1 //===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This library implements the functionality defined in llvm/Assembly/Writer.h
12 // Note that these routines must be extremely tolerant of various errors in the
13 // LLVM code, because it can be used for debugging transformations.
15 //===----------------------------------------------------------------------===//
17 #include "llvm/Assembly/Writer.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/Assembly/AssemblyAnnotationWriter.h"
23 #include "llvm/Assembly/PrintModulePass.h"
24 #include "llvm/CallingConv.h"
25 #include "llvm/Constants.h"
26 #include "llvm/DebugInfo.h"
27 #include "llvm/DerivedTypes.h"
28 #include "llvm/InlineAsm.h"
29 #include "llvm/IntrinsicInst.h"
30 #include "llvm/LLVMContext.h"
31 #include "llvm/Module.h"
32 #include "llvm/Operator.h"
33 #include "llvm/Support/CFG.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/Dwarf.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/FormattedStream.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/TypeFinder.h"
40 #include "llvm/ValueSymbolTable.h"
45 // Make virtual table appear in this compilation unit.
46 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
48 //===----------------------------------------------------------------------===//
50 //===----------------------------------------------------------------------===//
52 static const Module *getModuleFromVal(const Value *V) {
53 if (const Argument *MA = dyn_cast<Argument>(V))
54 return MA->getParent() ? MA->getParent()->getParent() : 0;
56 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
57 return BB->getParent() ? BB->getParent()->getParent() : 0;
59 if (const Instruction *I = dyn_cast<Instruction>(V)) {
60 const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
61 return M ? M->getParent() : 0;
64 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
65 return GV->getParent();
69 static void PrintCallingConv(unsigned cc, raw_ostream &Out)
72 case CallingConv::Fast: Out << "fastcc"; break;
73 case CallingConv::Cold: Out << "coldcc"; break;
74 case CallingConv::X86_StdCall: Out << "x86_stdcallcc"; break;
75 case CallingConv::X86_FastCall: Out << "x86_fastcallcc"; break;
76 case CallingConv::X86_ThisCall: Out << "x86_thiscallcc"; break;
77 case CallingConv::Intel_OCL_BI: Out << "intel_ocl_bicc"; break;
78 case CallingConv::ARM_APCS: Out << "arm_apcscc"; break;
79 case CallingConv::ARM_AAPCS: Out << "arm_aapcscc"; break;
80 case CallingConv::ARM_AAPCS_VFP:Out << "arm_aapcs_vfpcc"; break;
81 case CallingConv::MSP430_INTR: Out << "msp430_intrcc"; break;
82 case CallingConv::PTX_Kernel: Out << "ptx_kernel"; break;
83 case CallingConv::PTX_Device: Out << "ptx_device"; break;
84 default: Out << "cc" << cc; break;
88 // PrintEscapedString - Print each character of the specified string, escaping
89 // it if it is not printable or if it is an escape char.
90 static void PrintEscapedString(StringRef Name, raw_ostream &Out) {
91 for (unsigned i = 0, e = Name.size(); i != e; ++i) {
92 unsigned char C = Name[i];
93 if (isprint(C) && C != '\\' && C != '"')
96 Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
107 /// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
108 /// prefixed with % (if the string only contains simple characters) or is
109 /// surrounded with ""'s (if it has special chars in it). Print it out.
110 static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
111 assert(!Name.empty() && "Cannot get empty name!");
113 case NoPrefix: break;
114 case GlobalPrefix: OS << '@'; break;
115 case LabelPrefix: break;
116 case LocalPrefix: OS << '%'; break;
119 // Scan the name to see if it needs quotes first.
120 bool NeedsQuotes = isdigit(Name[0]);
122 for (unsigned i = 0, e = Name.size(); i != e; ++i) {
123 // By making this unsigned, the value passed in to isalnum will always be
124 // in the range 0-255. This is important when building with MSVC because
125 // its implementation will assert. This situation can arise when dealing
126 // with UTF-8 multibyte characters.
127 unsigned char C = Name[i];
128 if (!isalnum(C) && C != '-' && C != '.' && C != '_') {
135 // If we didn't need any quotes, just write out the name in one blast.
141 // Okay, we need quotes. Output the quotes and escape any scary characters as
144 PrintEscapedString(Name, OS);
148 /// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
149 /// prefixed with % (if the string only contains simple characters) or is
150 /// surrounded with ""'s (if it has special chars in it). Print it out.
151 static void PrintLLVMName(raw_ostream &OS, const Value *V) {
152 PrintLLVMName(OS, V->getName(),
153 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
156 //===----------------------------------------------------------------------===//
157 // TypePrinting Class: Type printing machinery
158 //===----------------------------------------------------------------------===//
160 /// TypePrinting - Type printing machinery.
163 TypePrinting(const TypePrinting &) LLVM_DELETED_FUNCTION;
164 void operator=(const TypePrinting&) LLVM_DELETED_FUNCTION;
167 /// NamedTypes - The named types that are used by the current module.
168 TypeFinder NamedTypes;
170 /// NumberedTypes - The numbered types, along with their value.
171 DenseMap<StructType*, unsigned> NumberedTypes;
177 void incorporateTypes(const Module &M);
179 void print(Type *Ty, raw_ostream &OS);
181 void printStructBody(StructType *Ty, raw_ostream &OS);
183 } // end anonymous namespace.
186 void TypePrinting::incorporateTypes(const Module &M) {
187 NamedTypes.run(M, false);
189 // The list of struct types we got back includes all the struct types, split
190 // the unnamed ones out to a numbering and remove the anonymous structs.
191 unsigned NextNumber = 0;
193 std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E;
194 for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) {
195 StructType *STy = *I;
197 // Ignore anonymous types.
198 if (STy->isLiteral())
201 if (STy->getName().empty())
202 NumberedTypes[STy] = NextNumber++;
207 NamedTypes.erase(NextToUse, NamedTypes.end());
211 /// CalcTypeName - Write the specified type to the specified raw_ostream, making
212 /// use of type names or up references to shorten the type name where possible.
213 void TypePrinting::print(Type *Ty, raw_ostream &OS) {
214 switch (Ty->getTypeID()) {
215 case Type::VoidTyID: OS << "void"; break;
216 case Type::HalfTyID: OS << "half"; break;
217 case Type::FloatTyID: OS << "float"; break;
218 case Type::DoubleTyID: OS << "double"; break;
219 case Type::X86_FP80TyID: OS << "x86_fp80"; break;
220 case Type::FP128TyID: OS << "fp128"; break;
221 case Type::PPC_FP128TyID: OS << "ppc_fp128"; break;
222 case Type::LabelTyID: OS << "label"; break;
223 case Type::MetadataTyID: OS << "metadata"; break;
224 case Type::X86_MMXTyID: OS << "x86_mmx"; break;
225 case Type::IntegerTyID:
226 OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
229 case Type::FunctionTyID: {
230 FunctionType *FTy = cast<FunctionType>(Ty);
231 print(FTy->getReturnType(), OS);
233 for (FunctionType::param_iterator I = FTy->param_begin(),
234 E = FTy->param_end(); I != E; ++I) {
235 if (I != FTy->param_begin())
239 if (FTy->isVarArg()) {
240 if (FTy->getNumParams()) OS << ", ";
246 case Type::StructTyID: {
247 StructType *STy = cast<StructType>(Ty);
249 if (STy->isLiteral())
250 return printStructBody(STy, OS);
252 if (!STy->getName().empty())
253 return PrintLLVMName(OS, STy->getName(), LocalPrefix);
255 DenseMap<StructType*, unsigned>::iterator I = NumberedTypes.find(STy);
256 if (I != NumberedTypes.end())
257 OS << '%' << I->second;
258 else // Not enumerated, print the hex address.
259 OS << "%\"type " << STy << '\"';
262 case Type::PointerTyID: {
263 PointerType *PTy = cast<PointerType>(Ty);
264 print(PTy->getElementType(), OS);
265 if (unsigned AddressSpace = PTy->getAddressSpace())
266 OS << " addrspace(" << AddressSpace << ')';
270 case Type::ArrayTyID: {
271 ArrayType *ATy = cast<ArrayType>(Ty);
272 OS << '[' << ATy->getNumElements() << " x ";
273 print(ATy->getElementType(), OS);
277 case Type::VectorTyID: {
278 VectorType *PTy = cast<VectorType>(Ty);
279 OS << "<" << PTy->getNumElements() << " x ";
280 print(PTy->getElementType(), OS);
285 OS << "<unrecognized-type>";
290 void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
291 if (STy->isOpaque()) {
299 if (STy->getNumElements() == 0) {
302 StructType::element_iterator I = STy->element_begin();
305 for (StructType::element_iterator E = STy->element_end(); I != E; ++I) {
318 //===----------------------------------------------------------------------===//
319 // SlotTracker Class: Enumerate slot numbers for unnamed values
320 //===----------------------------------------------------------------------===//
324 /// This class provides computation of slot numbers for LLVM Assembly writing.
328 /// ValueMap - A mapping of Values to slot numbers.
329 typedef DenseMap<const Value*, unsigned> ValueMap;
332 /// TheModule - The module for which we are holding slot numbers.
333 const Module* TheModule;
335 /// TheFunction - The function for which we are holding slot numbers.
336 const Function* TheFunction;
337 bool FunctionProcessed;
339 /// mMap - The slot map for the module level data.
343 /// fMap - The slot map for the function level data.
347 /// mdnMap - Map for MDNodes.
348 DenseMap<const MDNode*, unsigned> mdnMap;
351 /// Construct from a module
352 explicit SlotTracker(const Module *M);
353 /// Construct from a function, starting out in incorp state.
354 explicit SlotTracker(const Function *F);
356 /// Return the slot number of the specified value in it's type
357 /// plane. If something is not in the SlotTracker, return -1.
358 int getLocalSlot(const Value *V);
359 int getGlobalSlot(const GlobalValue *V);
360 int getMetadataSlot(const MDNode *N);
362 /// If you'd like to deal with a function instead of just a module, use
363 /// this method to get its data into the SlotTracker.
364 void incorporateFunction(const Function *F) {
366 FunctionProcessed = false;
369 /// After calling incorporateFunction, use this method to remove the
370 /// most recently incorporated function from the SlotTracker. This
371 /// will reset the state of the machine back to just the module contents.
372 void purgeFunction();
374 /// MDNode map iterators.
375 typedef DenseMap<const MDNode*, unsigned>::iterator mdn_iterator;
376 mdn_iterator mdn_begin() { return mdnMap.begin(); }
377 mdn_iterator mdn_end() { return mdnMap.end(); }
378 unsigned mdn_size() const { return mdnMap.size(); }
379 bool mdn_empty() const { return mdnMap.empty(); }
381 /// This function does the actual initialization.
382 inline void initialize();
384 // Implementation Details
386 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
387 void CreateModuleSlot(const GlobalValue *V);
389 /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
390 void CreateMetadataSlot(const MDNode *N);
392 /// CreateFunctionSlot - Insert the specified Value* into the slot table.
393 void CreateFunctionSlot(const Value *V);
395 /// Add all of the module level global variables (and their initializers)
396 /// and function declarations, but not the contents of those functions.
397 void processModule();
399 /// Add all of the functions arguments, basic blocks, and instructions.
400 void processFunction();
402 SlotTracker(const SlotTracker &) LLVM_DELETED_FUNCTION;
403 void operator=(const SlotTracker &) LLVM_DELETED_FUNCTION;
406 } // end anonymous namespace
409 static SlotTracker *createSlotTracker(const Value *V) {
410 if (const Argument *FA = dyn_cast<Argument>(V))
411 return new SlotTracker(FA->getParent());
413 if (const Instruction *I = dyn_cast<Instruction>(V))
415 return new SlotTracker(I->getParent()->getParent());
417 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
418 return new SlotTracker(BB->getParent());
420 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
421 return new SlotTracker(GV->getParent());
423 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
424 return new SlotTracker(GA->getParent());
426 if (const Function *Func = dyn_cast<Function>(V))
427 return new SlotTracker(Func);
429 if (const MDNode *MD = dyn_cast<MDNode>(V)) {
430 if (!MD->isFunctionLocal())
431 return new SlotTracker(MD->getFunction());
433 return new SlotTracker((Function *)0);
440 #define ST_DEBUG(X) dbgs() << X
445 // Module level constructor. Causes the contents of the Module (sans functions)
446 // to be added to the slot table.
447 SlotTracker::SlotTracker(const Module *M)
448 : TheModule(M), TheFunction(0), FunctionProcessed(false),
449 mNext(0), fNext(0), mdnNext(0) {
452 // Function level constructor. Causes the contents of the Module and the one
453 // function provided to be added to the slot table.
454 SlotTracker::SlotTracker(const Function *F)
455 : TheModule(F ? F->getParent() : 0), TheFunction(F), FunctionProcessed(false),
456 mNext(0), fNext(0), mdnNext(0) {
459 inline void SlotTracker::initialize() {
462 TheModule = 0; ///< Prevent re-processing next time we're called.
465 if (TheFunction && !FunctionProcessed)
469 // Iterate through all the global variables, functions, and global
470 // variable initializers and create slots for them.
471 void SlotTracker::processModule() {
472 ST_DEBUG("begin processModule!\n");
474 // Add all of the unnamed global variables to the value table.
475 for (Module::const_global_iterator I = TheModule->global_begin(),
476 E = TheModule->global_end(); I != E; ++I) {
481 // Add metadata used by named metadata.
482 for (Module::const_named_metadata_iterator
483 I = TheModule->named_metadata_begin(),
484 E = TheModule->named_metadata_end(); I != E; ++I) {
485 const NamedMDNode *NMD = I;
486 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
487 CreateMetadataSlot(NMD->getOperand(i));
490 // Add all the unnamed functions to the table.
491 for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
496 ST_DEBUG("end processModule!\n");
499 // Process the arguments, basic blocks, and instructions of a function.
500 void SlotTracker::processFunction() {
501 ST_DEBUG("begin processFunction!\n");
504 // Add all the function arguments with no names.
505 for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
506 AE = TheFunction->arg_end(); AI != AE; ++AI)
508 CreateFunctionSlot(AI);
510 ST_DEBUG("Inserting Instructions:\n");
512 SmallVector<std::pair<unsigned, MDNode*>, 4> MDForInst;
514 // Add all of the basic blocks and instructions with no names.
515 for (Function::const_iterator BB = TheFunction->begin(),
516 E = TheFunction->end(); BB != E; ++BB) {
518 CreateFunctionSlot(BB);
520 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E;
522 if (!I->getType()->isVoidTy() && !I->hasName())
523 CreateFunctionSlot(I);
525 // Intrinsics can directly use metadata. We allow direct calls to any
526 // llvm.foo function here, because the target may not be linked into the
528 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
529 if (Function *F = CI->getCalledFunction())
530 if (F->getName().startswith("llvm."))
531 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
532 if (MDNode *N = dyn_cast_or_null<MDNode>(I->getOperand(i)))
533 CreateMetadataSlot(N);
536 // Process metadata attached with this instruction.
537 I->getAllMetadata(MDForInst);
538 for (unsigned i = 0, e = MDForInst.size(); i != e; ++i)
539 CreateMetadataSlot(MDForInst[i].second);
544 FunctionProcessed = true;
546 ST_DEBUG("end processFunction!\n");
549 /// Clean up after incorporating a function. This is the only way to get out of
550 /// the function incorporation state that affects get*Slot/Create*Slot. Function
551 /// incorporation state is indicated by TheFunction != 0.
552 void SlotTracker::purgeFunction() {
553 ST_DEBUG("begin purgeFunction!\n");
554 fMap.clear(); // Simply discard the function level map
556 FunctionProcessed = false;
557 ST_DEBUG("end purgeFunction!\n");
560 /// getGlobalSlot - Get the slot number of a global value.
561 int SlotTracker::getGlobalSlot(const GlobalValue *V) {
562 // Check for uninitialized state and do lazy initialization.
565 // Find the value in the module map
566 ValueMap::iterator MI = mMap.find(V);
567 return MI == mMap.end() ? -1 : (int)MI->second;
570 /// getMetadataSlot - Get the slot number of a MDNode.
571 int SlotTracker::getMetadataSlot(const MDNode *N) {
572 // Check for uninitialized state and do lazy initialization.
575 // Find the MDNode in the module map
576 mdn_iterator MI = mdnMap.find(N);
577 return MI == mdnMap.end() ? -1 : (int)MI->second;
581 /// getLocalSlot - Get the slot number for a value that is local to a function.
582 int SlotTracker::getLocalSlot(const Value *V) {
583 assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
585 // Check for uninitialized state and do lazy initialization.
588 ValueMap::iterator FI = fMap.find(V);
589 return FI == fMap.end() ? -1 : (int)FI->second;
593 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
594 void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
595 assert(V && "Can't insert a null Value into SlotTracker!");
596 assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
597 assert(!V->hasName() && "Doesn't need a slot!");
599 unsigned DestSlot = mNext++;
602 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
604 // G = Global, F = Function, A = Alias, o = other
605 ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
606 (isa<Function>(V) ? 'F' :
607 (isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n");
610 /// CreateSlot - Create a new slot for the specified value if it has no name.
611 void SlotTracker::CreateFunctionSlot(const Value *V) {
612 assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
614 unsigned DestSlot = fNext++;
617 // G = Global, F = Function, o = other
618 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
619 DestSlot << " [o]\n");
622 /// CreateModuleSlot - Insert the specified MDNode* into the slot table.
623 void SlotTracker::CreateMetadataSlot(const MDNode *N) {
624 assert(N && "Can't insert a null Value into SlotTracker!");
626 // Don't insert if N is a function-local metadata, these are always printed
628 if (!N->isFunctionLocal()) {
629 mdn_iterator I = mdnMap.find(N);
630 if (I != mdnMap.end())
633 unsigned DestSlot = mdnNext++;
634 mdnMap[N] = DestSlot;
637 // Recursively add any MDNodes referenced by operands.
638 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
639 if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
640 CreateMetadataSlot(Op);
643 //===----------------------------------------------------------------------===//
644 // AsmWriter Implementation
645 //===----------------------------------------------------------------------===//
647 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
648 TypePrinting *TypePrinter,
649 SlotTracker *Machine,
650 const Module *Context);
654 static const char *getPredicateText(unsigned predicate) {
655 const char * pred = "unknown";
657 case FCmpInst::FCMP_FALSE: pred = "false"; break;
658 case FCmpInst::FCMP_OEQ: pred = "oeq"; break;
659 case FCmpInst::FCMP_OGT: pred = "ogt"; break;
660 case FCmpInst::FCMP_OGE: pred = "oge"; break;
661 case FCmpInst::FCMP_OLT: pred = "olt"; break;
662 case FCmpInst::FCMP_OLE: pred = "ole"; break;
663 case FCmpInst::FCMP_ONE: pred = "one"; break;
664 case FCmpInst::FCMP_ORD: pred = "ord"; break;
665 case FCmpInst::FCMP_UNO: pred = "uno"; break;
666 case FCmpInst::FCMP_UEQ: pred = "ueq"; break;
667 case FCmpInst::FCMP_UGT: pred = "ugt"; break;
668 case FCmpInst::FCMP_UGE: pred = "uge"; break;
669 case FCmpInst::FCMP_ULT: pred = "ult"; break;
670 case FCmpInst::FCMP_ULE: pred = "ule"; break;
671 case FCmpInst::FCMP_UNE: pred = "une"; break;
672 case FCmpInst::FCMP_TRUE: pred = "true"; break;
673 case ICmpInst::ICMP_EQ: pred = "eq"; break;
674 case ICmpInst::ICMP_NE: pred = "ne"; break;
675 case ICmpInst::ICMP_SGT: pred = "sgt"; break;
676 case ICmpInst::ICMP_SGE: pred = "sge"; break;
677 case ICmpInst::ICMP_SLT: pred = "slt"; break;
678 case ICmpInst::ICMP_SLE: pred = "sle"; break;
679 case ICmpInst::ICMP_UGT: pred = "ugt"; break;
680 case ICmpInst::ICMP_UGE: pred = "uge"; break;
681 case ICmpInst::ICMP_ULT: pred = "ult"; break;
682 case ICmpInst::ICMP_ULE: pred = "ule"; break;
687 static void writeAtomicRMWOperation(raw_ostream &Out,
688 AtomicRMWInst::BinOp Op) {
690 default: Out << " <unknown operation " << Op << ">"; break;
691 case AtomicRMWInst::Xchg: Out << " xchg"; break;
692 case AtomicRMWInst::Add: Out << " add"; break;
693 case AtomicRMWInst::Sub: Out << " sub"; break;
694 case AtomicRMWInst::And: Out << " and"; break;
695 case AtomicRMWInst::Nand: Out << " nand"; break;
696 case AtomicRMWInst::Or: Out << " or"; break;
697 case AtomicRMWInst::Xor: Out << " xor"; break;
698 case AtomicRMWInst::Max: Out << " max"; break;
699 case AtomicRMWInst::Min: Out << " min"; break;
700 case AtomicRMWInst::UMax: Out << " umax"; break;
701 case AtomicRMWInst::UMin: Out << " umin"; break;
705 static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
706 if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) {
707 // Unsafe algebra implies all the others, no need to write them all out
708 if (FPO->hasUnsafeAlgebra())
711 if (FPO->hasNoNaNs())
713 if (FPO->hasNoInfs())
715 if (FPO->hasNoSignedZeros())
717 if (FPO->hasAllowReciprocal())
722 if (const OverflowingBinaryOperator *OBO =
723 dyn_cast<OverflowingBinaryOperator>(U)) {
724 if (OBO->hasNoUnsignedWrap())
726 if (OBO->hasNoSignedWrap())
728 } else if (const PossiblyExactOperator *Div =
729 dyn_cast<PossiblyExactOperator>(U)) {
732 } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
733 if (GEP->isInBounds())
738 static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
739 TypePrinting &TypePrinter,
740 SlotTracker *Machine,
741 const Module *Context) {
742 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
743 if (CI->getType()->isIntegerTy(1)) {
744 Out << (CI->getZExtValue() ? "true" : "false");
747 Out << CI->getValue();
751 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
752 if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle ||
753 &CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble) {
754 // We would like to output the FP constant value in exponential notation,
755 // but we cannot do this if doing so will lose precision. Check here to
756 // make sure that we only output it in exponential format if we can parse
757 // the value back and get the same value.
760 bool isHalf = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEhalf;
761 bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
762 bool isInf = CFP->getValueAPF().isInfinity();
763 bool isNaN = CFP->getValueAPF().isNaN();
764 if (!isHalf && !isInf && !isNaN) {
765 double Val = isDouble ? CFP->getValueAPF().convertToDouble() :
766 CFP->getValueAPF().convertToFloat();
767 SmallString<128> StrVal;
768 raw_svector_ostream(StrVal) << Val;
770 // Check to make sure that the stringized number is not some string like
771 // "Inf" or NaN, that atof will accept, but the lexer will not. Check
772 // that the string matches the "[-+]?[0-9]" regex.
774 if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
775 ((StrVal[0] == '-' || StrVal[0] == '+') &&
776 (StrVal[1] >= '0' && StrVal[1] <= '9'))) {
777 // Reparse stringized version!
778 if (APFloat(APFloat::IEEEdouble, StrVal).convertToDouble() == Val) {
784 // Otherwise we could not reparse it to exactly the same value, so we must
785 // output the string in hexadecimal format! Note that loading and storing
786 // floating point types changes the bits of NaNs on some hosts, notably
787 // x86, so we must not use these types.
788 assert(sizeof(double) == sizeof(uint64_t) &&
789 "assuming that double is 64 bits!");
791 APFloat apf = CFP->getValueAPF();
792 // Halves and floats are represented in ASCII IR as double, convert.
794 apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
797 utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()),
802 // Either half, or some form of long double.
803 // These appear as a magic letter identifying the type, then a
804 // fixed number of hex digits.
806 // Bit position, in the current word, of the next nibble to print.
809 if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) {
811 // api needed to prevent premature destruction
812 APInt api = CFP->getValueAPF().bitcastToAPInt();
813 const uint64_t* p = api.getRawData();
814 uint64_t word = p[1];
816 int width = api.getBitWidth();
817 for (int j=0; j<width; j+=4, shiftcount-=4) {
818 unsigned int nibble = (word>>shiftcount) & 15;
820 Out << (unsigned char)(nibble + '0');
822 Out << (unsigned char)(nibble - 10 + 'A');
823 if (shiftcount == 0 && j+4 < width) {
827 shiftcount = width-j-4;
831 } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad) {
834 } else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble) {
837 } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEhalf) {
841 llvm_unreachable("Unsupported floating point type");
842 // api needed to prevent premature destruction
843 APInt api = CFP->getValueAPF().bitcastToAPInt();
844 const uint64_t* p = api.getRawData();
846 int width = api.getBitWidth();
847 for (int j=0; j<width; j+=4, shiftcount-=4) {
848 unsigned int nibble = (word>>shiftcount) & 15;
850 Out << (unsigned char)(nibble + '0');
852 Out << (unsigned char)(nibble - 10 + 'A');
853 if (shiftcount == 0 && j+4 < width) {
857 shiftcount = width-j-4;
863 if (isa<ConstantAggregateZero>(CV)) {
864 Out << "zeroinitializer";
868 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
869 Out << "blockaddress(";
870 WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine,
873 WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine,
879 if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
880 Type *ETy = CA->getType()->getElementType();
882 TypePrinter.print(ETy, Out);
884 WriteAsOperandInternal(Out, CA->getOperand(0),
885 &TypePrinter, Machine,
887 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
889 TypePrinter.print(ETy, Out);
891 WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine,
898 if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
899 // As a special case, print the array as a string if it is an array of
900 // i8 with ConstantInt values.
901 if (CA->isString()) {
903 PrintEscapedString(CA->getAsString(), Out);
908 Type *ETy = CA->getType()->getElementType();
910 TypePrinter.print(ETy, Out);
912 WriteAsOperandInternal(Out, CA->getElementAsConstant(0),
913 &TypePrinter, Machine,
915 for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
917 TypePrinter.print(ETy, Out);
919 WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter,
927 if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
928 if (CS->getType()->isPacked())
931 unsigned N = CS->getNumOperands();
934 TypePrinter.print(CS->getOperand(0)->getType(), Out);
937 WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine,
940 for (unsigned i = 1; i < N; i++) {
942 TypePrinter.print(CS->getOperand(i)->getType(), Out);
945 WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine,
952 if (CS->getType()->isPacked())
957 if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
958 Type *ETy = CV->getType()->getVectorElementType();
960 TypePrinter.print(ETy, Out);
962 WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter,
964 for (unsigned i = 1, e = CV->getType()->getVectorNumElements(); i != e;++i){
966 TypePrinter.print(ETy, Out);
968 WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter,
975 if (isa<ConstantPointerNull>(CV)) {
980 if (isa<UndefValue>(CV)) {
985 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
986 Out << CE->getOpcodeName();
987 WriteOptimizationInfo(Out, CE);
989 Out << ' ' << getPredicateText(CE->getPredicate());
992 for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
993 TypePrinter.print((*OI)->getType(), Out);
995 WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context);
996 if (OI+1 != CE->op_end())
1000 if (CE->hasIndices()) {
1001 ArrayRef<unsigned> Indices = CE->getIndices();
1002 for (unsigned i = 0, e = Indices.size(); i != e; ++i)
1003 Out << ", " << Indices[i];
1008 TypePrinter.print(CE->getType(), Out);
1015 Out << "<placeholder or erroneous Constant>";
1018 static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
1019 TypePrinting *TypePrinter,
1020 SlotTracker *Machine,
1021 const Module *Context) {
1023 for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
1024 const Value *V = Node->getOperand(mi);
1028 TypePrinter->print(V->getType(), Out);
1030 WriteAsOperandInternal(Out, Node->getOperand(mi),
1031 TypePrinter, Machine, Context);
1041 /// WriteAsOperand - Write the name of the specified value out to the specified
1042 /// ostream. This can be useful when you just want to print int %reg126, not
1043 /// the whole instruction that generated it.
1045 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1046 TypePrinting *TypePrinter,
1047 SlotTracker *Machine,
1048 const Module *Context) {
1050 PrintLLVMName(Out, V);
1054 const Constant *CV = dyn_cast<Constant>(V);
1055 if (CV && !isa<GlobalValue>(CV)) {
1056 assert(TypePrinter && "Constants require TypePrinting!");
1057 WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context);
1061 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1063 if (IA->hasSideEffects())
1064 Out << "sideeffect ";
1065 if (IA->isAlignStack())
1066 Out << "alignstack ";
1067 // We don't emit the AD_ATT dialect as it's the assumed default.
1068 if (IA->getDialect() == InlineAsm::AD_Intel)
1069 Out << "inteldialect ";
1071 PrintEscapedString(IA->getAsmString(), Out);
1073 PrintEscapedString(IA->getConstraintString(), Out);
1078 if (const MDNode *N = dyn_cast<MDNode>(V)) {
1079 if (N->isFunctionLocal()) {
1080 // Print metadata inline, not via slot reference number.
1081 WriteMDNodeBodyInternal(Out, N, TypePrinter, Machine, Context);
1086 if (N->isFunctionLocal())
1087 Machine = new SlotTracker(N->getFunction());
1089 Machine = new SlotTracker(Context);
1091 int Slot = Machine->getMetadataSlot(N);
1099 if (const MDString *MDS = dyn_cast<MDString>(V)) {
1101 PrintEscapedString(MDS->getString(), Out);
1106 if (V->getValueID() == Value::PseudoSourceValueVal ||
1107 V->getValueID() == Value::FixedStackPseudoSourceValueVal) {
1114 // If we have a SlotTracker, use it.
1116 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1117 Slot = Machine->getGlobalSlot(GV);
1120 Slot = Machine->getLocalSlot(V);
1122 // If the local value didn't succeed, then we may be referring to a value
1123 // from a different function. Translate it, as this can happen when using
1124 // address of blocks.
1126 if ((Machine = createSlotTracker(V))) {
1127 Slot = Machine->getLocalSlot(V);
1131 } else if ((Machine = createSlotTracker(V))) {
1132 // Otherwise, create one to get the # and then destroy it.
1133 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1134 Slot = Machine->getGlobalSlot(GV);
1137 Slot = Machine->getLocalSlot(V);
1146 Out << Prefix << Slot;
1151 void llvm::WriteAsOperand(raw_ostream &Out, const Value *V,
1152 bool PrintType, const Module *Context) {
1154 // Fast path: Don't construct and populate a TypePrinting object if we
1155 // won't be needing any types printed.
1157 ((!isa<Constant>(V) && !isa<MDNode>(V)) ||
1158 V->hasName() || isa<GlobalValue>(V))) {
1159 WriteAsOperandInternal(Out, V, 0, 0, Context);
1163 if (Context == 0) Context = getModuleFromVal(V);
1165 TypePrinting TypePrinter;
1167 TypePrinter.incorporateTypes(*Context);
1169 TypePrinter.print(V->getType(), Out);
1173 WriteAsOperandInternal(Out, V, &TypePrinter, 0, Context);
1178 class AssemblyWriter {
1179 formatted_raw_ostream &Out;
1180 SlotTracker &Machine;
1181 const Module *TheModule;
1182 TypePrinting TypePrinter;
1183 AssemblyAnnotationWriter *AnnotationWriter;
1186 inline AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
1188 AssemblyAnnotationWriter *AAW)
1189 : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) {
1191 TypePrinter.incorporateTypes(*M);
1194 void printMDNodeBody(const MDNode *MD);
1195 void printNamedMDNode(const NamedMDNode *NMD);
1197 void printModule(const Module *M);
1199 void writeOperand(const Value *Op, bool PrintType);
1200 void writeParamOperand(const Value *Operand, Attribute Attrs);
1201 void writeAtomic(AtomicOrdering Ordering, SynchronizationScope SynchScope);
1203 void writeAllMDNodes();
1205 void printTypeIdentities();
1206 void printGlobal(const GlobalVariable *GV);
1207 void printAlias(const GlobalAlias *GV);
1208 void printFunction(const Function *F);
1209 void printArgument(const Argument *FA, Attribute Attrs);
1210 void printBasicBlock(const BasicBlock *BB);
1211 void printInstruction(const Instruction &I);
1214 // printInfoComment - Print a little comment after the instruction indicating
1215 // which slot it occupies.
1216 void printInfoComment(const Value &V);
1218 } // end of anonymous namespace
1220 void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
1222 Out << "<null operand!>";
1226 TypePrinter.print(Operand->getType(), Out);
1229 WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
1232 void AssemblyWriter::writeAtomic(AtomicOrdering Ordering,
1233 SynchronizationScope SynchScope) {
1234 if (Ordering == NotAtomic)
1237 switch (SynchScope) {
1238 case SingleThread: Out << " singlethread"; break;
1239 case CrossThread: break;
1243 default: Out << " <bad ordering " << int(Ordering) << ">"; break;
1244 case Unordered: Out << " unordered"; break;
1245 case Monotonic: Out << " monotonic"; break;
1246 case Acquire: Out << " acquire"; break;
1247 case Release: Out << " release"; break;
1248 case AcquireRelease: Out << " acq_rel"; break;
1249 case SequentiallyConsistent: Out << " seq_cst"; break;
1253 void AssemblyWriter::writeParamOperand(const Value *Operand,
1256 Out << "<null operand!>";
1261 TypePrinter.print(Operand->getType(), Out);
1262 // Print parameter attributes list
1263 if (Attrs.hasAttributes())
1264 Out << ' ' << Attrs.getAsString();
1266 // Print the operand
1267 WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
1270 void AssemblyWriter::printModule(const Module *M) {
1271 if (!M->getModuleIdentifier().empty() &&
1272 // Don't print the ID if it will start a new line (which would
1273 // require a comment char before it).
1274 M->getModuleIdentifier().find('\n') == std::string::npos)
1275 Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
1277 if (!M->getDataLayout().empty())
1278 Out << "target datalayout = \"" << M->getDataLayout() << "\"\n";
1279 if (!M->getTargetTriple().empty())
1280 Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
1282 if (!M->getModuleInlineAsm().empty()) {
1283 // Split the string into lines, to make it easier to read the .ll file.
1284 std::string Asm = M->getModuleInlineAsm();
1286 size_t NewLine = Asm.find_first_of('\n', CurPos);
1288 while (NewLine != std::string::npos) {
1289 // We found a newline, print the portion of the asm string from the
1290 // last newline up to this newline.
1291 Out << "module asm \"";
1292 PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
1296 NewLine = Asm.find_first_of('\n', CurPos);
1298 std::string rest(Asm.begin()+CurPos, Asm.end());
1299 if (!rest.empty()) {
1300 Out << "module asm \"";
1301 PrintEscapedString(rest, Out);
1306 printTypeIdentities();
1308 // Output all globals.
1309 if (!M->global_empty()) Out << '\n';
1310 for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
1312 printGlobal(I); Out << '\n';
1315 // Output all aliases.
1316 if (!M->alias_empty()) Out << "\n";
1317 for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
1321 // Output all of the functions.
1322 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1325 // Output named metadata.
1326 if (!M->named_metadata_empty()) Out << '\n';
1328 for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
1329 E = M->named_metadata_end(); I != E; ++I)
1330 printNamedMDNode(I);
1333 if (!Machine.mdn_empty()) {
1339 void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
1341 StringRef Name = NMD->getName();
1343 Out << "<empty name> ";
1345 if (isalpha(Name[0]) || Name[0] == '-' || Name[0] == '$' ||
1346 Name[0] == '.' || Name[0] == '_')
1349 Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
1350 for (unsigned i = 1, e = Name.size(); i != e; ++i) {
1351 unsigned char C = Name[i];
1352 if (isalnum(C) || C == '-' || C == '$' || C == '.' || C == '_')
1355 Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
1359 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
1361 int Slot = Machine.getMetadataSlot(NMD->getOperand(i));
1371 static void PrintLinkage(GlobalValue::LinkageTypes LT,
1372 formatted_raw_ostream &Out) {
1374 case GlobalValue::ExternalLinkage: break;
1375 case GlobalValue::PrivateLinkage: Out << "private "; break;
1376 case GlobalValue::LinkerPrivateLinkage: Out << "linker_private "; break;
1377 case GlobalValue::LinkerPrivateWeakLinkage:
1378 Out << "linker_private_weak ";
1380 case GlobalValue::InternalLinkage: Out << "internal "; break;
1381 case GlobalValue::LinkOnceAnyLinkage: Out << "linkonce "; break;
1382 case GlobalValue::LinkOnceODRLinkage: Out << "linkonce_odr "; break;
1383 case GlobalValue::LinkOnceODRAutoHideLinkage:
1384 Out << "linkonce_odr_auto_hide ";
1386 case GlobalValue::WeakAnyLinkage: Out << "weak "; break;
1387 case GlobalValue::WeakODRLinkage: Out << "weak_odr "; break;
1388 case GlobalValue::CommonLinkage: Out << "common "; break;
1389 case GlobalValue::AppendingLinkage: Out << "appending "; break;
1390 case GlobalValue::DLLImportLinkage: Out << "dllimport "; break;
1391 case GlobalValue::DLLExportLinkage: Out << "dllexport "; break;
1392 case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
1393 case GlobalValue::AvailableExternallyLinkage:
1394 Out << "available_externally ";
1400 static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
1401 formatted_raw_ostream &Out) {
1403 case GlobalValue::DefaultVisibility: break;
1404 case GlobalValue::HiddenVisibility: Out << "hidden "; break;
1405 case GlobalValue::ProtectedVisibility: Out << "protected "; break;
1409 static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
1410 formatted_raw_ostream &Out) {
1412 case GlobalVariable::NotThreadLocal:
1414 case GlobalVariable::GeneralDynamicTLSModel:
1415 Out << "thread_local ";
1417 case GlobalVariable::LocalDynamicTLSModel:
1418 Out << "thread_local(localdynamic) ";
1420 case GlobalVariable::InitialExecTLSModel:
1421 Out << "thread_local(initialexec) ";
1423 case GlobalVariable::LocalExecTLSModel:
1424 Out << "thread_local(localexec) ";
1429 void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
1430 if (GV->isMaterializable())
1431 Out << "; Materializable\n";
1433 WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent());
1436 if (!GV->hasInitializer() && GV->hasExternalLinkage())
1439 PrintLinkage(GV->getLinkage(), Out);
1440 PrintVisibility(GV->getVisibility(), Out);
1441 PrintThreadLocalModel(GV->getThreadLocalMode(), Out);
1443 if (unsigned AddressSpace = GV->getType()->getAddressSpace())
1444 Out << "addrspace(" << AddressSpace << ") ";
1445 if (GV->hasUnnamedAddr()) Out << "unnamed_addr ";
1446 Out << (GV->isConstant() ? "constant " : "global ");
1447 TypePrinter.print(GV->getType()->getElementType(), Out);
1449 if (GV->hasInitializer()) {
1451 writeOperand(GV->getInitializer(), false);
1454 if (GV->hasSection()) {
1455 Out << ", section \"";
1456 PrintEscapedString(GV->getSection(), Out);
1459 if (GV->getAlignment())
1460 Out << ", align " << GV->getAlignment();
1462 printInfoComment(*GV);
1465 void AssemblyWriter::printAlias(const GlobalAlias *GA) {
1466 if (GA->isMaterializable())
1467 Out << "; Materializable\n";
1469 // Don't crash when dumping partially built GA
1471 Out << "<<nameless>> = ";
1473 PrintLLVMName(Out, GA);
1476 PrintVisibility(GA->getVisibility(), Out);
1480 PrintLinkage(GA->getLinkage(), Out);
1482 const Constant *Aliasee = GA->getAliasee();
1485 TypePrinter.print(GA->getType(), Out);
1486 Out << " <<NULL ALIASEE>>";
1488 writeOperand(Aliasee, !isa<ConstantExpr>(Aliasee));
1491 printInfoComment(*GA);
1495 void AssemblyWriter::printTypeIdentities() {
1496 if (TypePrinter.NumberedTypes.empty() &&
1497 TypePrinter.NamedTypes.empty())
1502 // We know all the numbers that each type is used and we know that it is a
1503 // dense assignment. Convert the map to an index table.
1504 std::vector<StructType*> NumberedTypes(TypePrinter.NumberedTypes.size());
1505 for (DenseMap<StructType*, unsigned>::iterator I =
1506 TypePrinter.NumberedTypes.begin(), E = TypePrinter.NumberedTypes.end();
1508 assert(I->second < NumberedTypes.size() && "Didn't get a dense numbering?");
1509 NumberedTypes[I->second] = I->first;
1512 // Emit all numbered types.
1513 for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) {
1514 Out << '%' << i << " = type ";
1516 // Make sure we print out at least one level of the type structure, so
1517 // that we do not get %2 = type %2
1518 TypePrinter.printStructBody(NumberedTypes[i], Out);
1522 for (unsigned i = 0, e = TypePrinter.NamedTypes.size(); i != e; ++i) {
1523 PrintLLVMName(Out, TypePrinter.NamedTypes[i]->getName(), LocalPrefix);
1526 // Make sure we print out at least one level of the type structure, so
1527 // that we do not get %FILE = type %FILE
1528 TypePrinter.printStructBody(TypePrinter.NamedTypes[i], Out);
1533 /// printFunction - Print all aspects of a function.
1535 void AssemblyWriter::printFunction(const Function *F) {
1536 // Print out the return type and name.
1539 if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
1541 if (F->isMaterializable())
1542 Out << "; Materializable\n";
1544 if (F->isDeclaration())
1549 PrintLinkage(F->getLinkage(), Out);
1550 PrintVisibility(F->getVisibility(), Out);
1552 // Print the calling convention.
1553 if (F->getCallingConv() != CallingConv::C) {
1554 PrintCallingConv(F->getCallingConv(), Out);
1558 FunctionType *FT = F->getFunctionType();
1559 const AttributeSet &Attrs = F->getAttributes();
1560 Attribute RetAttrs = Attrs.getRetAttributes();
1561 if (RetAttrs.hasAttributes())
1562 Out << Attrs.getRetAttributes().getAsString() << ' ';
1563 TypePrinter.print(F->getReturnType(), Out);
1565 WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent());
1567 Machine.incorporateFunction(F);
1569 // Loop over the arguments, printing them...
1572 if (!F->isDeclaration()) {
1573 // If this isn't a declaration, print the argument names as well.
1574 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
1576 // Insert commas as we go... the first arg doesn't get a comma
1577 if (I != F->arg_begin()) Out << ", ";
1578 printArgument(I, Attrs.getParamAttributes(Idx));
1582 // Otherwise, print the types from the function type.
1583 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1584 // Insert commas as we go... the first arg doesn't get a comma
1588 TypePrinter.print(FT->getParamType(i), Out);
1590 Attribute ArgAttrs = Attrs.getParamAttributes(i+1);
1591 if (ArgAttrs.hasAttributes())
1592 Out << ' ' << ArgAttrs.getAsString();
1596 // Finish printing arguments...
1597 if (FT->isVarArg()) {
1598 if (FT->getNumParams()) Out << ", ";
1599 Out << "..."; // Output varargs portion of signature!
1602 if (F->hasUnnamedAddr())
1603 Out << " unnamed_addr";
1604 Attribute FnAttrs = Attrs.getFnAttributes();
1605 if (FnAttrs.hasAttributes())
1606 Out << ' ' << Attrs.getFnAttributes().getAsString();
1607 if (F->hasSection()) {
1608 Out << " section \"";
1609 PrintEscapedString(F->getSection(), Out);
1612 if (F->getAlignment())
1613 Out << " align " << F->getAlignment();
1615 Out << " gc \"" << F->getGC() << '"';
1616 if (F->isDeclaration()) {
1620 // Output all of the function's basic blocks.
1621 for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
1627 Machine.purgeFunction();
1630 /// printArgument - This member is called for every argument that is passed into
1631 /// the function. Simply print it out
1633 void AssemblyWriter::printArgument(const Argument *Arg,
1636 TypePrinter.print(Arg->getType(), Out);
1638 // Output parameter attributes list
1639 if (Attrs.hasAttributes())
1640 Out << ' ' << Attrs.getAsString();
1642 // Output name, if available...
1643 if (Arg->hasName()) {
1645 PrintLLVMName(Out, Arg);
1649 /// printBasicBlock - This member is called for each basic block in a method.
1651 void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
1652 if (BB->hasName()) { // Print out the label if it exists...
1654 PrintLLVMName(Out, BB->getName(), LabelPrefix);
1656 } else if (!BB->use_empty()) { // Don't print block # of no uses...
1657 Out << "\n; <label>:";
1658 int Slot = Machine.getLocalSlot(BB);
1665 if (BB->getParent() == 0) {
1666 Out.PadToColumn(50);
1667 Out << "; Error: Block without parent!";
1668 } else if (BB != &BB->getParent()->getEntryBlock()) { // Not the entry block?
1669 // Output predecessors for the block.
1670 Out.PadToColumn(50);
1672 const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1675 Out << " No predecessors!";
1678 writeOperand(*PI, false);
1679 for (++PI; PI != PE; ++PI) {
1681 writeOperand(*PI, false);
1688 if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
1690 // Output all of the instructions in the basic block...
1691 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1692 printInstruction(*I);
1696 if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
1699 /// printInfoComment - Print a little comment after the instruction indicating
1700 /// which slot it occupies.
1702 void AssemblyWriter::printInfoComment(const Value &V) {
1703 if (AnnotationWriter) {
1704 AnnotationWriter->printInfoComment(V, Out);
1709 // This member is called for each Instruction in a function..
1710 void AssemblyWriter::printInstruction(const Instruction &I) {
1711 if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
1713 // Print out indentation for an instruction.
1716 // Print out name if it exists...
1718 PrintLLVMName(Out, &I);
1720 } else if (!I.getType()->isVoidTy()) {
1721 // Print out the def slot taken.
1722 int SlotNum = Machine.getLocalSlot(&I);
1724 Out << "<badref> = ";
1726 Out << '%' << SlotNum << " = ";
1729 if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall())
1732 // Print out the opcode...
1733 Out << I.getOpcodeName();
1735 // If this is an atomic load or store, print out the atomic marker.
1736 if ((isa<LoadInst>(I) && cast<LoadInst>(I).isAtomic()) ||
1737 (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
1740 // If this is a volatile operation, print out the volatile marker.
1741 if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) ||
1742 (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
1743 (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
1744 (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
1747 // Print out optimization information.
1748 WriteOptimizationInfo(Out, &I);
1750 // Print out the compare instruction predicates
1751 if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
1752 Out << ' ' << getPredicateText(CI->getPredicate());
1754 // Print out the atomicrmw operation
1755 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
1756 writeAtomicRMWOperation(Out, RMWI->getOperation());
1758 // Print out the type of the operands...
1759 const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
1761 // Special case conditional branches to swizzle the condition out to the front
1762 if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
1763 BranchInst &BI(cast<BranchInst>(I));
1765 writeOperand(BI.getCondition(), true);
1767 writeOperand(BI.getSuccessor(0), true);
1769 writeOperand(BI.getSuccessor(1), true);
1771 } else if (isa<SwitchInst>(I)) {
1772 SwitchInst& SI(cast<SwitchInst>(I));
1773 // Special case switch instruction to get formatting nice and correct.
1775 writeOperand(SI.getCondition(), true);
1777 writeOperand(SI.getDefaultDest(), true);
1779 for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end();
1782 writeOperand(i.getCaseValue(), true);
1784 writeOperand(i.getCaseSuccessor(), true);
1787 } else if (isa<IndirectBrInst>(I)) {
1788 // Special case indirectbr instruction to get formatting nice and correct.
1790 writeOperand(Operand, true);
1793 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
1796 writeOperand(I.getOperand(i), true);
1799 } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
1801 TypePrinter.print(I.getType(), Out);
1804 for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
1805 if (op) Out << ", ";
1807 writeOperand(PN->getIncomingValue(op), false); Out << ", ";
1808 writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
1810 } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
1812 writeOperand(I.getOperand(0), true);
1813 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1815 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
1817 writeOperand(I.getOperand(0), true); Out << ", ";
1818 writeOperand(I.getOperand(1), true);
1819 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1821 } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
1823 TypePrinter.print(I.getType(), Out);
1824 Out << " personality ";
1825 writeOperand(I.getOperand(0), true); Out << '\n';
1827 if (LPI->isCleanup())
1830 for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
1831 if (i != 0 || LPI->isCleanup()) Out << "\n";
1832 if (LPI->isCatch(i))
1837 writeOperand(LPI->getClause(i), true);
1839 } else if (isa<ReturnInst>(I) && !Operand) {
1841 } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
1842 // Print the calling convention being used.
1843 if (CI->getCallingConv() != CallingConv::C) {
1845 PrintCallingConv(CI->getCallingConv(), Out);
1848 Operand = CI->getCalledValue();
1849 PointerType *PTy = cast<PointerType>(Operand->getType());
1850 FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1851 Type *RetTy = FTy->getReturnType();
1852 const AttributeSet &PAL = CI->getAttributes();
1854 if (PAL.getRetAttributes().hasAttributes())
1855 Out << ' ' << PAL.getRetAttributes().getAsString();
1857 // If possible, print out the short form of the call instruction. We can
1858 // only do this if the first argument is a pointer to a nonvararg function,
1859 // and if the return type is not a pointer to a function.
1862 if (!FTy->isVarArg() &&
1863 (!RetTy->isPointerTy() ||
1864 !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) {
1865 TypePrinter.print(RetTy, Out);
1867 writeOperand(Operand, false);
1869 writeOperand(Operand, true);
1872 for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) {
1875 writeParamOperand(CI->getArgOperand(op), PAL.getParamAttributes(op + 1));
1878 if (PAL.getFnAttributes().hasAttributes())
1879 Out << ' ' << PAL.getFnAttributes().getAsString();
1880 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
1881 Operand = II->getCalledValue();
1882 PointerType *PTy = cast<PointerType>(Operand->getType());
1883 FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1884 Type *RetTy = FTy->getReturnType();
1885 const AttributeSet &PAL = II->getAttributes();
1887 // Print the calling convention being used.
1888 if (II->getCallingConv() != CallingConv::C) {
1890 PrintCallingConv(II->getCallingConv(), Out);
1893 if (PAL.getRetAttributes().hasAttributes())
1894 Out << ' ' << PAL.getRetAttributes().getAsString();
1896 // If possible, print out the short form of the invoke instruction. We can
1897 // only do this if the first argument is a pointer to a nonvararg function,
1898 // and if the return type is not a pointer to a function.
1901 if (!FTy->isVarArg() &&
1902 (!RetTy->isPointerTy() ||
1903 !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) {
1904 TypePrinter.print(RetTy, Out);
1906 writeOperand(Operand, false);
1908 writeOperand(Operand, true);
1911 for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) {
1914 writeParamOperand(II->getArgOperand(op), PAL.getParamAttributes(op + 1));
1918 if (PAL.getFnAttributes().hasAttributes())
1919 Out << ' ' << PAL.getFnAttributes().getAsString();
1922 writeOperand(II->getNormalDest(), true);
1924 writeOperand(II->getUnwindDest(), true);
1926 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
1928 TypePrinter.print(AI->getType()->getElementType(), Out);
1929 if (!AI->getArraySize() || AI->isArrayAllocation()) {
1931 writeOperand(AI->getArraySize(), true);
1933 if (AI->getAlignment()) {
1934 Out << ", align " << AI->getAlignment();
1936 } else if (isa<CastInst>(I)) {
1939 writeOperand(Operand, true); // Work with broken code
1942 TypePrinter.print(I.getType(), Out);
1943 } else if (isa<VAArgInst>(I)) {
1946 writeOperand(Operand, true); // Work with broken code
1949 TypePrinter.print(I.getType(), Out);
1950 } else if (Operand) { // Print the normal way.
1952 // PrintAllTypes - Instructions who have operands of all the same type
1953 // omit the type from all but the first operand. If the instruction has
1954 // different type operands (for example br), then they are all printed.
1955 bool PrintAllTypes = false;
1956 Type *TheType = Operand->getType();
1958 // Select, Store and ShuffleVector always print all types.
1959 if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
1960 || isa<ReturnInst>(I)) {
1961 PrintAllTypes = true;
1963 for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
1964 Operand = I.getOperand(i);
1965 // note that Operand shouldn't be null, but the test helps make dump()
1966 // more tolerant of malformed IR
1967 if (Operand && Operand->getType() != TheType) {
1968 PrintAllTypes = true; // We have differing types! Print them all!
1974 if (!PrintAllTypes) {
1976 TypePrinter.print(TheType, Out);
1980 for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
1982 writeOperand(I.getOperand(i), PrintAllTypes);
1986 // Print atomic ordering/alignment for memory operations
1987 if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
1989 writeAtomic(LI->getOrdering(), LI->getSynchScope());
1990 if (LI->getAlignment())
1991 Out << ", align " << LI->getAlignment();
1992 } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
1994 writeAtomic(SI->getOrdering(), SI->getSynchScope());
1995 if (SI->getAlignment())
1996 Out << ", align " << SI->getAlignment();
1997 } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
1998 writeAtomic(CXI->getOrdering(), CXI->getSynchScope());
1999 } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
2000 writeAtomic(RMWI->getOrdering(), RMWI->getSynchScope());
2001 } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
2002 writeAtomic(FI->getOrdering(), FI->getSynchScope());
2005 // Print Metadata info.
2006 SmallVector<std::pair<unsigned, MDNode*>, 4> InstMD;
2007 I.getAllMetadata(InstMD);
2008 if (!InstMD.empty()) {
2009 SmallVector<StringRef, 8> MDNames;
2010 I.getType()->getContext().getMDKindNames(MDNames);
2011 for (unsigned i = 0, e = InstMD.size(); i != e; ++i) {
2012 unsigned Kind = InstMD[i].first;
2013 if (Kind < MDNames.size()) {
2014 Out << ", !" << MDNames[Kind];
2016 Out << ", !<unknown kind #" << Kind << ">";
2019 WriteAsOperandInternal(Out, InstMD[i].second, &TypePrinter, &Machine,
2023 printInfoComment(I);
2026 static void WriteMDNodeComment(const MDNode *Node,
2027 formatted_raw_ostream &Out) {
2028 if (Node->getNumOperands() < 1)
2031 Value *Op = Node->getOperand(0);
2032 if (!Op || !isa<ConstantInt>(Op) || cast<ConstantInt>(Op)->getBitWidth() < 32)
2035 DIDescriptor Desc(Node);
2036 if (Desc.getVersion() < LLVMDebugVersion11)
2039 unsigned Tag = Desc.getTag();
2040 Out.PadToColumn(50);
2041 if (dwarf::TagString(Tag)) {
2044 } else if (Tag == dwarf::DW_TAG_user_base) {
2045 Out << "; [ DW_TAG_user_base ]";
2049 void AssemblyWriter::writeAllMDNodes() {
2050 SmallVector<const MDNode *, 16> Nodes;
2051 Nodes.resize(Machine.mdn_size());
2052 for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end();
2054 Nodes[I->second] = cast<MDNode>(I->first);
2056 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
2057 Out << '!' << i << " = metadata ";
2058 printMDNodeBody(Nodes[i]);
2062 void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
2063 WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule);
2064 WriteMDNodeComment(Node, Out);
2068 //===----------------------------------------------------------------------===//
2069 // External Interface declarations
2070 //===----------------------------------------------------------------------===//
2072 void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
2073 SlotTracker SlotTable(this);
2074 formatted_raw_ostream OS(ROS);
2075 AssemblyWriter W(OS, SlotTable, this, AAW);
2076 W.printModule(this);
2079 void NamedMDNode::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
2080 SlotTracker SlotTable(getParent());
2081 formatted_raw_ostream OS(ROS);
2082 AssemblyWriter W(OS, SlotTable, getParent(), AAW);
2083 W.printNamedMDNode(this);
2086 void Type::print(raw_ostream &OS) const {
2088 OS << "<null Type>";
2092 TP.print(const_cast<Type*>(this), OS);
2094 // If the type is a named struct type, print the body as well.
2095 if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
2096 if (!STy->isLiteral()) {
2098 TP.printStructBody(STy, OS);
2102 void Value::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
2104 ROS << "printing a <null> value\n";
2107 formatted_raw_ostream OS(ROS);
2108 if (const Instruction *I = dyn_cast<Instruction>(this)) {
2109 const Function *F = I->getParent() ? I->getParent()->getParent() : 0;
2110 SlotTracker SlotTable(F);
2111 AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), AAW);
2112 W.printInstruction(*I);
2113 } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
2114 SlotTracker SlotTable(BB->getParent());
2115 AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), AAW);
2116 W.printBasicBlock(BB);
2117 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
2118 SlotTracker SlotTable(GV->getParent());
2119 AssemblyWriter W(OS, SlotTable, GV->getParent(), AAW);
2120 if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
2122 else if (const Function *F = dyn_cast<Function>(GV))
2125 W.printAlias(cast<GlobalAlias>(GV));
2126 } else if (const MDNode *N = dyn_cast<MDNode>(this)) {
2127 const Function *F = N->getFunction();
2128 SlotTracker SlotTable(F);
2129 AssemblyWriter W(OS, SlotTable, F ? F->getParent() : 0, AAW);
2130 W.printMDNodeBody(N);
2131 } else if (const Constant *C = dyn_cast<Constant>(this)) {
2132 TypePrinting TypePrinter;
2133 TypePrinter.print(C->getType(), OS);
2135 WriteConstantInternal(OS, C, TypePrinter, 0, 0);
2136 } else if (isa<InlineAsm>(this) || isa<MDString>(this) ||
2137 isa<Argument>(this)) {
2138 WriteAsOperand(OS, this, true, 0);
2140 // Otherwise we don't know what it is. Call the virtual function to
2141 // allow a subclass to print itself.
2146 // Value::printCustom - subclasses should override this to implement printing.
2147 void Value::printCustom(raw_ostream &OS) const {
2148 llvm_unreachable("Unknown value to print out!");
2151 // Value::dump - allow easy printing of Values from the debugger.
2152 void Value::dump() const { print(dbgs()); dbgs() << '\n'; }
2154 // Type::dump - allow easy printing of Types from the debugger.
2155 void Type::dump() const { print(dbgs()); }
2157 // Module::dump() - Allow printing of Modules from the debugger.
2158 void Module::dump() const { print(dbgs(), 0); }
2160 // NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
2161 void NamedMDNode::dump() const { print(dbgs(), 0); }