
1272     Info.NameOffset = StringPool.getStringOffset(Info.Name);
1273
1274   return Info.Name || Info.MangledName;
1275 }
1276
1277 /// \brief Report a warning to the user, optionaly including
1278 /// information about a specific \p DIE related to the warning.
1279 void DwarfLinker::reportWarning(const Twine &Warning, const DWARFUnit *Unit,
1280                                 const DWARFDebugInfoEntryMinimal *DIE) const {
1281   StringRef Context = "<debug map>";
1282   if (CurrentDebugObject)
1283     Context = CurrentDebugObject->getObjectFilename();
1284   warn(Warning, Context);
1285
1286   if (!Options.Verbose || !DIE)
1287     return;
1288
1289   errs() << "    in DIE:\n";
1290   DIE->dump(errs(), const_cast<DWARFUnit *>(Unit), 0 /* RecurseDepth */,
1291             6 /* Indent */);
1292 }
1293
1294 bool DwarfLinker::createStreamer(Triple TheTriple, StringRef OutputFilename) {
1295   if (Options.NoOutput)
1296     return true;
1297
1298   Streamer = llvm::make_unique<DwarfStreamer>();
1299   return Streamer->init(TheTriple, OutputFilename);
1300 }
1301
1302 /// \brief Recursive helper to gather the child->parent relationships in the
1303 /// original compile unit.
1304 static void gatherDIEParents(const DWARFDebugInfoEntryMinimal *DIE,
1305                              unsigned ParentIdx, CompileUnit &CU) {
1306   unsigned MyIdx = CU.getOrigUnit().getDIEIndex(DIE);
1307   CU.getInfo(MyIdx).ParentIdx = ParentIdx;
1308
1309   if (DIE->hasChildren())
1310     for (auto *Child = DIE->getFirstChild(); Child && !Child->isNULL();
1311          Child = Child->getSibling())
1312       gatherDIEParents(Child, MyIdx, CU);
1313 }
1314
1315 static bool dieNeedsChildrenToBeMeaningful(uint32_t Tag) {
1316   switch (Tag) {
1317   default:
1318     return false;
1319   case dwarf::DW_TAG_subprogram:
1320   case dwarf::DW_TAG_lexical_block:
1321   case dwarf::DW_TAG_subroutine_type:
1322   case dwarf::DW_TAG_structure_type:
1323   case dwarf::DW_TAG_class_type:
1324   case dwarf::DW_TAG_union_type:
1325     return true;
1326   }
1327   llvm_unreachable("Invalid Tag");
1328 }
1329
1330 void DwarfLinker::startDebugObject(DWARFContext &Dwarf, DebugMapObject &Obj) {
1331   Units.reserve(Dwarf.getNumCompileUnits());
1332   NextValidReloc = 0;
1333   // Iterate over the debug map entries and put all the ones that are
1334   // functions (because they have a size) into the Ranges map. This
1335   // map is very similar to the FunctionRanges that are stored in each
1336   // unit, with 2 notable differences:
1337   //  - obviously this one is global, while the other ones are per-unit.
1338   //  - this one contains not only the functions described in the DIE
1339   // tree, but also the ones that are only in the debug map.
1340   // The latter information is required to reproduce dsymutil's logic
1341   // while linking line tables. The cases where this information
1342   // matters look like bugs that need to be investigated, but for now
1343   // we need to reproduce dsymutil's behavior.
1344   // FIXME: Once we understood exactly if that information is needed,
1345   // maybe totally remove this (or try to use it to do a real
1346   // -gline-tables-only on Darwin.
1347   for (const auto &Entry : Obj.symbols()) {
1348     const auto &Mapping = Entry.getValue();
1349     if (Mapping.Size)
1350       Ranges[Mapping.ObjectAddress] = std::make_pair(
1351           Mapping.ObjectAddress + Mapping.Size,
1352           int64_t(Mapping.BinaryAddress) - Mapping.ObjectAddress);
1353   }
1354 }
1355
1356 void DwarfLinker::endDebugObject() {
1357   Units.clear();
1358   ValidRelocs.clear();
1359   Ranges.clear();
1360
1361   for (auto *Block : DIEBlocks)
1362     Block->~DIEBlock();
1363   for (auto *Loc : DIELocs)
1364     Loc->~DIELoc();
1365
1366   DIEBlocks.clear();
1367   DIELocs.clear();
1368   DIEAlloc.Reset();
1369 }
1370
1371 /// \brief Iterate over the relocations of the given \p Section and
1372 /// store the ones that correspond to debug map entries into the
1373 /// ValidRelocs array.
1374 void DwarfLinker::findValidRelocsMachO(const object::SectionRef &Section,
1375                                        const object::MachOObjectFile &Obj,
1376                                        const DebugMapObject &DMO) {
1377   StringRef Contents;
1378   Section.getContents(Contents);
1379   DataExtractor Data(Contents, Obj.isLittleEndian(), 0);
1380
1381   for (const object::RelocationRef &Reloc : Section.relocations()) {
1382     object::DataRefImpl RelocDataRef = Reloc.getRawDataRefImpl();
1383     MachO::any_relocation_info MachOReloc = Obj.getRelocation(RelocDataRef);
1384     unsigned RelocSize = 1 << Obj.getAnyRelocationLength(MachOReloc);
1385     uint64_t Offset64;
1386     if ((RelocSize != 4 && RelocSize != 8) || Reloc.getOffset(Offset64)) {
1387       reportWarning(" unsupported relocation in debug_info section.");
1388       continue;
1389     }
1390     uint32_t Offset = Offset64;
1391     // Mach-o uses REL relocations, the addend is at the relocation offset.
1392     uint64_t Addend = Data.getUnsigned(&Offset, RelocSize);
1393
1394     auto Sym = Reloc.getSymbol();
1395     if (Sym != Obj.symbol_end()) {
1396       StringRef SymbolName;
1397       if (Sym->getName(SymbolName)) {
1398         reportWarning("error getting relocation symbol name.");
1399         continue;
1400       }
1401       if (const auto *Mapping = DMO.lookupSymbol(SymbolName))
1402         ValidRelocs.emplace_back(Offset64, RelocSize, Addend, Mapping);
1403     } else if (const auto *Mapping = DMO.lookupObjectAddress(Addend)) {
1404       // Do not store the addend. The addend was the address of the
1405       // symbol in the object file, the address in the binary that is
1406       // stored in the debug map doesn't need to be offseted.
1407       ValidRelocs.emplace_back(Offset64, RelocSize, 0, Mapping);
1408     }
1409   }
1410 }
1411
1412 /// \brief Dispatch the valid relocation finding logic to the
1413 /// appropriate handler depending on the object file format.
1414 bool DwarfLinker::findValidRelocs(const object::SectionRef &Section,
1415                                   const object::ObjectFile &Obj,
1416                                   const DebugMapObject &DMO) {
1417   // Dispatch to the right handler depending on the file type.
1418   if (auto *MachOObj = dyn_cast<object::MachOObjectFile>(&Obj))
1419     findValidRelocsMachO(Section, *MachOObj, DMO);
1420   else
1421     reportWarning(Twine("unsupported object file type: ") + Obj.getFileName());
1422
1423   if (ValidRelocs.empty())
1424     return false;
1425
1426   // Sort the relocations by offset. We will walk the DIEs linearly in
1427   // the file, this allows us to just keep an index in the relocation
1428   // array that we advance during our walk, rather than resorting to
1429   // some associative container. See DwarfLinker::NextValidReloc.
1430   std::sort(ValidRelocs.begin(), ValidRelocs.end());
1431   return true;
1432 }
1433
1434 /// \brief Look for relocations in the debug_info section that match
1435 /// entries in the debug map. These relocations will drive the Dwarf
1436 /// link by indicating which DIEs refer to symbols present in the
1437 /// linked binary.
1438 /// \returns wether there are any valid relocations in the debug info.
1439 bool DwarfLinker::findValidRelocsInDebugInfo(const object::ObjectFile &Obj,
1440                                              const DebugMapObject &DMO) {
1441   // Find the debug_info section.
1442   for (const object::SectionRef &Section : Obj.sections()) {
1443     StringRef SectionName;
1444     Section.getName(SectionName);
1445     SectionName = SectionName.substr(SectionName.find_first_not_of("._"));
1446     if (SectionName != "debug_info")
1447       continue;
1448     return findValidRelocs(Section, Obj, DMO);
1449   }
1450   return false;
1451 }
1452
1453 /// \brief Checks that there is a relocation against an actual debug
1454 /// map entry between \p StartOffset and \p NextOffset.
1455 ///
1456 /// This function must be called with offsets in strictly ascending
1457 /// order because it never looks back at relocations it already 'went past'.
1458 /// \returns true and sets Info.InDebugMap if it is the case.
1459 bool DwarfLinker::hasValidRelocation(uint32_t StartOffset, uint32_t EndOffset,
1460                                      CompileUnit::DIEInfo &Info) {
1461   assert(NextValidReloc == 0 ||
1462          StartOffset > ValidRelocs[NextValidReloc - 1].Offset);
1463   if (NextValidReloc >= ValidRelocs.size())
1464     return false;
1465
1466   uint64_t RelocOffset = ValidRelocs[NextValidReloc].Offset;
1467
1468   // We might need to skip some relocs that we didn't consider. For
1469   // example the high_pc of a discarded DIE might contain a reloc that
1470   // is in the list because it actually corresponds to the start of a
1471   // function that is in the debug map.
1472   while (RelocOffset < StartOffset && NextValidReloc < ValidRelocs.size() - 1)
1473     RelocOffset = ValidRelocs[++NextValidReloc].Offset;
1474
1475   if (RelocOffset < StartOffset || RelocOffset >= EndOffset)
1476     return false;
1477
1478   const auto &ValidReloc = ValidRelocs[NextValidReloc++];
1479   if (Options.Verbose)
1480     outs() << "Found valid debug map entry: " << ValidReloc.Mapping->getKey()
1481            << " " << format("\t%016" PRIx64 " => %016" PRIx64,
1482                             ValidReloc.Mapping->getValue().ObjectAddress,
1483                             ValidReloc.Mapping->getValue().BinaryAddress);
1484
1485   Info.AddrAdjust = int64_t(ValidReloc.Mapping->getValue().BinaryAddress) +
1486                     ValidReloc.Addend -
1487                     ValidReloc.Mapping->getValue().ObjectAddress;
1488   Info.InDebugMap = true;
1489   return true;
1490 }
1491
1492 /// \brief Get the starting and ending (exclusive) offset for the
1493 /// attribute with index \p Idx descibed by \p Abbrev. \p Offset is
1494 /// supposed to point to the position of the first attribute described
1495 /// by \p Abbrev.
1496 /// \return [StartOffset, EndOffset) as a pair.
1497 static std::pair<uint32_t, uint32_t>
1498 getAttributeOffsets(const DWARFAbbreviationDeclaration *Abbrev, unsigned Idx,
1499                     unsigned Offset, const DWARFUnit &Unit) {
1500   DataExtractor Data = Unit.getDebugInfoExtractor();
1501
1502   for (unsigned i = 0; i < Idx; ++i)
1503     DWARFFormValue::skipValue(Abbrev->getFormByIndex(i), Data, &Offset, &Unit);
1504
1505   uint32_t End = Offset;
1506   DWARFFormValue::skipValue(Abbrev->getFormByIndex(Idx), Data, &End, &Unit);
1507
1508   return std::make_pair(Offset, End);
1509 }
1510
1511 /// \brief Check if a variable describing DIE should be kept.
1512 /// \returns updated TraversalFlags.
1513 unsigned DwarfLinker::shouldKeepVariableDIE(
1514     const DWARFDebugInfoEntryMinimal &DIE, CompileUnit &Unit,
1515     CompileUnit::DIEInfo &MyInfo, unsigned Flags) {
1516   const auto *Abbrev = DIE.getAbbreviationDeclarationPtr();
1517
1518   // Global variables with constant value can always be kept.
1519   if (!(Flags & TF_InFunctionScope) &&
1520       Abbrev->findAttributeIndex(dwarf::DW_AT_const_value) != -1U) {
1521     MyInfo.InDebugMap = true;
1522     return Flags | TF_Keep;
1523   }
1524
1525   uint32_t LocationIdx = Abbrev->findAttributeIndex(dwarf::DW_AT_location);
1526   if (LocationIdx == -1U)
1527     return Flags;
1528
1529   uint32_t Offset = DIE.getOffset() + getULEB128Size(Abbrev->getCode());
1530   const DWARFUnit &OrigUnit = Unit.getOrigUnit();
1531   uint32_t LocationOffset, LocationEndOffset;
1532   std::tie(LocationOffset, LocationEndOffset) =
1533       getAttributeOffsets(Abbrev, LocationIdx, Offset, OrigUnit);
1534
1535   // See if there is a relocation to a valid debug map entry inside
1536   // this variable's location. The order is important here. We want to
1537   // always check in the variable has a valid relocation, so that the
1538   // DIEInfo is filled. However, we don't want a static variable in a
1539   // function to force us to keep the enclosing function.
1540   if (!hasValidRelocation(LocationOffset, LocationEndOffset, MyInfo) ||
1541       (Flags & TF_InFunctionScope))
1542     return Flags;
1543
1544   if (Options.Verbose)
1545     DIE.dump(outs(), const_cast<DWARFUnit *>(&OrigUnit), 0, 8 /* Indent */);
1546
1547   return Flags | TF_Keep;
1548 }
1549
1550 /// \brief Check if a function describing DIE should be kept.
1551 /// \returns updated TraversalFlags.
1552 unsigned DwarfLinker::shouldKeepSubprogramDIE(
1553     const DWARFDebugInfoEntryMinimal &DIE, CompileUnit &Unit,
1554     CompileUnit::DIEInfo &MyInfo, unsigned Flags) {
1555   const auto *Abbrev = DIE.getAbbreviationDeclarationPtr();
1556
1557   Flags |= TF_InFunctionScope;
1558
1559   uint32_t LowPcIdx = Abbrev->findAttributeIndex(dwarf::DW_AT_low_pc);
1560   if (LowPcIdx == -1U)
1561     return Flags;
1562
1563   uint32_t Offset = DIE.getOffset() + getULEB128Size(Abbrev->getCode());
1564   const DWARFUnit &OrigUnit = Unit.getOrigUnit();
1565   uint32_t LowPcOffset, LowPcEndOffset;
1566   std::tie(LowPcOffset, LowPcEndOffset) =
1567       getAttributeOffsets(Abbrev, LowPcIdx, Offset, OrigUnit);
1568
1569   uint64_t LowPc =
1570       DIE.getAttributeValueAsAddress(&OrigUnit, dwarf::DW_AT_low_pc, -1ULL);
1571   assert(LowPc != -1ULL && "low_pc attribute is not an address.");
1572   if (LowPc == -1ULL ||
1573       !hasValidRelocation(LowPcOffset, LowPcEndOffset, MyInfo))
1574     return Flags;
1575
1576   if (Options.Verbose)
1577     DIE.dump(outs(), const_cast<DWARFUnit *>(&OrigUnit), 0, 8 /* Indent */);
1578
1579   Flags |= TF_Keep;
1580
1581   DWARFFormValue HighPcValue;
1582   if (!DIE.getAttributeValue(&OrigUnit, dwarf::DW_AT_high_pc, HighPcValue)) {
1583     reportWarning("Function without high_pc. Range will be discarded.\n",
1584                   &OrigUnit, &DIE);
1585     return Flags;
1586   }
1587
1588   uint64_t HighPc;
1589   if (HighPcValue.isFormClass(DWARFFormValue::FC_Address)) {
1590     HighPc = *HighPcValue.getAsAddress(&OrigUnit);
1591   } else {
1592     assert(HighPcValue.isFormClass(DWARFFormValue::FC_Constant));
1593     HighPc = LowPc + *HighPcValue.getAsUnsignedConstant();
1594   }
1595
1596   // Replace the debug map range with a more accurate one.
1597   Ranges[LowPc] = std::make_pair(HighPc, MyInfo.AddrAdjust);
1598   Unit.addFunctionRange(LowPc, HighPc, MyInfo.AddrAdjust);
1599   return Flags;
1600 }
1601
1602 /// \brief Check if a DIE should be kept.
1603 /// \returns updated TraversalFlags.
1604 unsigned DwarfLinker::shouldKeepDIE(const DWARFDebugInfoEntryMinimal &DIE,
1605                                     CompileUnit &Unit,
1606                                     CompileUnit::DIEInfo &MyInfo,
1607                                     unsigned Flags) {
1608   switch (DIE.getTag()) {
1609   case dwarf::DW_TAG_constant:
1610   case dwarf::DW_TAG_variable:
1611     return shouldKeepVariableDIE(DIE, Unit, MyInfo, Flags);
1612   case dwarf::DW_TAG_subprogram:
1613     return shouldKeepSubprogramDIE(DIE, Unit, MyInfo, Flags);
1614   case dwarf::DW_TAG_module:
1615   case dwarf::DW_TAG_imported_module:
1616   case dwarf::DW_TAG_imported_declaration:
1617   case dwarf::DW_TAG_imported_unit:
1618     // We always want to keep these.
1619     return Flags | TF_Keep;
1620   }
1621
1622   return Flags;
1623 }
1624
1625 /// \brief Mark the passed DIE as well as all the ones it depends on
1626 /// as kept.
1627 ///
1628 /// This function is called by lookForDIEsToKeep on DIEs that are
1629 /// newly discovered to be needed in the link. It recursively calls
1630 /// back to lookForDIEsToKeep while adding TF_DependencyWalk to the
1631 /// TraversalFlags to inform it that it's not doing the primary DIE
1632 /// tree walk.
1633 void DwarfLinker::keepDIEAndDenpendencies(const DWARFDebugInfoEntryMinimal &DIE,
1634                                           CompileUnit::DIEInfo &MyInfo,
1635                                           const DebugMapObject &DMO,
1636                                           CompileUnit &CU, unsigned Flags) {
1637   const DWARFUnit &Unit = CU.getOrigUnit();
1638   MyInfo.Keep = true;
1639
1640   // First mark all the parent chain as kept.
1641   unsigned AncestorIdx = MyInfo.ParentIdx;
1642   while (!CU.getInfo(AncestorIdx).Keep) {
1643     lookForDIEsToKeep(*Unit.getDIEAtIndex(AncestorIdx), DMO, CU,
1644                       TF_ParentWalk | TF_Keep | TF_DependencyWalk);
1645     AncestorIdx = CU.getInfo(AncestorIdx).ParentIdx;
1646   }
1647
1648   // Then we need to mark all the DIEs referenced by this DIE's
1649   // attributes as kept.
1650   DataExtractor Data = Unit.getDebugInfoExtractor();
1651   const auto *Abbrev = DIE.getAbbreviationDeclarationPtr();
1652   uint32_t Offset = DIE.getOffset() + getULEB128Size(Abbrev->getCode());
1653
1654   // Mark all DIEs referenced through atttributes as kept.
1655   for (const auto &AttrSpec : Abbrev->attributes()) {
1656     DWARFFormValue Val(AttrSpec.Form);
1657
1658     if (!Val.isFormClass(DWARFFormValue::FC_Reference)) {
1659       DWARFFormValue::skipValue(AttrSpec.Form, Data, &Offset, &Unit);
1660       continue;
1661     }
1662
1663     Val.extractValue(Data, &Offset, &Unit);
1664     CompileUnit *ReferencedCU;
1665     if (const auto *RefDIE = resolveDIEReference(Val, Unit, DIE, ReferencedCU))
1666       lookForDIEsToKeep(*RefDIE, DMO, *ReferencedCU,
1667                         TF_Keep | TF_DependencyWalk);
1668   }
1669 }
1670
1671 /// \brief Recursively walk the \p DIE tree and look for DIEs to
1672 /// keep. Store that information in \p CU's DIEInfo.
1673 ///
1674 /// This function is the entry point of the DIE selection
1675 /// algorithm. It is expected to walk the DIE tree in file order and
1676 /// (though the mediation of its helper) call hasValidRelocation() on
1677 /// each DIE that might be a 'root DIE' (See DwarfLinker class
1678 /// comment).
1679 /// While walking the dependencies of root DIEs, this function is
1680 /// also called, but during these dependency walks the file order is
1681 /// not respected. The TF_DependencyWalk flag tells us which kind of
1682 /// traversal we are currently doing.
1683 void DwarfLinker::lookForDIEsToKeep(const DWARFDebugInfoEntryMinimal &DIE,
1684                                     const DebugMapObject &DMO, CompileUnit &CU,
1685                                     unsigned Flags) {
1686   unsigned Idx = CU.getOrigUnit().getDIEIndex(&DIE);
1687   CompileUnit::DIEInfo &MyInfo = CU.getInfo(Idx);
1688   bool AlreadyKept = MyInfo.Keep;
1689
1690   // If the Keep flag is set, we are marking a required DIE's
1691   // dependencies. If our target is already marked as kept, we're all
1692   // set.
1693   if ((Flags & TF_DependencyWalk) && AlreadyKept)
1694     return;
1695
1696   // We must not call shouldKeepDIE while called from keepDIEAndDenpendencies,
1697   // because it would screw up the relocation finding logic.
1698   if (!(Flags & TF_DependencyWalk))
1699     Flags = shouldKeepDIE(DIE, CU, MyInfo, Flags);
1700
1701   // If it is a newly kept DIE mark it as well as all its dependencies as kept.
1702   if (!AlreadyKept && (Flags & TF_Keep))
1703     keepDIEAndDenpendencies(DIE, MyInfo, DMO, CU, Flags);
1704
1705   // The TF_ParentWalk flag tells us that we are currently walking up
1706   // the parent chain of a required DIE, and we don't want to mark all
1707   // the children of the parents as kept (consider for example a
1708   // DW_TAG_namespace node in the parent chain). There are however a
1709   // set of DIE types for which we want to ignore that directive and still
1710   // walk their children.
1711   if (dieNeedsChildrenToBeMeaningful(DIE.getTag()))
1712     Flags &= ~TF_ParentWalk;
1713
1714   if (!DIE.hasChildren() || (Flags & TF_ParentWalk))
1715     return;
1716
1717   for (auto *Child = DIE.getFirstChild(); Child && !Child->isNULL();
1718        Child = Child->getSibling())
1719     lookForDIEsToKeep(*Child, DMO, CU, Flags);
1720 }
1721
1722 /// \brief Assign an abbreviation numer to \p Abbrev.
1723 ///
1724 /// Our DIEs get freed after every DebugMapObject has been processed,
1725 /// thus the FoldingSet we use to unique DIEAbbrevs cannot refer to
1726 /// the instances hold by the DIEs. When we encounter an abbreviation
1727 /// that we don't know, we create a permanent copy of it.
1728 void DwarfLinker::AssignAbbrev(DIEAbbrev &Abbrev) {
1729   // Check the set for priors.
1730   FoldingSetNodeID ID;
1731   Abbrev.Profile(ID);
1732   void *InsertToken;
1733   DIEAbbrev *InSet = AbbreviationsSet.FindNodeOrInsertPos(ID, InsertToken);
1734
1735   // If it's newly added.
1736   if (InSet) {
1737     // Assign existing abbreviation number.
1738     Abbrev.setNumber(InSet->getNumber());
1739   } else {
1740     // Add to abbreviation list.
1741     Abbreviations.push_back(
1742         new DIEAbbrev(Abbrev.getTag(), Abbrev.hasChildren()));
1743     for (const auto &Attr : Abbrev.getData())
1744       Abbreviations.back()->AddAttribute(Attr.getAttribute(), Attr.getForm());
1745     AbbreviationsSet.InsertNode(Abbreviations.back(), InsertToken);
1746     // Assign the unique abbreviation number.
1747     Abbrev.setNumber(Abbreviations.size());
1748     Abbreviations.back()->setNumber(Abbreviations.size());
1749   }
1750 }
1751
1752 /// \brief Clone a string attribute described by \p AttrSpec and add
1753 /// it to \p Die.
1754 /// \returns the size of the new attribute.
1755 unsigned DwarfLinker::cloneStringAttribute(DIE &Die, AttributeSpec AttrSpec,
1756                                            const DWARFFormValue &Val,
1757                                            const DWARFUnit &U) {
1758   // Switch everything to out of line strings.
1759   const char *String = *Val.getAsCString(&U);
1760   unsigned Offset = StringPool.getStringOffset(String);
1761   Die.addValue(dwarf::Attribute(AttrSpec.Attr), dwarf::DW_FORM_strp,
1762                new (DIEAlloc) DIEInteger(Offset));
1763   return 4;
1764 }
1765
1766 /// \brief Clone an attribute referencing another DIE and add
1767 /// it to \p Die.
1768 /// \returns the size of the new attribute.
1769 unsigned DwarfLinker::cloneDieReferenceAttribute(
1770     DIE &Die, const DWARFDebugInfoEntryMinimal &InputDIE,
1771     AttributeSpec AttrSpec, unsigned AttrSize, const DWARFFormValue &Val,
1772     CompileUnit &Unit) {
1773   uint32_t Ref = *Val.getAsReference(&Unit.getOrigUnit());
1774   DIE *NewRefDie = nullptr;
1775   CompileUnit *RefUnit = nullptr;
1776   const DWARFDebugInfoEntryMinimal *RefDie = nullptr;
1777
1778   if (!(RefUnit = getUnitForOffset(Ref)) ||
1779       !(RefDie = RefUnit->getOrigUnit().getDIEForOffset(Ref))) {
1780     const char *AttributeString = dwarf::AttributeString(AttrSpec.Attr);
1781     if (!AttributeString)
1782       AttributeString = "DW_AT_???";
1783     reportWarning(Twine("Missing DIE for ref in attribute ") + AttributeString +
1784                       ". Dropping.",
1785                   &Unit.getOrigUnit(), &InputDIE);
1786     return 0;
1787   }
1788
1789   unsigned Idx = RefUnit->getOrigUnit().getDIEIndex(RefDie);
1790   CompileUnit::DIEInfo &RefInfo = RefUnit->getInfo(Idx);
1791   if (!RefInfo.Clone) {
1792     assert(Ref > InputDIE.getOffset());
1793     // We haven't cloned this DIE yet. Just create an empty one and
1794     // store it. It'll get really cloned when we process it.
1795     RefInfo.Clone = new DIE(dwarf::Tag(RefDie->getTag()));
1796   }
1797   NewRefDie = RefInfo.Clone;
1798
1799   if (AttrSpec.Form == dwarf::DW_FORM_ref_addr) {
1800     // We cannot currently rely on a DIEEntry to emit ref_addr
1801     // references, because the implementation calls back to DwarfDebug
1802     // to find the unit offset. (We don't have a DwarfDebug)
1803     // FIXME: we should be able to design DIEEntry reliance on
1804     // DwarfDebug away.
1805     DIEInteger *Attr;
1806     if (Ref < InputDIE.getOffset()) {
1807       // We must have already cloned that DIE.
1808       uint32_t NewRefOffset =
1809           RefUnit->getStartOffset() + NewRefDie->getOffset();
1810       Attr = new (DIEAlloc) DIEInteger(NewRefOffset);
1811     } else {
1812       // A forward reference. Note and fixup later.
1813       Attr = new (DIEAlloc) DIEInteger(0xBADDEF);
1814       Unit.noteForwardReference(NewRefDie, RefUnit, Attr);
1815     }
1816     Die.addValue(dwarf::Attribute(AttrSpec.Attr), dwarf::DW_FORM_ref_addr,
1817                  Attr);
1818     return AttrSize;
1819   }
1820
1821   Die.addValue(dwarf::Attribute(AttrSpec.Attr), dwarf::Form(AttrSpec.Form),
1822                new (DIEAlloc) DIEEntry(*NewRefDie));
1823   return AttrSize;
1824 }
1825
1826 /// \brief Clone an attribute of block form (locations, constants) and add
1827 /// it to \p Die.
1828 /// \returns the size of the new attribute.
1829 unsigned DwarfLinker::cloneBlockAttribute(DIE &Die, AttributeSpec AttrSpec,
1830                                           const DWARFFormValue &Val,
1831                                           unsigned AttrSize) {
1832   DIE *Attr;
1833   DIEValue *Value;
1834   DIELoc *Loc = nullptr;
1835   DIEBlock *Block = nullptr;
1836   // Just copy the block data over.
1837   if (AttrSpec.Form == dwarf::DW_FORM_exprloc) {
1838     Loc = new (DIEAlloc) DIELoc();
1839     DIELocs.push_back(Loc);
1840   } else {
1841     Block = new (DIEAlloc) DIEBlock();
1842     DIEBlocks.push_back(Block);
1843   }
1844   Attr = Loc ? static_cast<DIE *>(Loc) : static_cast<DIE *>(Block);
1845   Value = Loc ? static_cast<DIEValue *>(Loc) : static_cast<DIEValue *>(Block);
1846   ArrayRef<uint8_t> Bytes = *Val.getAsBlock();
1847   for (auto Byte : Bytes)
1848     Attr->addValue(static_cast<dwarf::Attribute>(0), dwarf::DW_FORM_data1,
1849                    new (DIEAlloc) DIEInteger(Byte));
1850   // FIXME: If DIEBlock and DIELoc just reuses the Size field of
1851   // the DIE class, this if could be replaced by
1852   // Attr->setSize(Bytes.size()).
1853   if (Streamer) {
1854     if (Loc)
1855       Loc->ComputeSize(&Streamer->getAsmPrinter());
1856     else
1857       Block->ComputeSize(&Streamer->getAsmPrinter());
1858   }
1859   Die.addValue(dwarf::Attribute(AttrSpec.Attr), dwarf::Form(AttrSpec.Form),
1860                Value);
1861   return AttrSize;
1862 }
1863
1864 /// \brief Clone an address attribute and add it to \p Die.
1865 /// \returns the size of the new attribute.
1866 unsigned DwarfLinker::cloneAddressAttribute(DIE &Die, AttributeSpec AttrSpec,
1867                                             const DWARFFormValue &Val,
1868                                             const CompileUnit &Unit,
1869                                             AttributesInfo &Info) {
1870   uint64_t Addr = *Val.getAsAddress(&Unit.getOrigUnit());
1871   if (AttrSpec.Attr == dwarf::DW_AT_low_pc) {
1872     if (Die.getTag() == dwarf::DW_TAG_inlined_subroutine ||
1873         Die.getTag() == dwarf::DW_TAG_lexical_block)
1874       Addr += Info.PCOffset;
1875     else if (Die.getTag() == dwarf::DW_TAG_compile_unit) {
1876       Addr = Unit.getLowPc();
1877       if (Addr == UINT64_MAX)
1878         return 0;
1879     }
1880     Info.HasLowPc = true;
1881   } else if (AttrSpec.Attr == dwarf::DW_AT_high_pc) {
1882     if (Die.getTag() == dwarf::DW_TAG_compile_unit) {
1883       if (uint64_t HighPc = Unit.getHighPc())
1884         Addr = HighPc;
1885       else
1886         return 0;
1887     } else
1888       // If we have a high_pc recorded for the input DIE, use
1889       // it. Otherwise (when no relocations where applied) just use the
1890       // one we just decoded.
1891       Addr = (Info.OrigHighPc ? Info.OrigHighPc : Addr) + Info.PCOffset;
1892   }
1893
1894   Die.addValue(static_cast<dwarf::Attribute>(AttrSpec.Attr),
1895                static_cast<dwarf::Form>(AttrSpec.Form),
1896                new (DIEAlloc) DIEInteger(Addr));
1897   return Unit.getOrigUnit().getAddressByteSize();
1898 }
1899
1900 /// \brief Clone a scalar attribute  and add it to \p Die.
1901 /// \returns the size of the new attribute.
1902 unsigned DwarfLinker::cloneScalarAttribute(
1903     DIE &Die, const DWARFDebugInfoEntryMinimal &InputDIE, CompileUnit &Unit,
1904     AttributeSpec AttrSpec, const DWARFFormValue &Val, unsigned AttrSize,
1905     AttributesInfo &Info) {
1906   uint64_t Value;
1907   if (AttrSpec.Attr == dwarf::DW_AT_high_pc &&
1908       Die.getTag() == dwarf::DW_TAG_compile_unit) {
1909     if (Unit.getLowPc() == -1ULL)
1910       return 0;
1911     // Dwarf >= 4 high_pc is an size, not an address.
1912     Value = Unit.getHighPc() - Unit.getLowPc();
1913   } else if (AttrSpec.Form == dwarf::DW_FORM_sec_offset)
1914     Value = *Val.getAsSectionOffset();
1915   else if (AttrSpec.Form == dwarf::DW_FORM_sdata)
1916     Value = *Val.getAsSignedConstant();
1917   else if (auto OptionalValue = Val.getAsUnsignedConstant())
1918     Value = *OptionalValue;
1919   else {
1920     reportWarning("Unsupported scalar attribute form. Dropping attribute.",
1921                   &Unit.getOrigUnit(), &InputDIE);
1922     return 0;
1923   }
1924   DIEInteger *Attr = new (DIEAlloc) DIEInteger(Value);
1925   if (AttrSpec.Attr == dwarf::DW_AT_ranges)
1926     Unit.noteRangeAttribute(Die, Attr);
1927   // A more generic way to check for location attributes would be
1928   // nice, but it's very unlikely that any other attribute needs a
1929   // location list.
1930   else if (AttrSpec.Attr == dwarf::DW_AT_location ||
1931            AttrSpec.Attr == dwarf::DW_AT_frame_base)
1932     Unit.noteLocationAttribute(Attr, Info.PCOffset);
1933   else if (AttrSpec.Attr == dwarf::DW_AT_declaration && Value)
1934     Info.IsDeclaration = true;
1935
1936   Die.addValue(dwarf::Attribute(AttrSpec.Attr), dwarf::Form(AttrSpec.Form),
1937                Attr);
1938   return AttrSize;
1939 }
1940
1941 /// \brief Clone \p InputDIE's attribute described by \p AttrSpec with
1942 /// value \p Val, and add it to \p Die.
1943 /// \returns the size of the cloned attribute.
1944 unsigned DwarfLinker::cloneAttribute(DIE &Die,
1945                                      const DWARFDebugInfoEntryMinimal &InputDIE,
1946                                      CompileUnit &Unit,
1947                                      const DWARFFormValue &Val,
1948                                      const AttributeSpec AttrSpec,
1949                                      unsigned AttrSize, AttributesInfo &Info) {
1950   const DWARFUnit &U = Unit.getOrigUnit();
1951
1952   switch (AttrSpec.Form) {
1953   case dwarf::DW_FORM_strp:
1954   case dwarf::DW_FORM_string:
1955     return cloneStringAttribute(Die, AttrSpec, Val, U);
1956   case dwarf::DW_FORM_ref_addr:
1957   case dwarf::DW_FORM_ref1:
1958   case dwarf::DW_FORM_ref2:
1959   case dwarf::DW_FORM_ref4:
1960   case dwarf::DW_FORM_ref8:
1961     return cloneDieReferenceAttribute(Die, InputDIE, AttrSpec, AttrSize, Val,
1962                                       Unit);
1963   case dwarf::DW_FORM_block:
1964   case dwarf::DW_FORM_block1:
1965   case dwarf::DW_FORM_block2:
1966   case dwarf::DW_FORM_block4:
1967   case dwarf::DW_FORM_exprloc:
1968     return cloneBlockAttribute(Die, AttrSpec, Val, AttrSize);
1969   case dwarf::DW_FORM_addr:
1970     return cloneAddressAttribute(Die, AttrSpec, Val, Unit, Info);
1971   case dwarf::DW_FORM_data1:
1972   case dwarf::DW_FORM_data2:
1973   case dwarf::DW_FORM_data4:
1974   case dwarf::DW_FORM_data8:
1975   case dwarf::DW_FORM_udata:
1976   case dwarf::DW_FORM_sdata:
1977   case dwarf::DW_FORM_sec_offset:
1978   case dwarf::DW_FORM_flag:
1979   case dwarf::DW_FORM_flag_present:
1980     return cloneScalarAttribute(Die, InputDIE, Unit, AttrSpec, Val, AttrSize,
1981                                 Info);
1982   default:
1983     reportWarning("Unsupported attribute form in cloneAttribute. Dropping.", &U,
1984                   &InputDIE);
1985   }
1986
1987   return 0;
1988 }
1989
1990 /// \brief Apply the valid relocations found by findValidRelocs() to
1991 /// the buffer \p Data, taking into account that Data is at \p BaseOffset
1992 /// in the debug_info section.
1993 ///
1994 /// Like for findValidRelocs(), this function must be called with
1995 /// monotonic \p BaseOffset values.
1996 ///
1997 /// \returns wether any reloc has been applied.
1998 bool DwarfLinker::applyValidRelocs(MutableArrayRef<char> Data,
1999                                    uint32_t BaseOffset, bool isLittleEndian) {
2000   assert((NextValidReloc == 0 ||
2001           BaseOffset > ValidRelocs[NextValidReloc - 1].Offset) &&
2002          "BaseOffset should only be increasing.");
2003   if (NextValidReloc >= ValidRelocs.size())
2004     return false;
2005
2006   // Skip relocs that haven't been applied.
2007   while (NextValidReloc < ValidRelocs.size() &&
2008          ValidRelocs[NextValidReloc].Offset < BaseOffset)
2009     ++NextValidReloc;
2010
2011   bool Applied = false;
2012   uint64_t EndOffset = BaseOffset + Data.size();
2013   while (NextValidReloc < ValidRelocs.size() &&
2014          ValidRelocs[NextValidReloc].Offset >= BaseOffset &&
2015          ValidRelocs[NextValidReloc].Offset < EndOffset) {
2016     const auto &ValidReloc = ValidRelocs[NextValidReloc++];
2017     assert(ValidReloc.Offset - BaseOffset < Data.size());
2018     assert(ValidReloc.Offset - BaseOffset + ValidReloc.Size <= Data.size());
2019     char Buf[8];
2020     uint64_t Value = ValidReloc.Mapping->getValue().BinaryAddress;
2021     Value += ValidReloc.Addend;
2022     for (unsigned i = 0; i != ValidReloc.Size; ++i) {
2023       unsigned Index = isLittleEndian ? i : (ValidReloc.Size - i - 1);
2024       Buf[i] = uint8_t(Value >> (Index * 8));
2025     }
2026     assert(ValidReloc.Size <= sizeof(Buf));
2027     memcpy(&Data[ValidReloc.Offset - BaseOffset], Buf, ValidReloc.Size);
2028     Applied = true;
2029   }
2030
2031   return Applied;
2032 }
2033
2034 static bool isTypeTag(uint16_t Tag) {
2035   switch (Tag) {
2036   case dwarf::DW_TAG_array_type:
2037   case dwarf::DW_TAG_class_type:
2038   case dwarf::DW_TAG_enumeration_type:
2039   case dwarf::DW_TAG_pointer_type:
2040   case dwarf::DW_TAG_reference_type:
2041   case dwarf::DW_TAG_string_type:
2042   case dwarf::DW_TAG_structure_type:
2043   case dwarf::DW_TAG_subroutine_type:
2044   case dwarf::DW_TAG_typedef:
2045   case dwarf::DW_TAG_union_type:
2046   case dwarf::DW_TAG_ptr_to_member_type:
2047   case dwarf::DW_TAG_set_type:
2048   case dwarf::DW_TAG_subrange_type:
2049   case dwarf::DW_TAG_base_type:
2050   case dwarf::DW_TAG_const_type:
2051   case dwarf::DW_TAG_constant:
2052   case dwarf::DW_TAG_file_type:
2053   case dwarf::DW_TAG_namelist:
2054   case dwarf::DW_TAG_packed_type:
2055   case dwarf::DW_TAG_volatile_type:
2056   case dwarf::DW_TAG_restrict_type:
2057   case dwarf::DW_TAG_interface_type:
2058   case dwarf::DW_TAG_unspecified_type:
2059   case dwarf::DW_TAG_shared_type:
2060     return true;
2061   default:
2062     break;
2063   }
2064   return false;
2065 }
2066
2067 /// \brief Recursively clone \p InputDIE's subtrees that have been
2068 /// selected to appear in the linked output.
2069 ///
2070 /// \param OutOffset is the Offset where the newly created DIE will
2071 /// lie in the linked compile unit.
2072 ///
2073 /// \returns the cloned DIE object or null if nothing was selected.
2074 DIE *DwarfLinker::cloneDIE(const DWARFDebugInfoEntryMinimal &InputDIE,
2075                            CompileUnit &Unit, int64_t PCOffset,
2076                            uint32_t OutOffset) {
2077   DWARFUnit &U = Unit.getOrigUnit();
2078   unsigned Idx = U.getDIEIndex(&InputDIE);
2079   CompileUnit::DIEInfo &Info = Unit.getInfo(Idx);
2080
2081   // Should the DIE appear in the output?
2082   if (!Unit.getInfo(Idx).Keep)
2083     return nullptr;
2084
2085   uint32_t Offset = InputDIE.getOffset();
2086   // The DIE might have been already created by a forward reference
2087   // (see cloneDieReferenceAttribute()).
2088   DIE *Die = Info.Clone;
2089   if (!Die)
2090     Die = Info.Clone = new DIE(dwarf::Tag(InputDIE.getTag()));
2091   assert(Die->getTag() == InputDIE.getTag());
2092   Die->setOffset(OutOffset);
2093
2094   // Extract and clone every attribute.
2095   DataExtractor Data = U.getDebugInfoExtractor();
2096   uint32_t NextOffset = U.getDIEAtIndex(Idx + 1)->getOffset();
2097   AttributesInfo AttrInfo;
2098
2099   // We could copy the data only if we need to aply a relocation to
2100   // it. After testing, it seems there is no performance downside to
2101   // doing the copy unconditionally, and it makes the code simpler.
2102   SmallString<40> DIECopy(Data.getData().substr(Offset, NextOffset - Offset));
2103   Data = DataExtractor(DIECopy, Data.isLittleEndian(), Data.getAddressSize());
2104   // Modify the copy with relocated addresses.
2105   if (applyValidRelocs(DIECopy, Offset, Data.isLittleEndian())) {
2106     // If we applied relocations, we store the value of high_pc that was
2107     // potentially stored in the input DIE. If high_pc is an address
2108     // (Dwarf version == 2), then it might have been relocated to a
2109     // totally unrelated value (because the end address in the object
2110     // file might be start address of another function which got moved
2111     // independantly by the linker). The computation of the actual
2112     // high_pc value is done in cloneAddressAttribute().
2113     AttrInfo.OrigHighPc =
2114         InputDIE.getAttributeValueAsAddress(&U, dwarf::DW_AT_high_pc, 0);
2115   }
2116
2117   // Reset the Offset to 0 as we will be working on the local copy of
2118   // the data.
2119   Offset = 0;
2120
2121   const auto *Abbrev = InputDIE.getAbbreviationDeclarationPtr();
2122   Offset += getULEB128Size(Abbrev->getCode());
2123
2124   // We are entering a subprogram. Get and propagate the PCOffset.
2125   if (Die->getTag() == dwarf::DW_TAG_subprogram)
2126     PCOffset = Info.AddrAdjust;
2127   AttrInfo.PCOffset = PCOffset;
2128
2129   for (const auto &AttrSpec : Abbrev->attributes()) {
2130     DWARFFormValue Val(AttrSpec.Form);
2131     uint32_t AttrSize = Offset;
2132     Val.extractValue(Data, &Offset, &U);
2133     AttrSize = Offset - AttrSize;
2134
2135     OutOffset +=
2136         cloneAttribute(*Die, InputDIE, Unit, Val, AttrSpec, AttrSize, AttrInfo);
2137   }
2138
2139   // Look for accelerator entries.
2140   uint16_t Tag = InputDIE.getTag();
2141   // FIXME: This is slightly wrong. An inline_subroutine without a
2142   // low_pc, but with AT_ranges might be interesting to get into the
2143   // accelerator tables too. For now stick with dsymutil's behavior.
2144   if ((Info.InDebugMap || AttrInfo.HasLowPc) &&
2145       Tag != dwarf::DW_TAG_compile_unit &&
2146       getDIENames(InputDIE, Unit.getOrigUnit(), AttrInfo)) {
2147     if (AttrInfo.MangledName && AttrInfo.MangledName != AttrInfo.Name)
2148       Unit.addNameAccelerator(Die, AttrInfo.MangledName,
2149                               AttrInfo.MangledNameOffset,
2150                               Tag == dwarf::DW_TAG_inlined_subroutine);
2151     if (AttrInfo.Name)
2152       Unit.addNameAccelerator(Die, AttrInfo.Name, AttrInfo.NameOffset,
2153                               Tag == dwarf::DW_TAG_inlined_subroutine);
2154   } else if (isTypeTag(Tag) && !AttrInfo.IsDeclaration &&
2155              getDIENames(InputDIE, Unit.getOrigUnit(), AttrInfo)) {
2156     Unit.addTypeAccelerator(Die, AttrInfo.Name, AttrInfo.NameOffset);
2157   }
2158
2159   DIEAbbrev &NewAbbrev = Die->getAbbrev();
2160   // If a scope DIE is kept, we must have kept at least one child. If
2161   // it's not the case, we'll just be emitting one wasteful end of
2162   // children marker, but things won't break.
2163   if (InputDIE.hasChildren())
2164     NewAbbrev.setChildrenFlag(dwarf::DW_CHILDREN_yes);
2165   // Assign a permanent abbrev number
2166   AssignAbbrev(Die->getAbbrev());
2167
2168   // Add the size of the abbreviation number to the output offset.
2169   OutOffset += getULEB128Size(Die->getAbbrevNumber());
2170
2171   if (!Abbrev->hasChildren()) {
2172     // Update our size.
2173     Die->setSize(OutOffset - Die->getOffset());
2174     return Die;
2175   }
2176
2177   // Recursively clone children.
2178   for (auto *Child = InputDIE.getFirstChild(); Child && !Child->isNULL();
2179        Child = Child->getSibling()) {
2180     if (DIE *Clone = cloneDIE(*Child, Unit, PCOffset, OutOffset)) {
2181       Die->addChild(std::unique_ptr<DIE>(Clone));
2182       OutOffset = Clone->getOffset() + Clone->getSize();
2183     }
2184   }
2185
2186   // Account for the end of children marker.
2187   OutOffset += sizeof(int8_t);
2188   // Update our size.
2189   Die->setSize(OutOffset - Die->getOffset());
2190   return Die;
2191 }
2192
2193 /// \brief Patch the input object file relevant debug_ranges entries
2194 /// and emit them in the output file. Update the relevant attributes
2195 /// to point at the new entries.
2196 void DwarfLinker::patchRangesForUnit(const CompileUnit &Unit,
2197                                      DWARFContext &OrigDwarf) const {
2198   DWARFDebugRangeList RangeList;
2199   const auto &FunctionRanges = Unit.getFunctionRanges();
2200   unsigned AddressSize = Unit.getOrigUnit().getAddressByteSize();
2201   DataExtractor RangeExtractor(OrigDwarf.getRangeSection(),
2202                                OrigDwarf.isLittleEndian(), AddressSize);
2203   auto InvalidRange = FunctionRanges.end(), CurrRange = InvalidRange;
2204   DWARFUnit &OrigUnit = Unit.getOrigUnit();
2205   const auto *OrigUnitDie = OrigUnit.getCompileUnitDIE(false);
2206   uint64_t OrigLowPc = OrigUnitDie->getAttributeValueAsAddress(
2207       &OrigUnit, dwarf::DW_AT_low_pc, -1ULL);
2208   // Ranges addresses are based on the unit's low_pc. Compute the
2209   // offset we need to apply to adapt to the the new unit's low_pc.
2210   int64_t UnitPcOffset = 0;
2211   if (OrigLowPc != -1ULL)
2212     UnitPcOffset = int64_t(OrigLowPc) - Unit.getLowPc();
2213
2214   for (const auto &RangeAttribute : Unit.getRangesAttributes()) {
2215     uint32_t Offset = RangeAttribute->getValue();
2216     RangeAttribute->setValue(Streamer->getRangesSectionSize());
2217     RangeList.extract(RangeExtractor, &Offset);
2218     const auto &Entries = RangeList.getEntries();
2219     const DWARFDebugRangeList::RangeListEntry &First = Entries.front();
2220
2221     if (CurrRange == InvalidRange || First.StartAddress < CurrRange.start() ||
2222         First.StartAddress >= CurrRange.stop()) {
2223       CurrRange = FunctionRanges.find(First.StartAddress + OrigLowPc);
2224       if (CurrRange == InvalidRange ||
2225           CurrRange.start() > First.StartAddress + OrigLowPc) {
2226         reportWarning("no mapping for range.");
2227         continue;
2228       }
2229     }
2230
2231     Streamer->emitRangesEntries(UnitPcOffset, OrigLowPc, CurrRange, Entries,
2232                                 AddressSize);
2233   }
2234 }
2235
2236 /// \brief Generate the debug_aranges entries for \p Unit and if the
2237 /// unit has a DW_AT_ranges attribute, also emit the debug_ranges
2238 /// contribution for this attribute.
2239 /// FIXME: this could actually be done right in patchRangesForUnit,
2240 /// but for the sake of initial bit-for-bit compatibility with legacy
2241 /// dsymutil, we have to do it in a delayed pass.
2242 void DwarfLinker::generateUnitRanges(CompileUnit &Unit) const {
2243   DIEInteger *Attr = Unit.getUnitRangesAttribute();
2244   if (Attr)
2245     Attr->setValue(Streamer->getRangesSectionSize());
2246   Streamer->emitUnitRangesEntries(Unit, Attr != nullptr);
2247 }
2248
2249 /// \brief Insert the new line info sequence \p Seq into the current
2250 /// set of already linked line info \p Rows.
2251 static void insertLineSequence(std::vector<DWARFDebugLine::Row> &Seq,
2252                                std::vector<DWARFDebugLine::Row> &Rows) {
2253   if (Seq.empty())
2254     return;
2255
2256   if (!Rows.empty() && Rows.back().Address < Seq.front().Address) {
2257     Rows.insert(Rows.end(), Seq.begin(), Seq.end());
2258     Seq.clear();
2259     return;
2260   }
2261
2262   auto InsertPoint = std::lower_bound(
2263       Rows.begin(), Rows.end(), Seq.front(),
2264       [](const DWARFDebugLine::Row &LHS, const DWARFDebugLine::Row &RHS) {
2265         return LHS.Address < RHS.Address;
2266       });
2267
2268   // FIXME: this only removes the unneeded end_sequence if the
2269   // sequences have been inserted in order. using a global sort like
2270   // described in patchLineTableForUnit() and delaying the end_sequene
2271   // elimination to emitLineTableForUnit() we can get rid of all of them.
2272   if (InsertPoint != Rows.end() &&
2273       InsertPoint->Address == Seq.front().Address && InsertPoint->EndSequence) {
2274     *InsertPoint = Seq.front();
2275     Rows.insert(InsertPoint + 1, Seq.begin() + 1, Seq.end());
2276   } else {
2277     Rows.insert(InsertPoint, Seq.begin(), Seq.end());
2278   }
2279
2280   Seq.clear();
2281 }
2282
2283 /// \brief Extract the line table for \p Unit from \p OrigDwarf, and
2284 /// recreate a relocated version of these for the address ranges that
2285 /// are present in the binary.
2286 void DwarfLinker::patchLineTableForUnit(CompileUnit &Unit,
2287                                         DWARFContext &OrigDwarf) {
2288   const DWARFDebugInfoEntryMinimal *CUDie =
2289       Unit.getOrigUnit().getCompileUnitDIE();
2290   uint64_t StmtList = CUDie->getAttributeValueAsSectionOffset(
2291       &Unit.getOrigUnit(), dwarf::DW_AT_stmt_list, -1ULL);
2292   if (StmtList == -1ULL)
2293     return;
2294
2295   // Update the cloned DW_AT_stmt_list with the correct debug_line offset.
2296   if (auto *OutputDIE = Unit.getOutputUnitDIE()) {
2297     const auto &Abbrev = OutputDIE->getAbbrev().getData();
2298     auto Stmt = std::find_if(
2299         Abbrev.begin(), Abbrev.end(), [](const DIEAbbrevData &AbbrevData) {
2300           return AbbrevData.getAttribute() == dwarf::DW_AT_stmt_list;
2301         });
2302     assert(Stmt < Abbrev.end() && "Didn't find DW_AT_stmt_list in cloned DIE!");
2303     DIEInteger *StmtAttr =
2304         cast<DIEInteger>(OutputDIE->getValues()[Stmt - Abbrev.begin()]);
2305     StmtAttr->setValue(Streamer->getLineSectionSize());
2306   }
2307
2308   // Parse the original line info for the unit.
2309   DWARFDebugLine::LineTable LineTable;
2310   uint32_t StmtOffset = StmtList;
2311   StringRef LineData = OrigDwarf.getLineSection().Data;
2312   DataExtractor LineExtractor(LineData, OrigDwarf.isLittleEndian(),
2313                               Unit.getOrigUnit().getAddressByteSize());
2314   LineTable.parse(LineExtractor, &OrigDwarf.getLineSection().Relocs,
2315                   &StmtOffset);
2316
2317   // This vector is the output line table.
2318   std::vector<DWARFDebugLine::Row> NewRows;
2319   NewRows.reserve(LineTable.Rows.size());
2320
2321   // Current sequence of rows being extracted, before being inserted
2322   // in NewRows.
2323   std::vector<DWARFDebugLine::Row> Seq;
2324   const auto &FunctionRanges = Unit.getFunctionRanges();
2325   auto InvalidRange = FunctionRanges.end(), CurrRange = InvalidRange;
2326
2327   // FIXME: This logic is meant to generate exactly the same output as
2328   // Darwin's classic dsynutil. There is a nicer way to implement this
2329   // by simply putting all the relocated line info in NewRows and simply
2330   // sorting NewRows before passing it to emitLineTableForUnit. This
2331   // should be correct as sequences for a function should stay
2332   // together in the sorted output. There are a few corner cases that
2333   // look suspicious though, and that required to implement the logic
2334   // this way. Revisit that once initial validation is finished.
2335
2336   // Iterate over the object file line info and extract the sequences
2337   // that correspond to linked functions.
2338   for (auto &Row : LineTable.Rows) {
2339     // Check wether we stepped out of the range. The range is
2340     // half-open, but consider accept the end address of the range if
2341     // it is marked as end_sequence in the input (because in that
2342     // case, the relocation offset is accurate and that entry won't
2343     // serve as the start of another function).
2344     if (CurrRange == InvalidRange || Row.Address < CurrRange.start() ||
2345         Row.Address > CurrRange.stop() ||
2346         (Row.Address == CurrRange.stop() && !Row.EndSequence)) {
2347       // We just stepped out of a known range. Insert a end_sequence
2348       // corresponding to the end of the range.
2349       uint64_t StopAddress = CurrRange != InvalidRange
2350                                  ? CurrRange.stop() + CurrRange.value()
2351                                  : -1ULL;
2352       CurrRange = FunctionRanges.find(Row.Address);
2353       bool CurrRangeValid =
2354           CurrRange != InvalidRange && CurrRange.start() <= Row.Address;
2355       if (!CurrRangeValid) {
2356         CurrRange = InvalidRange;
2357         if (StopAddress != -1ULL) {
2358           // Try harder by looking in the DebugMapObject function
2359           // ranges map. There are corner cases where this finds a
2360           // valid entry. It's unclear if this is right or wrong, but
2361           // for now do as dsymutil.
2362           // FIXME: Understand exactly what cases this addresses and
2363           // potentially remove it along with the Ranges map.
2364           auto Range = Ranges.lower_bound(Row.Address);
2365           if (Range != Ranges.begin() && Range != Ranges.end())
2366             --Range;
2367
2368           if (Range != Ranges.end() && Range->first <= Row.Address &&
2369               Range->second.first >= Row.Address) {
2370             StopAddress = Row.Address + Range->second.second;
2371           }
2372         }
2373       }
2374       if (StopAddress != -1ULL && !Seq.empty()) {
2375         // Insert end sequence row with the computed end address, but
2376         // the same line as the previous one.
2377         Seq.emplace_back(Seq.back());
2378         Seq.back().Address = StopAddress;
2379         Seq.back().EndSequence = 1;
2380         Seq.back().PrologueEnd = 0;
2381         Seq.back().BasicBlock = 0;
2382         Seq.back().EpilogueBegin = 0;
2383         insertLineSequence(Seq, NewRows);
2384       }
2385
2386       if (!CurrRangeValid)
2387         continue;
2388     }
2389
2390     // Ignore empty sequences.
2391     if (Row.EndSequence && Seq.empty())
2392       continue;
2393
2394     // Relocate row address and add it to the current sequence.
2395     Row.Address += CurrRange.value();
2396     Seq.emplace_back(Row);
2397
2398     if (Row.EndSequence)
2399       insertLineSequence(Seq, NewRows);
2400   }
2401
2402   // Finished extracting, now emit the line tables.
2403   uint32_t PrologueEnd = StmtList + 10 + LineTable.Prologue.PrologueLength;
2404   // FIXME: LLVM hardcodes it's prologue values. We just copy the
2405   // prologue over and that works because we act as both producer and
2406   // consumer. It would be nicer to have a real configurable line
2407   // table emitter.
2408   if (LineTable.Prologue.Version != 2 ||
2409       LineTable.Prologue.DefaultIsStmt != DWARF2_LINE_DEFAULT_IS_STMT ||
2410       LineTable.Prologue.LineBase != -5 || LineTable.Prologue.LineRange != 14 ||
2411       LineTable.Prologue.OpcodeBase != 13)
2412     reportWarning("line table paramters mismatch. Cannot emit.");
2413   else
2414     Streamer->emitLineTableForUnit(LineData.slice(StmtList + 4, PrologueEnd),
2415                                    LineTable.Prologue.MinInstLength, NewRows,
2416                                    Unit.getOrigUnit().getAddressByteSize());
2417 }
2418
2419 void DwarfLinker::emitAcceleratorEntriesForUnit(CompileUnit &Unit) {
2420   Streamer->emitPubNamesForUnit(Unit);
2421   Streamer->emitPubTypesForUnit(Unit);
2422 }
2423
2424 bool DwarfLinker::link(const DebugMap &Map) {
2425
2426   if (Map.begin() == Map.end()) {
2427     errs() << "Empty debug map.\n";
2428     return false;
2429   }
2430
2431   if (!createStreamer(Map.getTriple(), OutputFilename))
2432     return false;
2433
2434   // Size of the DIEs (and headers) generated for the linked output.
2435   uint64_t OutputDebugInfoSize = 0;
2436   // A unique ID that identifies each compile unit.
2437   unsigned UnitID = 0;
2438   for (const auto &Obj : Map.objects()) {
2439     CurrentDebugObject = Obj.get();
2440
2441     if (Options.Verbose)
2442       outs() << "DEBUG MAP OBJECT: " << Obj->getObjectFilename() << "\n";
2443     auto ErrOrObj = BinHolder.GetObjectFile(Obj->getObjectFilename());
2444     if (std::error_code EC = ErrOrObj.getError()) {
2445       reportWarning(Twine(Obj->getObjectFilename()) + ": " + EC.message());
2446       continue;
2447     }
2448
2449     // Look for relocations that correspond to debug map entries.
2450     if (!findValidRelocsInDebugInfo(*ErrOrObj, *Obj)) {
2451       if (Options.Verbose)
2452         outs() << "No valid relocations found. Skipping.\n";
2453       continue;
2454     }
2455
2456     // Setup access to the debug info.
2457     DWARFContextInMemory DwarfContext(*ErrOrObj);
2458     startDebugObject(DwarfContext, *Obj);
2459
2460     // In a first phase, just read in the debug info and store the DIE
2461     // parent links that we will use during the next phase.
2462     for (const auto &CU : DwarfContext.compile_units()) {
2463       auto *CUDie = CU->getCompileUnitDIE(false);
2464       if (Options.Verbose) {
2465         outs() << "Input compilation unit:";
2466         CUDie->dump(outs(), CU.get(), 0);
2467       }
2468       Units.emplace_back(*CU, UnitID++);
2469       gatherDIEParents(CUDie, 0, Units.back());
2470     }
2471
2472     // Then mark all the DIEs that need to be present in the linked
2473     // output and collect some information about them. Note that this
2474     // loop can not be merged with the previous one becaue cross-cu
2475     // references require the ParentIdx to be setup for every CU in
2476     // the object file before calling this.
2477     for (auto &CurrentUnit : Units)
2478       lookForDIEsToKeep(*CurrentUnit.getOrigUnit().getCompileUnitDIE(), *Obj,
2479                         CurrentUnit, 0);
2480
2481     // The calls to applyValidRelocs inside cloneDIE will walk the
2482     // reloc array again (in the same way findValidRelocsInDebugInfo()
2483     // did). We need to reset the NextValidReloc index to the beginning.
2484     NextValidReloc = 0;
2485
2486     // Construct the output DIE tree by cloning the DIEs we chose to
2487     // keep above. If there are no valid relocs, then there's nothing
2488     // to clone/emit.
2489     if (!ValidRelocs.empty())
2490       for (auto &CurrentUnit : Units) {
2491         const auto *InputDIE = CurrentUnit.getOrigUnit().getCompileUnitDIE();
2492         CurrentUnit.setStartOffset(OutputDebugInfoSize);
2493         DIE *OutputDIE = cloneDIE(*InputDIE, CurrentUnit, 0 /* PCOffset */,
2494                                   11 /* Unit Header size */);
2495         CurrentUnit.setOutputUnitDIE(OutputDIE);
2496         OutputDebugInfoSize = CurrentUnit.computeNextUnitOffset();
2497         if (Options.NoOutput)
2498           continue;
2499         // FIXME: for compatibility with the classic dsymutil, we emit
2500         // an empty line table for the unit, even if the unit doesn't
2501         // actually exist in the DIE tree.
2502         patchLineTableForUnit(CurrentUnit, DwarfContext);
2503         if (!OutputDIE)
2504           continue;
2505         patchRangesForUnit(CurrentUnit, DwarfContext);
2506         Streamer->emitLocationsForUnit(CurrentUnit, DwarfContext);
2507         emitAcceleratorEntriesForUnit(CurrentUnit);
2508       }
2509
2510     // Emit all the compile unit's debug information.
2511     if (!ValidRelocs.empty() && !Options.NoOutput)
2512       for (auto &CurrentUnit : Units) {
2513         generateUnitRanges(CurrentUnit);
2514         CurrentUnit.fixupForwardReferences();
2515         Streamer->emitCompileUnitHeader(CurrentUnit);
2516         if (!CurrentUnit.getOutputUnitDIE())
2517           continue;
2518         Streamer->emitDIE(*CurrentUnit.getOutputUnitDIE());
2519       }
2520
2521     // Clean-up before starting working on the next object.
2522     endDebugObject();
2523   }
2524
2525   // Emit everything that's global.
2526   if (!Options.NoOutput) {
2527     Streamer->emitAbbrevs(Abbreviations);
2528     Streamer->emitStrings(StringPool);
2529   }
2530
2531   return Options.NoOutput ? true : Streamer->finish();
2532 }
2533 }
2534
2535 bool linkDwarf(StringRef OutputFilename, const DebugMap &DM,
2536                const LinkOptions &Options) {
2537   DwarfLinker Linker(OutputFilename, Options);
2538   return Linker.link(DM);
2539 }
2540 }
2541 }