PR1255: case ranges.
[oota-llvm.git] / lib / VMCore / Dominators.cpp
1 //===- Dominators.cpp - Dominator Calculation -----------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements simple dominator construction algorithms for finding
11 // forward dominators.  Postdominators are available in libanalysis, but are not
12 // included in libvmcore, because it's not needed.  Forward dominators are
13 // needed to support the Verifier pass.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/Analysis/Dominators.h"
18 #include "llvm/Support/CFG.h"
19 #include "llvm/Support/Compiler.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/ADT/DepthFirstIterator.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/Analysis/DominatorInternals.h"
25 #include "llvm/Assembly/Writer.h"
26 #include "llvm/Instructions.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/Support/CommandLine.h"
29 #include <algorithm>
30 using namespace llvm;
31
32 // Always verify dominfo if expensive checking is enabled.
33 #ifdef XDEBUG
34 static bool VerifyDomInfo = true;
35 #else
36 static bool VerifyDomInfo = false;
37 #endif
38 static cl::opt<bool,true>
39 VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo),
40                cl::desc("Verify dominator info (time consuming)"));
41
42 //===----------------------------------------------------------------------===//
43 //  DominatorTree Implementation
44 //===----------------------------------------------------------------------===//
45 //
46 // Provide public access to DominatorTree information.  Implementation details
47 // can be found in DominatorInternals.h.
48 //
49 //===----------------------------------------------------------------------===//
50
51 TEMPLATE_INSTANTIATION(class llvm::DomTreeNodeBase<BasicBlock>);
52 TEMPLATE_INSTANTIATION(class llvm::DominatorTreeBase<BasicBlock>);
53
54 char DominatorTree::ID = 0;
55 INITIALIZE_PASS(DominatorTree, "domtree",
56                 "Dominator Tree Construction", true, true)
57
58 bool DominatorTree::runOnFunction(Function &F) {
59   DT->recalculate(F);
60   return false;
61 }
62
63 void DominatorTree::verifyAnalysis() const {
64   if (!VerifyDomInfo) return;
65
66   Function &F = *getRoot()->getParent();
67
68   DominatorTree OtherDT;
69   OtherDT.getBase().recalculate(F);
70   if (compare(OtherDT)) {
71     errs() << "DominatorTree is not up to date!\nComputed:\n";
72     print(errs());
73     errs() << "\nActual:\n";
74     OtherDT.print(errs());
75     abort();
76   }
77 }
78
79 void DominatorTree::print(raw_ostream &OS, const Module *) const {
80   DT->print(OS);
81 }
82
83 // dominates - Return true if Def dominates a use in User. This performs
84 // the special checks necessary if Def and User are in the same basic block.
85 // Note that Def doesn't dominate a use in Def itself!
86 bool DominatorTree::dominates(const Instruction *Def,
87                               const Instruction *User) const {
88   const BasicBlock *UseBB = User->getParent();
89   const BasicBlock *DefBB = Def->getParent();
90
91   // Any unreachable use is dominated, even if Def == User.
92   if (!isReachableFromEntry(UseBB))
93     return true;
94
95   // Unreachable definitions don't dominate anything.
96   if (!isReachableFromEntry(DefBB))
97     return false;
98
99   // An instruction doesn't dominate a use in itself.
100   if (Def == User)
101     return false;
102
103   // The value defined by an invoke dominates an instruction only if
104   // it dominates every instruction in UseBB.
105   // A PHI is dominated only if the instruction dominates every possible use
106   // in the UseBB.
107   if (isa<InvokeInst>(Def) || isa<PHINode>(User))
108     return dominates(Def, UseBB);
109
110   if (DefBB != UseBB)
111     return dominates(DefBB, UseBB);
112
113   // Loop through the basic block until we find Def or User.
114   BasicBlock::const_iterator I = DefBB->begin();
115   for (; &*I != Def && &*I != User; ++I)
116     /*empty*/;
117
118   return &*I == Def;
119 }
120
121 // true if Def would dominate a use in any instruction in UseBB.
122 // note that dominates(Def, Def->getParent()) is false.
123 bool DominatorTree::dominates(const Instruction *Def,
124                               const BasicBlock *UseBB) const {
125   const BasicBlock *DefBB = Def->getParent();
126
127   // Any unreachable use is dominated, even if DefBB == UseBB.
128   if (!isReachableFromEntry(UseBB))
129     return true;
130
131   // Unreachable definitions don't dominate anything.
132   if (!isReachableFromEntry(DefBB))
133     return false;
134
135   if (DefBB == UseBB)
136     return false;
137
138   const InvokeInst *II = dyn_cast<InvokeInst>(Def);
139   if (!II)
140     return dominates(DefBB, UseBB);
141
142   // Invoke results are only usable in the normal destination, not in the
143   // exceptional destination.
144   BasicBlock *NormalDest = II->getNormalDest();
145   if (!dominates(NormalDest, UseBB))
146     return false;
147
148   // Simple case: if the normal destination has a single predecessor, the
149   // fact that it dominates the use block implies that we also do.
150   if (NormalDest->getSinglePredecessor())
151     return true;
152
153   // The normal edge from the invoke is critical. Conceptually, what we would
154   // like to do is split it and check if the new block dominates the use.
155   // With X being the new block, the graph would look like:
156   //
157   //        DefBB
158   //          /\      .  .
159   //         /  \     .  .
160   //        /    \    .  .
161   //       /      \   |  |
162   //      A        X  B  C
163   //      |         \ | /
164   //      .          \|/
165   //      .      NormalDest
166   //      .
167   //
168   // Given the definition of dominance, NormalDest is dominated by X iff X
169   // dominates all of NormalDest's predecessors (X, B, C in the example). X
170   // trivially dominates itself, so we only have to find if it dominates the
171   // other predecessors. Since the only way out of X is via NormalDest, X can
172   // only properly dominate a node if NormalDest dominates that node too.
173   for (pred_iterator PI = pred_begin(NormalDest),
174          E = pred_end(NormalDest); PI != E; ++PI) {
175     const BasicBlock *BB = *PI;
176     if (BB == DefBB)
177       continue;
178
179     if (!DT->isReachableFromEntry(BB))
180       continue;
181
182     if (!dominates(NormalDest, BB))
183       return false;
184   }
185   return true;
186 }
187
188 bool DominatorTree::dominates(const Instruction *Def,
189                               const Use &U) const {
190   Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
191
192   // Instructions do not dominate non-instructions.
193   if (!UserInst)
194     return false;
195
196   const BasicBlock *DefBB = Def->getParent();
197
198   // Determine the block in which the use happens. PHI nodes use
199   // their operands on edges; simulate this by thinking of the use
200   // happening at the end of the predecessor block.
201   const BasicBlock *UseBB;
202   if (PHINode *PN = dyn_cast<PHINode>(UserInst))
203     UseBB = PN->getIncomingBlock(U);
204   else
205     UseBB = UserInst->getParent();
206
207   // Any unreachable use is dominated, even if Def == User.
208   if (!isReachableFromEntry(UseBB))
209     return true;
210
211   // Unreachable definitions don't dominate anything.
212   if (!isReachableFromEntry(DefBB))
213     return false;
214
215   // Invoke instructions define their return values on the edges
216   // to their normal successors, so we have to handle them specially.
217   // Among other things, this means they don't dominate anything in
218   // their own block, except possibly a phi, so we don't need to
219   // walk the block in any case.
220   if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) {
221     // A PHI in the normal successor using the invoke's return value is
222     // dominated by the invoke's return value.
223     if (isa<PHINode>(UserInst) &&
224         UserInst->getParent() == II->getNormalDest() &&
225         cast<PHINode>(UserInst)->getIncomingBlock(U) == DefBB)
226       return true;
227
228     // Otherwise use the instruction-dominates-block query, which
229     // handles the crazy case of an invoke with a critical edge
230     // properly.
231     return dominates(Def, UseBB);
232   }
233
234   // If the def and use are in different blocks, do a simple CFG dominator
235   // tree query.
236   if (DefBB != UseBB)
237     return dominates(DefBB, UseBB);
238
239   // Ok, def and use are in the same block. If the def is an invoke, it
240   // doesn't dominate anything in the block. If it's a PHI, it dominates
241   // everything in the block.
242   if (isa<PHINode>(UserInst))
243     return true;
244
245   // Otherwise, just loop through the basic block until we find Def or User.
246   BasicBlock::const_iterator I = DefBB->begin();
247   for (; &*I != Def && &*I != UserInst; ++I)
248     /*empty*/;
249
250   return &*I != UserInst;
251 }
252
253 bool DominatorTree::isReachableFromEntry(const Use &U) const {
254   Instruction *I = dyn_cast<Instruction>(U.getUser());
255
256   // ConstantExprs aren't really reachable from the entry block, but they
257   // don't need to be treated like unreachable code either.
258   if (!I) return true;
259
260   // PHI nodes use their operands on their incoming edges.
261   if (PHINode *PN = dyn_cast<PHINode>(I))
262     return isReachableFromEntry(PN->getIncomingBlock(U));
263
264   // Everything else uses their operands in their own block.
265   return isReachableFromEntry(I->getParent());
266 }