[SimplifyLibCalls] Drop default template args. No functional change.
[oota-llvm.git] / lib / Transforms / Utils / SimplifyLibCalls.cpp
1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is a utility pass used for testing the InstructionSimplify analysis.
11 // The analysis is applied to every instruction, and if it simplifies then the
12 // instruction is replaced by the simplification.  If you are looking for a pass
13 // that performs serious instruction folding, use the instcombine pass instead.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/StringMap.h"
20 #include "llvm/ADT/Triple.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/DiagnosticInfo.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/IRBuilder.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/Intrinsics.h"
28 #include "llvm/IR/LLVMContext.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/IR/PatternMatch.h"
31 #include "llvm/Support/Allocator.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Analysis/TargetLibraryInfo.h"
34 #include "llvm/Transforms/Utils/BuildLibCalls.h"
35
36 using namespace llvm;
37 using namespace PatternMatch;
38
39 static cl::opt<bool>
40     ColdErrorCalls("error-reporting-is-cold", cl::init(true), cl::Hidden,
41                    cl::desc("Treat error-reporting calls as cold"));
42
43 static cl::opt<bool>
44     EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
45                          cl::init(false),
46                          cl::desc("Enable unsafe double to float "
47                                   "shrinking for math lib calls"));
48
49
50 //===----------------------------------------------------------------------===//
51 // Helper Functions
52 //===----------------------------------------------------------------------===//
53
54 static bool ignoreCallingConv(LibFunc::Func Func) {
55   switch (Func) {
56   case LibFunc::abs:
57   case LibFunc::labs:
58   case LibFunc::llabs:
59   case LibFunc::strlen:
60     return true;
61   default:
62     return false;
63   }
64   llvm_unreachable("All cases should be covered in the switch.");
65 }
66
67 /// isOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
68 /// value is equal or not-equal to zero.
69 static bool isOnlyUsedInZeroEqualityComparison(Value *V) {
70   for (User *U : V->users()) {
71     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
72       if (IC->isEquality())
73         if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
74           if (C->isNullValue())
75             continue;
76     // Unknown instruction.
77     return false;
78   }
79   return true;
80 }
81
82 /// isOnlyUsedInEqualityComparison - Return true if it is only used in equality
83 /// comparisons with With.
84 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
85   for (User *U : V->users()) {
86     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
87       if (IC->isEquality() && IC->getOperand(1) == With)
88         continue;
89     // Unknown instruction.
90     return false;
91   }
92   return true;
93 }
94
95 static bool callHasFloatingPointArgument(const CallInst *CI) {
96   for (CallInst::const_op_iterator it = CI->op_begin(), e = CI->op_end();
97        it != e; ++it) {
98     if ((*it)->getType()->isFloatingPointTy())
99       return true;
100   }
101   return false;
102 }
103
104 /// \brief Check whether the overloaded unary floating point function
105 /// corresponding to \a Ty is available.
106 static bool hasUnaryFloatFn(const TargetLibraryInfo *TLI, Type *Ty,
107                             LibFunc::Func DoubleFn, LibFunc::Func FloatFn,
108                             LibFunc::Func LongDoubleFn) {
109   switch (Ty->getTypeID()) {
110   case Type::FloatTyID:
111     return TLI->has(FloatFn);
112   case Type::DoubleTyID:
113     return TLI->has(DoubleFn);
114   default:
115     return TLI->has(LongDoubleFn);
116   }
117 }
118
119 /// \brief Returns whether \p F matches the signature expected for the
120 /// string/memory copying library function \p Func.
121 /// Acceptable functions are st[rp][n]?cpy, memove, memcpy, and memset.
122 /// Their fortified (_chk) counterparts are also accepted.
123 static bool checkStringCopyLibFuncSignature(Function *F, LibFunc::Func Func) {
124   const DataLayout &DL = F->getParent()->getDataLayout();
125   FunctionType *FT = F->getFunctionType();
126   LLVMContext &Context = F->getContext();
127   Type *PCharTy = Type::getInt8PtrTy(Context);
128   Type *SizeTTy = DL.getIntPtrType(Context);
129   unsigned NumParams = FT->getNumParams();
130
131   // All string libfuncs return the same type as the first parameter.
132   if (FT->getReturnType() != FT->getParamType(0))
133     return false;
134
135   switch (Func) {
136   default:
137     llvm_unreachable("Can't check signature for non-string-copy libfunc.");
138   case LibFunc::stpncpy_chk:
139   case LibFunc::strncpy_chk:
140     --NumParams; // fallthrough
141   case LibFunc::stpncpy:
142   case LibFunc::strncpy: {
143     if (NumParams != 3 || FT->getParamType(0) != FT->getParamType(1) ||
144         FT->getParamType(0) != PCharTy || !FT->getParamType(2)->isIntegerTy())
145       return false;
146     break;
147   }
148   case LibFunc::strcpy_chk:
149   case LibFunc::stpcpy_chk:
150     --NumParams; // fallthrough
151   case LibFunc::stpcpy:
152   case LibFunc::strcpy: {
153     if (NumParams != 2 || FT->getParamType(0) != FT->getParamType(1) ||
154         FT->getParamType(0) != PCharTy)
155       return false;
156     break;
157   }
158   case LibFunc::memmove_chk:
159   case LibFunc::memcpy_chk:
160     --NumParams; // fallthrough
161   case LibFunc::memmove:
162   case LibFunc::memcpy: {
163     if (NumParams != 3 || !FT->getParamType(0)->isPointerTy() ||
164         !FT->getParamType(1)->isPointerTy() || FT->getParamType(2) != SizeTTy)
165       return false;
166     break;
167   }
168   case LibFunc::memset_chk:
169     --NumParams; // fallthrough
170   case LibFunc::memset: {
171     if (NumParams != 3 || !FT->getParamType(0)->isPointerTy() ||
172         !FT->getParamType(1)->isIntegerTy() || FT->getParamType(2) != SizeTTy)
173       return false;
174     break;
175   }
176   }
177   // If this is a fortified libcall, the last parameter is a size_t.
178   if (NumParams == FT->getNumParams() - 1)
179     return FT->getParamType(FT->getNumParams() - 1) == SizeTTy;
180   return true;
181 }
182
183 //===----------------------------------------------------------------------===//
184 // String and Memory Library Call Optimizations
185 //===----------------------------------------------------------------------===//
186
187 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) {
188   Function *Callee = CI->getCalledFunction();
189   // Verify the "strcat" function prototype.
190   FunctionType *FT = Callee->getFunctionType();
191   if (FT->getNumParams() != 2||
192       FT->getReturnType() != B.getInt8PtrTy() ||
193       FT->getParamType(0) != FT->getReturnType() ||
194       FT->getParamType(1) != FT->getReturnType())
195     return nullptr;
196
197   // Extract some information from the instruction
198   Value *Dst = CI->getArgOperand(0);
199   Value *Src = CI->getArgOperand(1);
200
201   // See if we can get the length of the input string.
202   uint64_t Len = GetStringLength(Src);
203   if (Len == 0)
204     return nullptr;
205   --Len; // Unbias length.
206
207   // Handle the simple, do-nothing case: strcat(x, "") -> x
208   if (Len == 0)
209     return Dst;
210
211   return emitStrLenMemCpy(Src, Dst, Len, B);
212 }
213
214 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
215                                            IRBuilder<> &B) {
216   // We need to find the end of the destination string.  That's where the
217   // memory is to be moved to. We just generate a call to strlen.
218   Value *DstLen = EmitStrLen(Dst, B, DL, TLI);
219   if (!DstLen)
220     return nullptr;
221
222   // Now that we have the destination's length, we must index into the
223   // destination's pointer to get the actual memcpy destination (end of
224   // the string .. we're concatenating).
225   Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
226
227   // We have enough information to now generate the memcpy call to do the
228   // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
229   B.CreateMemCpy(CpyDst, Src,
230                  ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1),
231                  1);
232   return Dst;
233 }
234
235 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) {
236   Function *Callee = CI->getCalledFunction();
237   // Verify the "strncat" function prototype.
238   FunctionType *FT = Callee->getFunctionType();
239   if (FT->getNumParams() != 3 || FT->getReturnType() != B.getInt8PtrTy() ||
240       FT->getParamType(0) != FT->getReturnType() ||
241       FT->getParamType(1) != FT->getReturnType() ||
242       !FT->getParamType(2)->isIntegerTy())
243     return nullptr;
244
245   // Extract some information from the instruction
246   Value *Dst = CI->getArgOperand(0);
247   Value *Src = CI->getArgOperand(1);
248   uint64_t Len;
249
250   // We don't do anything if length is not constant
251   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
252     Len = LengthArg->getZExtValue();
253   else
254     return nullptr;
255
256   // See if we can get the length of the input string.
257   uint64_t SrcLen = GetStringLength(Src);
258   if (SrcLen == 0)
259     return nullptr;
260   --SrcLen; // Unbias length.
261
262   // Handle the simple, do-nothing cases:
263   // strncat(x, "", c) -> x
264   // strncat(x,  c, 0) -> x
265   if (SrcLen == 0 || Len == 0)
266     return Dst;
267
268   // We don't optimize this case
269   if (Len < SrcLen)
270     return nullptr;
271
272   // strncat(x, s, c) -> strcat(x, s)
273   // s is constant so the strcat can be optimized further
274   return emitStrLenMemCpy(Src, Dst, SrcLen, B);
275 }
276
277 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) {
278   Function *Callee = CI->getCalledFunction();
279   // Verify the "strchr" function prototype.
280   FunctionType *FT = Callee->getFunctionType();
281   if (FT->getNumParams() != 2 || FT->getReturnType() != B.getInt8PtrTy() ||
282       FT->getParamType(0) != FT->getReturnType() ||
283       !FT->getParamType(1)->isIntegerTy(32))
284     return nullptr;
285
286   Value *SrcStr = CI->getArgOperand(0);
287
288   // If the second operand is non-constant, see if we can compute the length
289   // of the input string and turn this into memchr.
290   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
291   if (!CharC) {
292     uint64_t Len = GetStringLength(SrcStr);
293     if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
294       return nullptr;
295
296     return EmitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
297                       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len),
298                       B, DL, TLI);
299   }
300
301   // Otherwise, the character is a constant, see if the first argument is
302   // a string literal.  If so, we can constant fold.
303   StringRef Str;
304   if (!getConstantStringInfo(SrcStr, Str)) {
305     if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
306       return B.CreateGEP(B.getInt8Ty(), SrcStr, EmitStrLen(SrcStr, B, DL, TLI), "strchr");
307     return nullptr;
308   }
309
310   // Compute the offset, make sure to handle the case when we're searching for
311   // zero (a weird way to spell strlen).
312   size_t I = (0xFF & CharC->getSExtValue()) == 0
313                  ? Str.size()
314                  : Str.find(CharC->getSExtValue());
315   if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
316     return Constant::getNullValue(CI->getType());
317
318   // strchr(s+n,c)  -> gep(s+n+i,c)
319   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
320 }
321
322 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) {
323   Function *Callee = CI->getCalledFunction();
324   // Verify the "strrchr" function prototype.
325   FunctionType *FT = Callee->getFunctionType();
326   if (FT->getNumParams() != 2 || FT->getReturnType() != B.getInt8PtrTy() ||
327       FT->getParamType(0) != FT->getReturnType() ||
328       !FT->getParamType(1)->isIntegerTy(32))
329     return nullptr;
330
331   Value *SrcStr = CI->getArgOperand(0);
332   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
333
334   // Cannot fold anything if we're not looking for a constant.
335   if (!CharC)
336     return nullptr;
337
338   StringRef Str;
339   if (!getConstantStringInfo(SrcStr, Str)) {
340     // strrchr(s, 0) -> strchr(s, 0)
341     if (CharC->isZero())
342       return EmitStrChr(SrcStr, '\0', B, TLI);
343     return nullptr;
344   }
345
346   // Compute the offset.
347   size_t I = (0xFF & CharC->getSExtValue()) == 0
348                  ? Str.size()
349                  : Str.rfind(CharC->getSExtValue());
350   if (I == StringRef::npos) // Didn't find the char. Return null.
351     return Constant::getNullValue(CI->getType());
352
353   // strrchr(s+n,c) -> gep(s+n+i,c)
354   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
355 }
356
357 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) {
358   Function *Callee = CI->getCalledFunction();
359   // Verify the "strcmp" function prototype.
360   FunctionType *FT = Callee->getFunctionType();
361   if (FT->getNumParams() != 2 || !FT->getReturnType()->isIntegerTy(32) ||
362       FT->getParamType(0) != FT->getParamType(1) ||
363       FT->getParamType(0) != B.getInt8PtrTy())
364     return nullptr;
365
366   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
367   if (Str1P == Str2P) // strcmp(x,x)  -> 0
368     return ConstantInt::get(CI->getType(), 0);
369
370   StringRef Str1, Str2;
371   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
372   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
373
374   // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
375   if (HasStr1 && HasStr2)
376     return ConstantInt::get(CI->getType(), Str1.compare(Str2));
377
378   if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
379     return B.CreateNeg(
380         B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
381
382   if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
383     return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
384
385   // strcmp(P, "x") -> memcmp(P, "x", 2)
386   uint64_t Len1 = GetStringLength(Str1P);
387   uint64_t Len2 = GetStringLength(Str2P);
388   if (Len1 && Len2) {
389     return EmitMemCmp(Str1P, Str2P,
390                       ConstantInt::get(DL.getIntPtrType(CI->getContext()),
391                                        std::min(Len1, Len2)),
392                       B, DL, TLI);
393   }
394
395   return nullptr;
396 }
397
398 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) {
399   Function *Callee = CI->getCalledFunction();
400   // Verify the "strncmp" function prototype.
401   FunctionType *FT = Callee->getFunctionType();
402   if (FT->getNumParams() != 3 || !FT->getReturnType()->isIntegerTy(32) ||
403       FT->getParamType(0) != FT->getParamType(1) ||
404       FT->getParamType(0) != B.getInt8PtrTy() ||
405       !FT->getParamType(2)->isIntegerTy())
406     return nullptr;
407
408   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
409   if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
410     return ConstantInt::get(CI->getType(), 0);
411
412   // Get the length argument if it is constant.
413   uint64_t Length;
414   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
415     Length = LengthArg->getZExtValue();
416   else
417     return nullptr;
418
419   if (Length == 0) // strncmp(x,y,0)   -> 0
420     return ConstantInt::get(CI->getType(), 0);
421
422   if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
423     return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI);
424
425   StringRef Str1, Str2;
426   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
427   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
428
429   // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
430   if (HasStr1 && HasStr2) {
431     StringRef SubStr1 = Str1.substr(0, Length);
432     StringRef SubStr2 = Str2.substr(0, Length);
433     return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
434   }
435
436   if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
437     return B.CreateNeg(
438         B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
439
440   if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
441     return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
442
443   return nullptr;
444 }
445
446 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) {
447   Function *Callee = CI->getCalledFunction();
448
449   if (!checkStringCopyLibFuncSignature(Callee, LibFunc::strcpy))
450     return nullptr;
451
452   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
453   if (Dst == Src) // strcpy(x,x)  -> x
454     return Src;
455
456   // See if we can get the length of the input string.
457   uint64_t Len = GetStringLength(Src);
458   if (Len == 0)
459     return nullptr;
460
461   // We have enough information to now generate the memcpy call to do the
462   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
463   B.CreateMemCpy(Dst, Src,
464                  ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 1);
465   return Dst;
466 }
467
468 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) {
469   Function *Callee = CI->getCalledFunction();
470   // Verify the "stpcpy" function prototype.
471   FunctionType *FT = Callee->getFunctionType();
472
473   if (!checkStringCopyLibFuncSignature(Callee, LibFunc::stpcpy))
474     return nullptr;
475
476   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
477   if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
478     Value *StrLen = EmitStrLen(Src, B, DL, TLI);
479     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
480   }
481
482   // See if we can get the length of the input string.
483   uint64_t Len = GetStringLength(Src);
484   if (Len == 0)
485     return nullptr;
486
487   Type *PT = FT->getParamType(0);
488   Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
489   Value *DstEnd =
490       B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
491
492   // We have enough information to now generate the memcpy call to do the
493   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
494   B.CreateMemCpy(Dst, Src, LenV, 1);
495   return DstEnd;
496 }
497
498 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) {
499   Function *Callee = CI->getCalledFunction();
500   FunctionType *FT = Callee->getFunctionType();
501
502   if (!checkStringCopyLibFuncSignature(Callee, LibFunc::strncpy))
503     return nullptr;
504
505   Value *Dst = CI->getArgOperand(0);
506   Value *Src = CI->getArgOperand(1);
507   Value *LenOp = CI->getArgOperand(2);
508
509   // See if we can get the length of the input string.
510   uint64_t SrcLen = GetStringLength(Src);
511   if (SrcLen == 0)
512     return nullptr;
513   --SrcLen;
514
515   if (SrcLen == 0) {
516     // strncpy(x, "", y) -> memset(x, '\0', y, 1)
517     B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
518     return Dst;
519   }
520
521   uint64_t Len;
522   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
523     Len = LengthArg->getZExtValue();
524   else
525     return nullptr;
526
527   if (Len == 0)
528     return Dst; // strncpy(x, y, 0) -> x
529
530   // Let strncpy handle the zero padding
531   if (Len > SrcLen + 1)
532     return nullptr;
533
534   Type *PT = FT->getParamType(0);
535   // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
536   B.CreateMemCpy(Dst, Src, ConstantInt::get(DL.getIntPtrType(PT), Len), 1);
537
538   return Dst;
539 }
540
541 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) {
542   Function *Callee = CI->getCalledFunction();
543   FunctionType *FT = Callee->getFunctionType();
544   if (FT->getNumParams() != 1 || FT->getParamType(0) != B.getInt8PtrTy() ||
545       !FT->getReturnType()->isIntegerTy())
546     return nullptr;
547
548   Value *Src = CI->getArgOperand(0);
549
550   // Constant folding: strlen("xyz") -> 3
551   if (uint64_t Len = GetStringLength(Src))
552     return ConstantInt::get(CI->getType(), Len - 1);
553
554   // strlen(x?"foo":"bars") --> x ? 3 : 4
555   if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
556     uint64_t LenTrue = GetStringLength(SI->getTrueValue());
557     uint64_t LenFalse = GetStringLength(SI->getFalseValue());
558     if (LenTrue && LenFalse) {
559       Function *Caller = CI->getParent()->getParent();
560       emitOptimizationRemark(CI->getContext(), "simplify-libcalls", *Caller,
561                              SI->getDebugLoc(),
562                              "folded strlen(select) to select of constants");
563       return B.CreateSelect(SI->getCondition(),
564                             ConstantInt::get(CI->getType(), LenTrue - 1),
565                             ConstantInt::get(CI->getType(), LenFalse - 1));
566     }
567   }
568
569   // strlen(x) != 0 --> *x != 0
570   // strlen(x) == 0 --> *x == 0
571   if (isOnlyUsedInZeroEqualityComparison(CI))
572     return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
573
574   return nullptr;
575 }
576
577 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) {
578   Function *Callee = CI->getCalledFunction();
579   FunctionType *FT = Callee->getFunctionType();
580   if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() ||
581       FT->getParamType(1) != FT->getParamType(0) ||
582       FT->getReturnType() != FT->getParamType(0))
583     return nullptr;
584
585   StringRef S1, S2;
586   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
587   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
588
589   // strpbrk(s, "") -> nullptr
590   // strpbrk("", s) -> nullptr
591   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
592     return Constant::getNullValue(CI->getType());
593
594   // Constant folding.
595   if (HasS1 && HasS2) {
596     size_t I = S1.find_first_of(S2);
597     if (I == StringRef::npos) // No match.
598       return Constant::getNullValue(CI->getType());
599
600     return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), "strpbrk");
601   }
602
603   // strpbrk(s, "a") -> strchr(s, 'a')
604   if (HasS2 && S2.size() == 1)
605     return EmitStrChr(CI->getArgOperand(0), S2[0], B, TLI);
606
607   return nullptr;
608 }
609
610 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) {
611   Function *Callee = CI->getCalledFunction();
612   FunctionType *FT = Callee->getFunctionType();
613   if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) ||
614       !FT->getParamType(0)->isPointerTy() ||
615       !FT->getParamType(1)->isPointerTy())
616     return nullptr;
617
618   Value *EndPtr = CI->getArgOperand(1);
619   if (isa<ConstantPointerNull>(EndPtr)) {
620     // With a null EndPtr, this function won't capture the main argument.
621     // It would be readonly too, except that it still may write to errno.
622     CI->addAttribute(1, Attribute::NoCapture);
623   }
624
625   return nullptr;
626 }
627
628 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) {
629   Function *Callee = CI->getCalledFunction();
630   FunctionType *FT = Callee->getFunctionType();
631   if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() ||
632       FT->getParamType(1) != FT->getParamType(0) ||
633       !FT->getReturnType()->isIntegerTy())
634     return nullptr;
635
636   StringRef S1, S2;
637   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
638   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
639
640   // strspn(s, "") -> 0
641   // strspn("", s) -> 0
642   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
643     return Constant::getNullValue(CI->getType());
644
645   // Constant folding.
646   if (HasS1 && HasS2) {
647     size_t Pos = S1.find_first_not_of(S2);
648     if (Pos == StringRef::npos)
649       Pos = S1.size();
650     return ConstantInt::get(CI->getType(), Pos);
651   }
652
653   return nullptr;
654 }
655
656 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) {
657   Function *Callee = CI->getCalledFunction();
658   FunctionType *FT = Callee->getFunctionType();
659   if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() ||
660       FT->getParamType(1) != FT->getParamType(0) ||
661       !FT->getReturnType()->isIntegerTy())
662     return nullptr;
663
664   StringRef S1, S2;
665   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
666   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
667
668   // strcspn("", s) -> 0
669   if (HasS1 && S1.empty())
670     return Constant::getNullValue(CI->getType());
671
672   // Constant folding.
673   if (HasS1 && HasS2) {
674     size_t Pos = S1.find_first_of(S2);
675     if (Pos == StringRef::npos)
676       Pos = S1.size();
677     return ConstantInt::get(CI->getType(), Pos);
678   }
679
680   // strcspn(s, "") -> strlen(s)
681   if (HasS2 && S2.empty())
682     return EmitStrLen(CI->getArgOperand(0), B, DL, TLI);
683
684   return nullptr;
685 }
686
687 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) {
688   Function *Callee = CI->getCalledFunction();
689   FunctionType *FT = Callee->getFunctionType();
690   if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
691       !FT->getParamType(1)->isPointerTy() ||
692       !FT->getReturnType()->isPointerTy())
693     return nullptr;
694
695   // fold strstr(x, x) -> x.
696   if (CI->getArgOperand(0) == CI->getArgOperand(1))
697     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
698
699   // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
700   if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
701     Value *StrLen = EmitStrLen(CI->getArgOperand(1), B, DL, TLI);
702     if (!StrLen)
703       return nullptr;
704     Value *StrNCmp = EmitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
705                                  StrLen, B, DL, TLI);
706     if (!StrNCmp)
707       return nullptr;
708     for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
709       ICmpInst *Old = cast<ICmpInst>(*UI++);
710       Value *Cmp =
711           B.CreateICmp(Old->getPredicate(), StrNCmp,
712                        ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
713       replaceAllUsesWith(Old, Cmp);
714     }
715     return CI;
716   }
717
718   // See if either input string is a constant string.
719   StringRef SearchStr, ToFindStr;
720   bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
721   bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
722
723   // fold strstr(x, "") -> x.
724   if (HasStr2 && ToFindStr.empty())
725     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
726
727   // If both strings are known, constant fold it.
728   if (HasStr1 && HasStr2) {
729     size_t Offset = SearchStr.find(ToFindStr);
730
731     if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
732       return Constant::getNullValue(CI->getType());
733
734     // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
735     Value *Result = CastToCStr(CI->getArgOperand(0), B);
736     Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
737     return B.CreateBitCast(Result, CI->getType());
738   }
739
740   // fold strstr(x, "y") -> strchr(x, 'y').
741   if (HasStr2 && ToFindStr.size() == 1) {
742     Value *StrChr = EmitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
743     return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
744   }
745   return nullptr;
746 }
747
748 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) {
749   Function *Callee = CI->getCalledFunction();
750   FunctionType *FT = Callee->getFunctionType();
751   if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() ||
752       !FT->getParamType(1)->isIntegerTy(32) ||
753       !FT->getParamType(2)->isIntegerTy() ||
754       !FT->getReturnType()->isPointerTy())
755     return nullptr;
756
757   Value *SrcStr = CI->getArgOperand(0);
758   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
759   ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
760
761   // memchr(x, y, 0) -> null
762   if (LenC && LenC->isNullValue())
763     return Constant::getNullValue(CI->getType());
764
765   // From now on we need at least constant length and string.
766   StringRef Str;
767   if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
768     return nullptr;
769
770   // Truncate the string to LenC. If Str is smaller than LenC we will still only
771   // scan the string, as reading past the end of it is undefined and we can just
772   // return null if we don't find the char.
773   Str = Str.substr(0, LenC->getZExtValue());
774
775   // If the char is variable but the input str and length are not we can turn
776   // this memchr call into a simple bit field test. Of course this only works
777   // when the return value is only checked against null.
778   //
779   // It would be really nice to reuse switch lowering here but we can't change
780   // the CFG at this point.
781   //
782   // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0
783   //   after bounds check.
784   if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) {
785     unsigned char Max =
786         *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
787                           reinterpret_cast<const unsigned char *>(Str.end()));
788
789     // Make sure the bit field we're about to create fits in a register on the
790     // target.
791     // FIXME: On a 64 bit architecture this prevents us from using the
792     // interesting range of alpha ascii chars. We could do better by emitting
793     // two bitfields or shifting the range by 64 if no lower chars are used.
794     if (!DL.fitsInLegalInteger(Max + 1))
795       return nullptr;
796
797     // For the bit field use a power-of-2 type with at least 8 bits to avoid
798     // creating unnecessary illegal types.
799     unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
800
801     // Now build the bit field.
802     APInt Bitfield(Width, 0);
803     for (char C : Str)
804       Bitfield.setBit((unsigned char)C);
805     Value *BitfieldC = B.getInt(Bitfield);
806
807     // First check that the bit field access is within bounds.
808     Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType());
809     Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
810                                  "memchr.bounds");
811
812     // Create code that checks if the given bit is set in the field.
813     Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
814     Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
815
816     // Finally merge both checks and cast to pointer type. The inttoptr
817     // implicitly zexts the i1 to intptr type.
818     return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType());
819   }
820
821   // Check if all arguments are constants.  If so, we can constant fold.
822   if (!CharC)
823     return nullptr;
824
825   // Compute the offset.
826   size_t I = Str.find(CharC->getSExtValue() & 0xFF);
827   if (I == StringRef::npos) // Didn't find the char.  memchr returns null.
828     return Constant::getNullValue(CI->getType());
829
830   // memchr(s+n,c,l) -> gep(s+n+i,c)
831   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr");
832 }
833
834 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) {
835   Function *Callee = CI->getCalledFunction();
836   FunctionType *FT = Callee->getFunctionType();
837   if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() ||
838       !FT->getParamType(1)->isPointerTy() ||
839       !FT->getReturnType()->isIntegerTy(32))
840     return nullptr;
841
842   Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
843
844   if (LHS == RHS) // memcmp(s,s,x) -> 0
845     return Constant::getNullValue(CI->getType());
846
847   // Make sure we have a constant length.
848   ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
849   if (!LenC)
850     return nullptr;
851   uint64_t Len = LenC->getZExtValue();
852
853   if (Len == 0) // memcmp(s1,s2,0) -> 0
854     return Constant::getNullValue(CI->getType());
855
856   // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
857   if (Len == 1) {
858     Value *LHSV = B.CreateZExt(B.CreateLoad(CastToCStr(LHS, B), "lhsc"),
859                                CI->getType(), "lhsv");
860     Value *RHSV = B.CreateZExt(B.CreateLoad(CastToCStr(RHS, B), "rhsc"),
861                                CI->getType(), "rhsv");
862     return B.CreateSub(LHSV, RHSV, "chardiff");
863   }
864
865   // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant)
866   StringRef LHSStr, RHSStr;
867   if (getConstantStringInfo(LHS, LHSStr) &&
868       getConstantStringInfo(RHS, RHSStr)) {
869     // Make sure we're not reading out-of-bounds memory.
870     if (Len > LHSStr.size() || Len > RHSStr.size())
871       return nullptr;
872     // Fold the memcmp and normalize the result.  This way we get consistent
873     // results across multiple platforms.
874     uint64_t Ret = 0;
875     int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
876     if (Cmp < 0)
877       Ret = -1;
878     else if (Cmp > 0)
879       Ret = 1;
880     return ConstantInt::get(CI->getType(), Ret);
881   }
882
883   return nullptr;
884 }
885
886 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) {
887   Function *Callee = CI->getCalledFunction();
888
889   if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memcpy))
890     return nullptr;
891
892   // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
893   B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
894                  CI->getArgOperand(2), 1);
895   return CI->getArgOperand(0);
896 }
897
898 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) {
899   Function *Callee = CI->getCalledFunction();
900
901   if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memmove))
902     return nullptr;
903
904   // memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
905   B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
906                   CI->getArgOperand(2), 1);
907   return CI->getArgOperand(0);
908 }
909
910 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) {
911   Function *Callee = CI->getCalledFunction();
912
913   if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memset))
914     return nullptr;
915
916   // memset(p, v, n) -> llvm.memset(p, v, n, 1)
917   Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
918   B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
919   return CI->getArgOperand(0);
920 }
921
922 //===----------------------------------------------------------------------===//
923 // Math Library Optimizations
924 //===----------------------------------------------------------------------===//
925
926 /// Return a variant of Val with float type.
927 /// Currently this works in two cases: If Val is an FPExtension of a float
928 /// value to something bigger, simply return the operand.
929 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
930 /// loss of precision do so.
931 static Value *valueHasFloatPrecision(Value *Val) {
932   if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
933     Value *Op = Cast->getOperand(0);
934     if (Op->getType()->isFloatTy())
935       return Op;
936   }
937   if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
938     APFloat F = Const->getValueAPF();
939     bool losesInfo;
940     (void)F.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
941                     &losesInfo);
942     if (!losesInfo)
943       return ConstantFP::get(Const->getContext(), F);
944   }
945   return nullptr;
946 }
947
948 //===----------------------------------------------------------------------===//
949 // Double -> Float Shrinking Optimizations for Unary Functions like 'floor'
950
951 Value *LibCallSimplifier::optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B,
952                                                 bool CheckRetType) {
953   Function *Callee = CI->getCalledFunction();
954   FunctionType *FT = Callee->getFunctionType();
955   if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() ||
956       !FT->getParamType(0)->isDoubleTy())
957     return nullptr;
958
959   if (CheckRetType) {
960     // Check if all the uses for function like 'sin' are converted to float.
961     for (User *U : CI->users()) {
962       FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
963       if (!Cast || !Cast->getType()->isFloatTy())
964         return nullptr;
965     }
966   }
967
968   // If this is something like 'floor((double)floatval)', convert to floorf.
969   Value *V = valueHasFloatPrecision(CI->getArgOperand(0));
970   if (V == nullptr)
971     return nullptr;
972
973   // floor((double)floatval) -> (double)floorf(floatval)
974   if (Callee->isIntrinsic()) {
975     Module *M = CI->getParent()->getParent()->getParent();
976     Intrinsic::ID IID = Callee->getIntrinsicID();
977     Function *F = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
978     V = B.CreateCall(F, V);
979   } else {
980     // The call is a library call rather than an intrinsic.
981     V = EmitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes());
982   }
983
984   return B.CreateFPExt(V, B.getDoubleTy());
985 }
986
987 // Double -> Float Shrinking Optimizations for Binary Functions like 'fmin/fmax'
988 Value *LibCallSimplifier::optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) {
989   Function *Callee = CI->getCalledFunction();
990   FunctionType *FT = Callee->getFunctionType();
991   // Just make sure this has 2 arguments of the same FP type, which match the
992   // result type.
993   if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
994       FT->getParamType(0) != FT->getParamType(1) ||
995       !FT->getParamType(0)->isFloatingPointTy())
996     return nullptr;
997
998   // If this is something like 'fmin((double)floatval1, (double)floatval2)',
999   // or fmin(1.0, (double)floatval), then we convert it to fminf.
1000   Value *V1 = valueHasFloatPrecision(CI->getArgOperand(0));
1001   if (V1 == nullptr)
1002     return nullptr;
1003   Value *V2 = valueHasFloatPrecision(CI->getArgOperand(1));
1004   if (V2 == nullptr)
1005     return nullptr;
1006
1007   // fmin((double)floatval1, (double)floatval2)
1008   //                      -> (double)fminf(floatval1, floatval2)
1009   // TODO: Handle intrinsics in the same way as in optimizeUnaryDoubleFP().
1010   Value *V = EmitBinaryFloatFnCall(V1, V2, Callee->getName(), B,
1011                                    Callee->getAttributes());
1012   return B.CreateFPExt(V, B.getDoubleTy());
1013 }
1014
1015 Value *LibCallSimplifier::optimizeCos(CallInst *CI, IRBuilder<> &B) {
1016   Function *Callee = CI->getCalledFunction();
1017   Value *Ret = nullptr;
1018   if (UnsafeFPShrink && Callee->getName() == "cos" && TLI->has(LibFunc::cosf)) {
1019     Ret = optimizeUnaryDoubleFP(CI, B, true);
1020   }
1021
1022   FunctionType *FT = Callee->getFunctionType();
1023   // Just make sure this has 1 argument of FP type, which matches the
1024   // result type.
1025   if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
1026       !FT->getParamType(0)->isFloatingPointTy())
1027     return Ret;
1028
1029   // cos(-x) -> cos(x)
1030   Value *Op1 = CI->getArgOperand(0);
1031   if (BinaryOperator::isFNeg(Op1)) {
1032     BinaryOperator *BinExpr = cast<BinaryOperator>(Op1);
1033     return B.CreateCall(Callee, BinExpr->getOperand(1), "cos");
1034   }
1035   return Ret;
1036 }
1037
1038 Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) {
1039   Function *Callee = CI->getCalledFunction();
1040
1041   Value *Ret = nullptr;
1042   if (UnsafeFPShrink && Callee->getName() == "pow" && TLI->has(LibFunc::powf)) {
1043     Ret = optimizeUnaryDoubleFP(CI, B, true);
1044   }
1045
1046   FunctionType *FT = Callee->getFunctionType();
1047   // Just make sure this has 2 arguments of the same FP type, which match the
1048   // result type.
1049   if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
1050       FT->getParamType(0) != FT->getParamType(1) ||
1051       !FT->getParamType(0)->isFloatingPointTy())
1052     return Ret;
1053
1054   Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1);
1055   if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
1056     // pow(1.0, x) -> 1.0
1057     if (Op1C->isExactlyValue(1.0))
1058       return Op1C;
1059     // pow(2.0, x) -> exp2(x)
1060     if (Op1C->isExactlyValue(2.0) &&
1061         hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp2, LibFunc::exp2f,
1062                         LibFunc::exp2l))
1063       return EmitUnaryFloatFnCall(Op2, "exp2", B, Callee->getAttributes());
1064     // pow(10.0, x) -> exp10(x)
1065     if (Op1C->isExactlyValue(10.0) &&
1066         hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp10, LibFunc::exp10f,
1067                         LibFunc::exp10l))
1068       return EmitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp10), B,
1069                                   Callee->getAttributes());
1070   }
1071
1072   ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
1073   if (!Op2C)
1074     return Ret;
1075
1076   if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
1077     return ConstantFP::get(CI->getType(), 1.0);
1078
1079   if (Op2C->isExactlyValue(0.5) &&
1080       hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::sqrt, LibFunc::sqrtf,
1081                       LibFunc::sqrtl) &&
1082       hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::fabs, LibFunc::fabsf,
1083                       LibFunc::fabsl)) {
1084     // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
1085     // This is faster than calling pow, and still handles negative zero
1086     // and negative infinity correctly.
1087     // TODO: In fast-math mode, this could be just sqrt(x).
1088     // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
1089     Value *Inf = ConstantFP::getInfinity(CI->getType());
1090     Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
1091     Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B, Callee->getAttributes());
1092     Value *FAbs =
1093         EmitUnaryFloatFnCall(Sqrt, "fabs", B, Callee->getAttributes());
1094     Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf);
1095     Value *Sel = B.CreateSelect(FCmp, Inf, FAbs);
1096     return Sel;
1097   }
1098
1099   if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x
1100     return Op1;
1101   if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x
1102     return B.CreateFMul(Op1, Op1, "pow2");
1103   if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
1104     return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip");
1105   return nullptr;
1106 }
1107
1108 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) {
1109   Function *Callee = CI->getCalledFunction();
1110   Function *Caller = CI->getParent()->getParent();
1111
1112   Value *Ret = nullptr;
1113   if (UnsafeFPShrink && Callee->getName() == "exp2" &&
1114       TLI->has(LibFunc::exp2f)) {
1115     Ret = optimizeUnaryDoubleFP(CI, B, true);
1116   }
1117
1118   FunctionType *FT = Callee->getFunctionType();
1119   // Just make sure this has 1 argument of FP type, which matches the
1120   // result type.
1121   if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
1122       !FT->getParamType(0)->isFloatingPointTy())
1123     return Ret;
1124
1125   Value *Op = CI->getArgOperand(0);
1126   // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= 32
1127   // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < 32
1128   LibFunc::Func LdExp = LibFunc::ldexpl;
1129   if (Op->getType()->isFloatTy())
1130     LdExp = LibFunc::ldexpf;
1131   else if (Op->getType()->isDoubleTy())
1132     LdExp = LibFunc::ldexp;
1133
1134   if (TLI->has(LdExp)) {
1135     Value *LdExpArg = nullptr;
1136     if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
1137       if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
1138         LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
1139     } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
1140       if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
1141         LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
1142     }
1143
1144     if (LdExpArg) {
1145       Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f));
1146       if (!Op->getType()->isFloatTy())
1147         One = ConstantExpr::getFPExtend(One, Op->getType());
1148
1149       Module *M = Caller->getParent();
1150       Value *Callee =
1151           M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(),
1152                                  Op->getType(), B.getInt32Ty(), nullptr);
1153       CallInst *CI = B.CreateCall(Callee, {One, LdExpArg});
1154       if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
1155         CI->setCallingConv(F->getCallingConv());
1156
1157       return CI;
1158     }
1159   }
1160   return Ret;
1161 }
1162
1163 Value *LibCallSimplifier::optimizeFabs(CallInst *CI, IRBuilder<> &B) {
1164   Function *Callee = CI->getCalledFunction();
1165
1166   Value *Ret = nullptr;
1167   if (Callee->getName() == "fabs" && TLI->has(LibFunc::fabsf)) {
1168     Ret = optimizeUnaryDoubleFP(CI, B, false);
1169   }
1170
1171   FunctionType *FT = Callee->getFunctionType();
1172   // Make sure this has 1 argument of FP type which matches the result type.
1173   if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
1174       !FT->getParamType(0)->isFloatingPointTy())
1175     return Ret;
1176
1177   Value *Op = CI->getArgOperand(0);
1178   if (Instruction *I = dyn_cast<Instruction>(Op)) {
1179     // Fold fabs(x * x) -> x * x; any squared FP value must already be positive.
1180     if (I->getOpcode() == Instruction::FMul)
1181       if (I->getOperand(0) == I->getOperand(1))
1182         return Op;
1183   }
1184   return Ret;
1185 }
1186
1187 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) {
1188   // If we can shrink the call to a float function rather than a double
1189   // function, do that first.
1190   Function *Callee = CI->getCalledFunction();
1191   if ((Callee->getName() == "fmin" && TLI->has(LibFunc::fminf)) ||
1192       (Callee->getName() == "fmax" && TLI->has(LibFunc::fmaxf))) {
1193     Value *Ret = optimizeBinaryDoubleFP(CI, B);
1194     if (Ret)
1195       return Ret;
1196   }
1197
1198   // Make sure this has 2 arguments of FP type which match the result type.
1199   FunctionType *FT = Callee->getFunctionType();
1200   if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
1201       FT->getParamType(0) != FT->getParamType(1) ||
1202       !FT->getParamType(0)->isFloatingPointTy())
1203     return nullptr;
1204
1205   // FIXME: For finer-grain optimization, we need intrinsics to have the same
1206   // fast-math flag decorations that are applied to FP instructions. For now,
1207   // we have to rely on the function-level attributes to do this optimization
1208   // because there's no other way to express that the calls can be relaxed.
1209   IRBuilder<>::FastMathFlagGuard Guard(B);
1210   FastMathFlags FMF;
1211   Function *F = CI->getParent()->getParent();
1212   Attribute Attr = F->getFnAttribute("unsafe-fp-math");
1213   if (Attr.getValueAsString() == "true") {
1214     // Unsafe algebra sets all fast-math-flags to true.
1215     FMF.setUnsafeAlgebra();
1216   } else {
1217     // At a minimum, no-nans-fp-math must be true.
1218     Attr = F->getFnAttribute("no-nans-fp-math");
1219     if (Attr.getValueAsString() != "true")
1220       return nullptr;
1221     // No-signed-zeros is implied by the definitions of fmax/fmin themselves:
1222     // "Ideally, fmax would be sensitive to the sign of zero, for example
1223     // fmax(−0. 0, +0. 0) would return +0; however, implementation in software
1224     // might be impractical."
1225     FMF.setNoSignedZeros();
1226     FMF.setNoNaNs();
1227   }
1228   B.SetFastMathFlags(FMF);
1229
1230   // We have a relaxed floating-point environment. We can ignore NaN-handling
1231   // and transform to a compare and select. We do not have to consider errno or
1232   // exceptions, because fmin/fmax do not have those.
1233   Value *Op0 = CI->getArgOperand(0);
1234   Value *Op1 = CI->getArgOperand(1);
1235   Value *Cmp = Callee->getName().startswith("fmin") ?
1236     B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1);
1237   return B.CreateSelect(Cmp, Op0, Op1);
1238 }
1239
1240 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) {
1241   Function *Callee = CI->getCalledFunction();
1242   
1243   Value *Ret = nullptr;
1244   if (TLI->has(LibFunc::sqrtf) && (Callee->getName() == "sqrt" ||
1245                                    Callee->getIntrinsicID() == Intrinsic::sqrt))
1246     Ret = optimizeUnaryDoubleFP(CI, B, true);
1247
1248   // FIXME: For finer-grain optimization, we need intrinsics to have the same
1249   // fast-math flag decorations that are applied to FP instructions. For now,
1250   // we have to rely on the function-level unsafe-fp-math attribute to do this
1251   // optimization because there's no other way to express that the sqrt can be
1252   // reassociated.
1253   Function *F = CI->getParent()->getParent();
1254   if (F->hasFnAttribute("unsafe-fp-math")) {
1255     // Check for unsafe-fp-math = true.
1256     Attribute Attr = F->getFnAttribute("unsafe-fp-math");
1257     if (Attr.getValueAsString() != "true")
1258       return Ret;
1259   }
1260   Value *Op = CI->getArgOperand(0);
1261   if (Instruction *I = dyn_cast<Instruction>(Op)) {
1262     if (I->getOpcode() == Instruction::FMul && I->hasUnsafeAlgebra()) {
1263       // We're looking for a repeated factor in a multiplication tree,
1264       // so we can do this fold: sqrt(x * x) -> fabs(x);
1265       // or this fold: sqrt(x * x * y) -> fabs(x) * sqrt(y).
1266       Value *Op0 = I->getOperand(0);
1267       Value *Op1 = I->getOperand(1);
1268       Value *RepeatOp = nullptr;
1269       Value *OtherOp = nullptr;
1270       if (Op0 == Op1) {
1271         // Simple match: the operands of the multiply are identical.
1272         RepeatOp = Op0;
1273       } else {
1274         // Look for a more complicated pattern: one of the operands is itself
1275         // a multiply, so search for a common factor in that multiply.
1276         // Note: We don't bother looking any deeper than this first level or for
1277         // variations of this pattern because instcombine's visitFMUL and/or the
1278         // reassociation pass should give us this form.
1279         Value *OtherMul0, *OtherMul1;
1280         if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
1281           // Pattern: sqrt((x * y) * z)
1282           if (OtherMul0 == OtherMul1) {
1283             // Matched: sqrt((x * x) * z)
1284             RepeatOp = OtherMul0;
1285             OtherOp = Op1;
1286           }
1287         }
1288       }
1289       if (RepeatOp) {
1290         // Fast math flags for any created instructions should match the sqrt
1291         // and multiply.
1292         // FIXME: We're not checking the sqrt because it doesn't have
1293         // fast-math-flags (see earlier comment).
1294         IRBuilder<>::FastMathFlagGuard Guard(B);
1295         B.SetFastMathFlags(I->getFastMathFlags());
1296         // If we found a repeated factor, hoist it out of the square root and
1297         // replace it with the fabs of that factor.
1298         Module *M = Callee->getParent();
1299         Type *ArgType = Op->getType();
1300         Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
1301         Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
1302         if (OtherOp) {
1303           // If we found a non-repeated factor, we still need to get its square
1304           // root. We then multiply that by the value that was simplified out
1305           // of the square root calculation.
1306           Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
1307           Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
1308           return B.CreateFMul(FabsCall, SqrtCall);
1309         }
1310         return FabsCall;
1311       }
1312     }
1313   }
1314   return Ret;
1315 }
1316
1317 static bool isTrigLibCall(CallInst *CI);
1318 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
1319                              bool UseFloat, Value *&Sin, Value *&Cos,
1320                              Value *&SinCos);
1321
1322 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) {
1323
1324   // Make sure the prototype is as expected, otherwise the rest of the
1325   // function is probably invalid and likely to abort.
1326   if (!isTrigLibCall(CI))
1327     return nullptr;
1328
1329   Value *Arg = CI->getArgOperand(0);
1330   SmallVector<CallInst *, 1> SinCalls;
1331   SmallVector<CallInst *, 1> CosCalls;
1332   SmallVector<CallInst *, 1> SinCosCalls;
1333
1334   bool IsFloat = Arg->getType()->isFloatTy();
1335
1336   // Look for all compatible sinpi, cospi and sincospi calls with the same
1337   // argument. If there are enough (in some sense) we can make the
1338   // substitution.
1339   for (User *U : Arg->users())
1340     classifyArgUse(U, CI->getParent(), IsFloat, SinCalls, CosCalls,
1341                    SinCosCalls);
1342
1343   // It's only worthwhile if both sinpi and cospi are actually used.
1344   if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
1345     return nullptr;
1346
1347   Value *Sin, *Cos, *SinCos;
1348   insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
1349
1350   replaceTrigInsts(SinCalls, Sin);
1351   replaceTrigInsts(CosCalls, Cos);
1352   replaceTrigInsts(SinCosCalls, SinCos);
1353
1354   return nullptr;
1355 }
1356
1357 static bool isTrigLibCall(CallInst *CI) {
1358   Function *Callee = CI->getCalledFunction();
1359   FunctionType *FT = Callee->getFunctionType();
1360
1361   // We can only hope to do anything useful if we can ignore things like errno
1362   // and floating-point exceptions.
1363   bool AttributesSafe =
1364       CI->hasFnAttr(Attribute::NoUnwind) && CI->hasFnAttr(Attribute::ReadNone);
1365
1366   // Other than that we need float(float) or double(double)
1367   return AttributesSafe && FT->getNumParams() == 1 &&
1368          FT->getReturnType() == FT->getParamType(0) &&
1369          (FT->getParamType(0)->isFloatTy() ||
1370           FT->getParamType(0)->isDoubleTy());
1371 }
1372
1373 void
1374 LibCallSimplifier::classifyArgUse(Value *Val, BasicBlock *BB, bool IsFloat,
1375                                   SmallVectorImpl<CallInst *> &SinCalls,
1376                                   SmallVectorImpl<CallInst *> &CosCalls,
1377                                   SmallVectorImpl<CallInst *> &SinCosCalls) {
1378   CallInst *CI = dyn_cast<CallInst>(Val);
1379
1380   if (!CI)
1381     return;
1382
1383   Function *Callee = CI->getCalledFunction();
1384   StringRef FuncName = Callee->getName();
1385   LibFunc::Func Func;
1386   if (!TLI->getLibFunc(FuncName, Func) || !TLI->has(Func) || !isTrigLibCall(CI))
1387     return;
1388
1389   if (IsFloat) {
1390     if (Func == LibFunc::sinpif)
1391       SinCalls.push_back(CI);
1392     else if (Func == LibFunc::cospif)
1393       CosCalls.push_back(CI);
1394     else if (Func == LibFunc::sincospif_stret)
1395       SinCosCalls.push_back(CI);
1396   } else {
1397     if (Func == LibFunc::sinpi)
1398       SinCalls.push_back(CI);
1399     else if (Func == LibFunc::cospi)
1400       CosCalls.push_back(CI);
1401     else if (Func == LibFunc::sincospi_stret)
1402       SinCosCalls.push_back(CI);
1403   }
1404 }
1405
1406 void LibCallSimplifier::replaceTrigInsts(SmallVectorImpl<CallInst *> &Calls,
1407                                          Value *Res) {
1408   for (SmallVectorImpl<CallInst *>::iterator I = Calls.begin(), E = Calls.end();
1409        I != E; ++I) {
1410     replaceAllUsesWith(*I, Res);
1411   }
1412 }
1413
1414 void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
1415                       bool UseFloat, Value *&Sin, Value *&Cos, Value *&SinCos) {
1416   Type *ArgTy = Arg->getType();
1417   Type *ResTy;
1418   StringRef Name;
1419
1420   Triple T(OrigCallee->getParent()->getTargetTriple());
1421   if (UseFloat) {
1422     Name = "__sincospif_stret";
1423
1424     assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
1425     // x86_64 can't use {float, float} since that would be returned in both
1426     // xmm0 and xmm1, which isn't what a real struct would do.
1427     ResTy = T.getArch() == Triple::x86_64
1428                 ? static_cast<Type *>(VectorType::get(ArgTy, 2))
1429                 : static_cast<Type *>(StructType::get(ArgTy, ArgTy, nullptr));
1430   } else {
1431     Name = "__sincospi_stret";
1432     ResTy = StructType::get(ArgTy, ArgTy, nullptr);
1433   }
1434
1435   Module *M = OrigCallee->getParent();
1436   Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(),
1437                                          ResTy, ArgTy, nullptr);
1438
1439   if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
1440     // If the argument is an instruction, it must dominate all uses so put our
1441     // sincos call there.
1442     BasicBlock::iterator Loc = ArgInst;
1443     B.SetInsertPoint(ArgInst->getParent(), ++Loc);
1444   } else {
1445     // Otherwise (e.g. for a constant) the beginning of the function is as
1446     // good a place as any.
1447     BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
1448     B.SetInsertPoint(&EntryBB, EntryBB.begin());
1449   }
1450
1451   SinCos = B.CreateCall(Callee, Arg, "sincospi");
1452
1453   if (SinCos->getType()->isStructTy()) {
1454     Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
1455     Cos = B.CreateExtractValue(SinCos, 1, "cospi");
1456   } else {
1457     Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
1458                                  "sinpi");
1459     Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
1460                                  "cospi");
1461   }
1462 }
1463
1464 //===----------------------------------------------------------------------===//
1465 // Integer Library Call Optimizations
1466 //===----------------------------------------------------------------------===//
1467
1468 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) {
1469   Function *Callee = CI->getCalledFunction();
1470   FunctionType *FT = Callee->getFunctionType();
1471   // Just make sure this has 2 arguments of the same FP type, which match the
1472   // result type.
1473   if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy(32) ||
1474       !FT->getParamType(0)->isIntegerTy())
1475     return nullptr;
1476
1477   Value *Op = CI->getArgOperand(0);
1478
1479   // Constant fold.
1480   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
1481     if (CI->isZero()) // ffs(0) -> 0.
1482       return B.getInt32(0);
1483     // ffs(c) -> cttz(c)+1
1484     return B.getInt32(CI->getValue().countTrailingZeros() + 1);
1485   }
1486
1487   // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
1488   Type *ArgType = Op->getType();
1489   Value *F =
1490       Intrinsic::getDeclaration(Callee->getParent(), Intrinsic::cttz, ArgType);
1491   Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
1492   V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
1493   V = B.CreateIntCast(V, B.getInt32Ty(), false);
1494
1495   Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
1496   return B.CreateSelect(Cond, V, B.getInt32(0));
1497 }
1498
1499 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) {
1500   Function *Callee = CI->getCalledFunction();
1501   FunctionType *FT = Callee->getFunctionType();
1502   // We require integer(integer) where the types agree.
1503   if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
1504       FT->getParamType(0) != FT->getReturnType())
1505     return nullptr;
1506
1507   // abs(x) -> x >s -1 ? x : -x
1508   Value *Op = CI->getArgOperand(0);
1509   Value *Pos =
1510       B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), "ispos");
1511   Value *Neg = B.CreateNeg(Op, "neg");
1512   return B.CreateSelect(Pos, Op, Neg);
1513 }
1514
1515 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) {
1516   Function *Callee = CI->getCalledFunction();
1517   FunctionType *FT = Callee->getFunctionType();
1518   // We require integer(i32)
1519   if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
1520       !FT->getParamType(0)->isIntegerTy(32))
1521     return nullptr;
1522
1523   // isdigit(c) -> (c-'0') <u 10
1524   Value *Op = CI->getArgOperand(0);
1525   Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
1526   Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
1527   return B.CreateZExt(Op, CI->getType());
1528 }
1529
1530 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) {
1531   Function *Callee = CI->getCalledFunction();
1532   FunctionType *FT = Callee->getFunctionType();
1533   // We require integer(i32)
1534   if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
1535       !FT->getParamType(0)->isIntegerTy(32))
1536     return nullptr;
1537
1538   // isascii(c) -> c <u 128
1539   Value *Op = CI->getArgOperand(0);
1540   Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
1541   return B.CreateZExt(Op, CI->getType());
1542 }
1543
1544 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) {
1545   Function *Callee = CI->getCalledFunction();
1546   FunctionType *FT = Callee->getFunctionType();
1547   // We require i32(i32)
1548   if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
1549       !FT->getParamType(0)->isIntegerTy(32))
1550     return nullptr;
1551
1552   // toascii(c) -> c & 0x7f
1553   return B.CreateAnd(CI->getArgOperand(0),
1554                      ConstantInt::get(CI->getType(), 0x7F));
1555 }
1556
1557 //===----------------------------------------------------------------------===//
1558 // Formatting and IO Library Call Optimizations
1559 //===----------------------------------------------------------------------===//
1560
1561 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
1562
1563 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B,
1564                                                  int StreamArg) {
1565   // Error reporting calls should be cold, mark them as such.
1566   // This applies even to non-builtin calls: it is only a hint and applies to
1567   // functions that the frontend might not understand as builtins.
1568
1569   // This heuristic was suggested in:
1570   // Improving Static Branch Prediction in a Compiler
1571   // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
1572   // Proceedings of PACT'98, Oct. 1998, IEEE
1573   Function *Callee = CI->getCalledFunction();
1574
1575   if (!CI->hasFnAttr(Attribute::Cold) &&
1576       isReportingError(Callee, CI, StreamArg)) {
1577     CI->addAttribute(AttributeSet::FunctionIndex, Attribute::Cold);
1578   }
1579
1580   return nullptr;
1581 }
1582
1583 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
1584   if (!ColdErrorCalls)
1585     return false;
1586
1587   if (!Callee || !Callee->isDeclaration())
1588     return false;
1589
1590   if (StreamArg < 0)
1591     return true;
1592
1593   // These functions might be considered cold, but only if their stream
1594   // argument is stderr.
1595
1596   if (StreamArg >= (int)CI->getNumArgOperands())
1597     return false;
1598   LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
1599   if (!LI)
1600     return false;
1601   GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
1602   if (!GV || !GV->isDeclaration())
1603     return false;
1604   return GV->getName() == "stderr";
1605 }
1606
1607 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) {
1608   // Check for a fixed format string.
1609   StringRef FormatStr;
1610   if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
1611     return nullptr;
1612
1613   // Empty format string -> noop.
1614   if (FormatStr.empty()) // Tolerate printf's declared void.
1615     return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
1616
1617   // Do not do any of the following transformations if the printf return value
1618   // is used, in general the printf return value is not compatible with either
1619   // putchar() or puts().
1620   if (!CI->use_empty())
1621     return nullptr;
1622
1623   // printf("x") -> putchar('x'), even for '%'.
1624   if (FormatStr.size() == 1) {
1625     Value *Res = EmitPutChar(B.getInt32(FormatStr[0]), B, TLI);
1626     if (CI->use_empty() || !Res)
1627       return Res;
1628     return B.CreateIntCast(Res, CI->getType(), true);
1629   }
1630
1631   // printf("foo\n") --> puts("foo")
1632   if (FormatStr[FormatStr.size() - 1] == '\n' &&
1633       FormatStr.find('%') == StringRef::npos) { // No format characters.
1634     // Create a string literal with no \n on it.  We expect the constant merge
1635     // pass to be run after this pass, to merge duplicate strings.
1636     FormatStr = FormatStr.drop_back();
1637     Value *GV = B.CreateGlobalString(FormatStr, "str");
1638     Value *NewCI = EmitPutS(GV, B, TLI);
1639     return (CI->use_empty() || !NewCI)
1640                ? NewCI
1641                : ConstantInt::get(CI->getType(), FormatStr.size() + 1);
1642   }
1643
1644   // Optimize specific format strings.
1645   // printf("%c", chr) --> putchar(chr)
1646   if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
1647       CI->getArgOperand(1)->getType()->isIntegerTy()) {
1648     Value *Res = EmitPutChar(CI->getArgOperand(1), B, TLI);
1649
1650     if (CI->use_empty() || !Res)
1651       return Res;
1652     return B.CreateIntCast(Res, CI->getType(), true);
1653   }
1654
1655   // printf("%s\n", str) --> puts(str)
1656   if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
1657       CI->getArgOperand(1)->getType()->isPointerTy()) {
1658     return EmitPutS(CI->getArgOperand(1), B, TLI);
1659   }
1660   return nullptr;
1661 }
1662
1663 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) {
1664
1665   Function *Callee = CI->getCalledFunction();
1666   // Require one fixed pointer argument and an integer/void result.
1667   FunctionType *FT = Callee->getFunctionType();
1668   if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
1669       !(FT->getReturnType()->isIntegerTy() || FT->getReturnType()->isVoidTy()))
1670     return nullptr;
1671
1672   if (Value *V = optimizePrintFString(CI, B)) {
1673     return V;
1674   }
1675
1676   // printf(format, ...) -> iprintf(format, ...) if no floating point
1677   // arguments.
1678   if (TLI->has(LibFunc::iprintf) && !callHasFloatingPointArgument(CI)) {
1679     Module *M = B.GetInsertBlock()->getParent()->getParent();
1680     Constant *IPrintFFn =
1681         M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
1682     CallInst *New = cast<CallInst>(CI->clone());
1683     New->setCalledFunction(IPrintFFn);
1684     B.Insert(New);
1685     return New;
1686   }
1687   return nullptr;
1688 }
1689
1690 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) {
1691   // Check for a fixed format string.
1692   StringRef FormatStr;
1693   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
1694     return nullptr;
1695
1696   // If we just have a format string (nothing else crazy) transform it.
1697   if (CI->getNumArgOperands() == 2) {
1698     // Make sure there's no % in the constant array.  We could try to handle
1699     // %% -> % in the future if we cared.
1700     for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
1701       if (FormatStr[i] == '%')
1702         return nullptr; // we found a format specifier, bail out.
1703
1704     // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
1705     B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
1706                    ConstantInt::get(DL.getIntPtrType(CI->getContext()),
1707                                     FormatStr.size() + 1),
1708                    1); // Copy the null byte.
1709     return ConstantInt::get(CI->getType(), FormatStr.size());
1710   }
1711
1712   // The remaining optimizations require the format string to be "%s" or "%c"
1713   // and have an extra operand.
1714   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
1715       CI->getNumArgOperands() < 3)
1716     return nullptr;
1717
1718   // Decode the second character of the format string.
1719   if (FormatStr[1] == 'c') {
1720     // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
1721     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
1722       return nullptr;
1723     Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
1724     Value *Ptr = CastToCStr(CI->getArgOperand(0), B);
1725     B.CreateStore(V, Ptr);
1726     Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
1727     B.CreateStore(B.getInt8(0), Ptr);
1728
1729     return ConstantInt::get(CI->getType(), 1);
1730   }
1731
1732   if (FormatStr[1] == 's') {
1733     // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
1734     if (!CI->getArgOperand(2)->getType()->isPointerTy())
1735       return nullptr;
1736
1737     Value *Len = EmitStrLen(CI->getArgOperand(2), B, DL, TLI);
1738     if (!Len)
1739       return nullptr;
1740     Value *IncLen =
1741         B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
1742     B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1);
1743
1744     // The sprintf result is the unincremented number of bytes in the string.
1745     return B.CreateIntCast(Len, CI->getType(), false);
1746   }
1747   return nullptr;
1748 }
1749
1750 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) {
1751   Function *Callee = CI->getCalledFunction();
1752   // Require two fixed pointer arguments and an integer result.
1753   FunctionType *FT = Callee->getFunctionType();
1754   if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
1755       !FT->getParamType(1)->isPointerTy() ||
1756       !FT->getReturnType()->isIntegerTy())
1757     return nullptr;
1758
1759   if (Value *V = optimizeSPrintFString(CI, B)) {
1760     return V;
1761   }
1762
1763   // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
1764   // point arguments.
1765   if (TLI->has(LibFunc::siprintf) && !callHasFloatingPointArgument(CI)) {
1766     Module *M = B.GetInsertBlock()->getParent()->getParent();
1767     Constant *SIPrintFFn =
1768         M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
1769     CallInst *New = cast<CallInst>(CI->clone());
1770     New->setCalledFunction(SIPrintFFn);
1771     B.Insert(New);
1772     return New;
1773   }
1774   return nullptr;
1775 }
1776
1777 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) {
1778   optimizeErrorReporting(CI, B, 0);
1779
1780   // All the optimizations depend on the format string.
1781   StringRef FormatStr;
1782   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
1783     return nullptr;
1784
1785   // Do not do any of the following transformations if the fprintf return
1786   // value is used, in general the fprintf return value is not compatible
1787   // with fwrite(), fputc() or fputs().
1788   if (!CI->use_empty())
1789     return nullptr;
1790
1791   // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
1792   if (CI->getNumArgOperands() == 2) {
1793     for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
1794       if (FormatStr[i] == '%') // Could handle %% -> % if we cared.
1795         return nullptr;        // We found a format specifier.
1796
1797     return EmitFWrite(
1798         CI->getArgOperand(1),
1799         ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()),
1800         CI->getArgOperand(0), B, DL, TLI);
1801   }
1802
1803   // The remaining optimizations require the format string to be "%s" or "%c"
1804   // and have an extra operand.
1805   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
1806       CI->getNumArgOperands() < 3)
1807     return nullptr;
1808
1809   // Decode the second character of the format string.
1810   if (FormatStr[1] == 'c') {
1811     // fprintf(F, "%c", chr) --> fputc(chr, F)
1812     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
1813       return nullptr;
1814     return EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
1815   }
1816
1817   if (FormatStr[1] == 's') {
1818     // fprintf(F, "%s", str) --> fputs(str, F)
1819     if (!CI->getArgOperand(2)->getType()->isPointerTy())
1820       return nullptr;
1821     return EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
1822   }
1823   return nullptr;
1824 }
1825
1826 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) {
1827   Function *Callee = CI->getCalledFunction();
1828   // Require two fixed paramters as pointers and integer result.
1829   FunctionType *FT = Callee->getFunctionType();
1830   if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
1831       !FT->getParamType(1)->isPointerTy() ||
1832       !FT->getReturnType()->isIntegerTy())
1833     return nullptr;
1834
1835   if (Value *V = optimizeFPrintFString(CI, B)) {
1836     return V;
1837   }
1838
1839   // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
1840   // floating point arguments.
1841   if (TLI->has(LibFunc::fiprintf) && !callHasFloatingPointArgument(CI)) {
1842     Module *M = B.GetInsertBlock()->getParent()->getParent();
1843     Constant *FIPrintFFn =
1844         M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
1845     CallInst *New = cast<CallInst>(CI->clone());
1846     New->setCalledFunction(FIPrintFFn);
1847     B.Insert(New);
1848     return New;
1849   }
1850   return nullptr;
1851 }
1852
1853 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) {
1854   optimizeErrorReporting(CI, B, 3);
1855
1856   Function *Callee = CI->getCalledFunction();
1857   // Require a pointer, an integer, an integer, a pointer, returning integer.
1858   FunctionType *FT = Callee->getFunctionType();
1859   if (FT->getNumParams() != 4 || !FT->getParamType(0)->isPointerTy() ||
1860       !FT->getParamType(1)->isIntegerTy() ||
1861       !FT->getParamType(2)->isIntegerTy() ||
1862       !FT->getParamType(3)->isPointerTy() ||
1863       !FT->getReturnType()->isIntegerTy())
1864     return nullptr;
1865
1866   // Get the element size and count.
1867   ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
1868   ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
1869   if (!SizeC || !CountC)
1870     return nullptr;
1871   uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
1872
1873   // If this is writing zero records, remove the call (it's a noop).
1874   if (Bytes == 0)
1875     return ConstantInt::get(CI->getType(), 0);
1876
1877   // If this is writing one byte, turn it into fputc.
1878   // This optimisation is only valid, if the return value is unused.
1879   if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
1880     Value *Char = B.CreateLoad(CastToCStr(CI->getArgOperand(0), B), "char");
1881     Value *NewCI = EmitFPutC(Char, CI->getArgOperand(3), B, TLI);
1882     return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
1883   }
1884
1885   return nullptr;
1886 }
1887
1888 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) {
1889   optimizeErrorReporting(CI, B, 1);
1890
1891   Function *Callee = CI->getCalledFunction();
1892
1893   // Require two pointers.  Also, we can't optimize if return value is used.
1894   FunctionType *FT = Callee->getFunctionType();
1895   if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
1896       !FT->getParamType(1)->isPointerTy() || !CI->use_empty())
1897     return nullptr;
1898
1899   // fputs(s,F) --> fwrite(s,1,strlen(s),F)
1900   uint64_t Len = GetStringLength(CI->getArgOperand(0));
1901   if (!Len)
1902     return nullptr;
1903
1904   // Known to have no uses (see above).
1905   return EmitFWrite(
1906       CI->getArgOperand(0),
1907       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
1908       CI->getArgOperand(1), B, DL, TLI);
1909 }
1910
1911 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) {
1912   Function *Callee = CI->getCalledFunction();
1913   // Require one fixed pointer argument and an integer/void result.
1914   FunctionType *FT = Callee->getFunctionType();
1915   if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
1916       !(FT->getReturnType()->isIntegerTy() || FT->getReturnType()->isVoidTy()))
1917     return nullptr;
1918
1919   // Check for a constant string.
1920   StringRef Str;
1921   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
1922     return nullptr;
1923
1924   if (Str.empty() && CI->use_empty()) {
1925     // puts("") -> putchar('\n')
1926     Value *Res = EmitPutChar(B.getInt32('\n'), B, TLI);
1927     if (CI->use_empty() || !Res)
1928       return Res;
1929     return B.CreateIntCast(Res, CI->getType(), true);
1930   }
1931
1932   return nullptr;
1933 }
1934
1935 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
1936   LibFunc::Func Func;
1937   SmallString<20> FloatFuncName = FuncName;
1938   FloatFuncName += 'f';
1939   if (TLI->getLibFunc(FloatFuncName, Func))
1940     return TLI->has(Func);
1941   return false;
1942 }
1943
1944 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
1945                                                       IRBuilder<> &Builder) {
1946   LibFunc::Func Func;
1947   Function *Callee = CI->getCalledFunction();
1948   StringRef FuncName = Callee->getName();
1949
1950   // Check for string/memory library functions.
1951   if (TLI->getLibFunc(FuncName, Func) && TLI->has(Func)) {
1952     // Make sure we never change the calling convention.
1953     assert((ignoreCallingConv(Func) ||
1954             CI->getCallingConv() == llvm::CallingConv::C) &&
1955       "Optimizing string/memory libcall would change the calling convention");
1956     switch (Func) {
1957     case LibFunc::strcat:
1958       return optimizeStrCat(CI, Builder);
1959     case LibFunc::strncat:
1960       return optimizeStrNCat(CI, Builder);
1961     case LibFunc::strchr:
1962       return optimizeStrChr(CI, Builder);
1963     case LibFunc::strrchr:
1964       return optimizeStrRChr(CI, Builder);
1965     case LibFunc::strcmp:
1966       return optimizeStrCmp(CI, Builder);
1967     case LibFunc::strncmp:
1968       return optimizeStrNCmp(CI, Builder);
1969     case LibFunc::strcpy:
1970       return optimizeStrCpy(CI, Builder);
1971     case LibFunc::stpcpy:
1972       return optimizeStpCpy(CI, Builder);
1973     case LibFunc::strncpy:
1974       return optimizeStrNCpy(CI, Builder);
1975     case LibFunc::strlen:
1976       return optimizeStrLen(CI, Builder);
1977     case LibFunc::strpbrk:
1978       return optimizeStrPBrk(CI, Builder);
1979     case LibFunc::strtol:
1980     case LibFunc::strtod:
1981     case LibFunc::strtof:
1982     case LibFunc::strtoul:
1983     case LibFunc::strtoll:
1984     case LibFunc::strtold:
1985     case LibFunc::strtoull:
1986       return optimizeStrTo(CI, Builder);
1987     case LibFunc::strspn:
1988       return optimizeStrSpn(CI, Builder);
1989     case LibFunc::strcspn:
1990       return optimizeStrCSpn(CI, Builder);
1991     case LibFunc::strstr:
1992       return optimizeStrStr(CI, Builder);
1993     case LibFunc::memchr:
1994       return optimizeMemChr(CI, Builder);
1995     case LibFunc::memcmp:
1996       return optimizeMemCmp(CI, Builder);
1997     case LibFunc::memcpy:
1998       return optimizeMemCpy(CI, Builder);
1999     case LibFunc::memmove:
2000       return optimizeMemMove(CI, Builder);
2001     case LibFunc::memset:
2002       return optimizeMemSet(CI, Builder);
2003     default:
2004       break;
2005     }
2006   }
2007   return nullptr;
2008 }
2009
2010 Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
2011   if (CI->isNoBuiltin())
2012     return nullptr;
2013
2014   LibFunc::Func Func;
2015   Function *Callee = CI->getCalledFunction();
2016   StringRef FuncName = Callee->getName();
2017   IRBuilder<> Builder(CI);
2018   bool isCallingConvC = CI->getCallingConv() == llvm::CallingConv::C;
2019
2020   // Command-line parameter overrides function attribute.
2021   if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
2022     UnsafeFPShrink = EnableUnsafeFPShrink;
2023   else if (Callee->hasFnAttribute("unsafe-fp-math")) {
2024     // FIXME: This is the same problem as described in optimizeSqrt().
2025     // If calls gain access to IR-level FMF, then use that instead of a
2026     // function attribute.
2027
2028     // Check for unsafe-fp-math = true.
2029     Attribute Attr = Callee->getFnAttribute("unsafe-fp-math");
2030     if (Attr.getValueAsString() == "true")
2031       UnsafeFPShrink = true;
2032   }
2033
2034   // First, check for intrinsics.
2035   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
2036     if (!isCallingConvC)
2037       return nullptr;
2038     switch (II->getIntrinsicID()) {
2039     case Intrinsic::pow:
2040       return optimizePow(CI, Builder);
2041     case Intrinsic::exp2:
2042       return optimizeExp2(CI, Builder);
2043     case Intrinsic::fabs:
2044       return optimizeFabs(CI, Builder);
2045     case Intrinsic::sqrt:
2046       return optimizeSqrt(CI, Builder);
2047     default:
2048       return nullptr;
2049     }
2050   }
2051
2052   // Also try to simplify calls to fortified library functions.
2053   if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) {
2054     // Try to further simplify the result.
2055     CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
2056     if (SimplifiedCI && SimplifiedCI->getCalledFunction())
2057       if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) {
2058         // If we were able to further simplify, remove the now redundant call.
2059         SimplifiedCI->replaceAllUsesWith(V);
2060         SimplifiedCI->eraseFromParent();
2061         return V;
2062       }
2063     return SimplifiedFortifiedCI;
2064   }
2065
2066   // Then check for known library functions.
2067   if (TLI->getLibFunc(FuncName, Func) && TLI->has(Func)) {
2068     // We never change the calling convention.
2069     if (!ignoreCallingConv(Func) && !isCallingConvC)
2070       return nullptr;
2071     if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
2072       return V;
2073     switch (Func) {
2074     case LibFunc::cosf:
2075     case LibFunc::cos:
2076     case LibFunc::cosl:
2077       return optimizeCos(CI, Builder);
2078     case LibFunc::sinpif:
2079     case LibFunc::sinpi:
2080     case LibFunc::cospif:
2081     case LibFunc::cospi:
2082       return optimizeSinCosPi(CI, Builder);
2083     case LibFunc::powf:
2084     case LibFunc::pow:
2085     case LibFunc::powl:
2086       return optimizePow(CI, Builder);
2087     case LibFunc::exp2l:
2088     case LibFunc::exp2:
2089     case LibFunc::exp2f:
2090       return optimizeExp2(CI, Builder);
2091     case LibFunc::fabsf:
2092     case LibFunc::fabs:
2093     case LibFunc::fabsl:
2094       return optimizeFabs(CI, Builder);
2095     case LibFunc::sqrtf:
2096     case LibFunc::sqrt:
2097     case LibFunc::sqrtl:
2098       return optimizeSqrt(CI, Builder);
2099     case LibFunc::ffs:
2100     case LibFunc::ffsl:
2101     case LibFunc::ffsll:
2102       return optimizeFFS(CI, Builder);
2103     case LibFunc::abs:
2104     case LibFunc::labs:
2105     case LibFunc::llabs:
2106       return optimizeAbs(CI, Builder);
2107     case LibFunc::isdigit:
2108       return optimizeIsDigit(CI, Builder);
2109     case LibFunc::isascii:
2110       return optimizeIsAscii(CI, Builder);
2111     case LibFunc::toascii:
2112       return optimizeToAscii(CI, Builder);
2113     case LibFunc::printf:
2114       return optimizePrintF(CI, Builder);
2115     case LibFunc::sprintf:
2116       return optimizeSPrintF(CI, Builder);
2117     case LibFunc::fprintf:
2118       return optimizeFPrintF(CI, Builder);
2119     case LibFunc::fwrite:
2120       return optimizeFWrite(CI, Builder);
2121     case LibFunc::fputs:
2122       return optimizeFPuts(CI, Builder);
2123     case LibFunc::puts:
2124       return optimizePuts(CI, Builder);
2125     case LibFunc::perror:
2126       return optimizeErrorReporting(CI, Builder);
2127     case LibFunc::vfprintf:
2128     case LibFunc::fiprintf:
2129       return optimizeErrorReporting(CI, Builder, 0);
2130     case LibFunc::fputc:
2131       return optimizeErrorReporting(CI, Builder, 1);
2132     case LibFunc::ceil:
2133     case LibFunc::floor:
2134     case LibFunc::rint:
2135     case LibFunc::round:
2136     case LibFunc::nearbyint:
2137     case LibFunc::trunc:
2138       if (hasFloatVersion(FuncName))
2139         return optimizeUnaryDoubleFP(CI, Builder, false);
2140       return nullptr;
2141     case LibFunc::acos:
2142     case LibFunc::acosh:
2143     case LibFunc::asin:
2144     case LibFunc::asinh:
2145     case LibFunc::atan:
2146     case LibFunc::atanh:
2147     case LibFunc::cbrt:
2148     case LibFunc::cosh:
2149     case LibFunc::exp:
2150     case LibFunc::exp10:
2151     case LibFunc::expm1:
2152     case LibFunc::log:
2153     case LibFunc::log10:
2154     case LibFunc::log1p:
2155     case LibFunc::log2:
2156     case LibFunc::logb:
2157     case LibFunc::sin:
2158     case LibFunc::sinh:
2159     case LibFunc::tan:
2160     case LibFunc::tanh:
2161       if (UnsafeFPShrink && hasFloatVersion(FuncName))
2162         return optimizeUnaryDoubleFP(CI, Builder, true);
2163       return nullptr;
2164     case LibFunc::copysign:
2165       if (hasFloatVersion(FuncName))
2166         return optimizeBinaryDoubleFP(CI, Builder);
2167       return nullptr;
2168     case LibFunc::fminf:
2169     case LibFunc::fmin:
2170     case LibFunc::fminl:
2171     case LibFunc::fmaxf:
2172     case LibFunc::fmax:
2173     case LibFunc::fmaxl:
2174       return optimizeFMinFMax(CI, Builder);
2175     default:
2176       return nullptr;
2177     }
2178   }
2179   return nullptr;
2180 }
2181
2182 LibCallSimplifier::LibCallSimplifier(
2183     const DataLayout &DL, const TargetLibraryInfo *TLI,
2184     function_ref<void(Instruction *, Value *)> Replacer)
2185     : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), UnsafeFPShrink(false),
2186       Replacer(Replacer) {}
2187
2188 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
2189   // Indirect through the replacer used in this instance.
2190   Replacer(I, With);
2191 }
2192
2193 /*static*/ void LibCallSimplifier::replaceAllUsesWithDefault(Instruction *I,
2194                                                              Value *With) {
2195   I->replaceAllUsesWith(With);
2196   I->eraseFromParent();
2197 }
2198
2199 // TODO:
2200 //   Additional cases that we need to add to this file:
2201 //
2202 // cbrt:
2203 //   * cbrt(expN(X))  -> expN(x/3)
2204 //   * cbrt(sqrt(x))  -> pow(x,1/6)
2205 //   * cbrt(sqrt(x))  -> pow(x,1/9)
2206 //
2207 // exp, expf, expl:
2208 //   * exp(log(x))  -> x
2209 //
2210 // log, logf, logl:
2211 //   * log(exp(x))   -> x
2212 //   * log(x**y)     -> y*log(x)
2213 //   * log(exp(y))   -> y*log(e)
2214 //   * log(exp2(y))  -> y*log(2)
2215 //   * log(exp10(y)) -> y*log(10)
2216 //   * log(sqrt(x))  -> 0.5*log(x)
2217 //   * log(pow(x,y)) -> y*log(x)
2218 //
2219 // lround, lroundf, lroundl:
2220 //   * lround(cnst) -> cnst'
2221 //
2222 // pow, powf, powl:
2223 //   * pow(exp(x),y)  -> exp(x*y)
2224 //   * pow(sqrt(x),y) -> pow(x,y*0.5)
2225 //   * pow(pow(x,y),z)-> pow(x,y*z)
2226 //
2227 // round, roundf, roundl:
2228 //   * round(cnst) -> cnst'
2229 //
2230 // signbit:
2231 //   * signbit(cnst) -> cnst'
2232 //   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
2233 //
2234 // sqrt, sqrtf, sqrtl:
2235 //   * sqrt(expN(x))  -> expN(x*0.5)
2236 //   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
2237 //   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
2238 //
2239 // tan, tanf, tanl:
2240 //   * tan(atan(x)) -> x
2241 //
2242 // trunc, truncf, truncl:
2243 //   * trunc(cnst) -> cnst'
2244 //
2245 //
2246
2247 //===----------------------------------------------------------------------===//
2248 // Fortified Library Call Optimizations
2249 //===----------------------------------------------------------------------===//
2250
2251 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
2252                                                          unsigned ObjSizeOp,
2253                                                          unsigned SizeOp,
2254                                                          bool isString) {
2255   if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp))
2256     return true;
2257   if (ConstantInt *ObjSizeCI =
2258           dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
2259     if (ObjSizeCI->isAllOnesValue())
2260       return true;
2261     // If the object size wasn't -1 (unknown), bail out if we were asked to.
2262     if (OnlyLowerUnknownSize)
2263       return false;
2264     if (isString) {
2265       uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp));
2266       // If the length is 0 we don't know how long it is and so we can't
2267       // remove the check.
2268       if (Len == 0)
2269         return false;
2270       return ObjSizeCI->getZExtValue() >= Len;
2271     }
2272     if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp)))
2273       return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
2274   }
2275   return false;
2276 }
2277
2278 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, IRBuilder<> &B) {
2279   Function *Callee = CI->getCalledFunction();
2280
2281   if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memcpy_chk))
2282     return nullptr;
2283
2284   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2285     B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
2286                    CI->getArgOperand(2), 1);
2287     return CI->getArgOperand(0);
2288   }
2289   return nullptr;
2290 }
2291
2292 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, IRBuilder<> &B) {
2293   Function *Callee = CI->getCalledFunction();
2294
2295   if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memmove_chk))
2296     return nullptr;
2297
2298   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2299     B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
2300                     CI->getArgOperand(2), 1);
2301     return CI->getArgOperand(0);
2302   }
2303   return nullptr;
2304 }
2305
2306 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, IRBuilder<> &B) {
2307   Function *Callee = CI->getCalledFunction();
2308
2309   if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memset_chk))
2310     return nullptr;
2311
2312   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2313     Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
2314     B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
2315     return CI->getArgOperand(0);
2316   }
2317   return nullptr;
2318 }
2319
2320 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
2321                                                       IRBuilder<> &B,
2322                                                       LibFunc::Func Func) {
2323   Function *Callee = CI->getCalledFunction();
2324   StringRef Name = Callee->getName();
2325   const DataLayout &DL = CI->getModule()->getDataLayout();
2326
2327   if (!checkStringCopyLibFuncSignature(Callee, Func))
2328     return nullptr;
2329
2330   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
2331         *ObjSize = CI->getArgOperand(2);
2332
2333   // __stpcpy_chk(x,x,...)  -> x+strlen(x)
2334   if (Func == LibFunc::stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
2335     Value *StrLen = EmitStrLen(Src, B, DL, TLI);
2336     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
2337   }
2338
2339   // If a) we don't have any length information, or b) we know this will
2340   // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
2341   // st[rp]cpy_chk call which may fail at runtime if the size is too long.
2342   // TODO: It might be nice to get a maximum length out of the possible
2343   // string lengths for varying.
2344   if (isFortifiedCallFoldable(CI, 2, 1, true))
2345     return EmitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6));
2346
2347   if (OnlyLowerUnknownSize)
2348     return nullptr;
2349
2350   // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
2351   uint64_t Len = GetStringLength(Src);
2352   if (Len == 0)
2353     return nullptr;
2354
2355   Type *SizeTTy = DL.getIntPtrType(CI->getContext());
2356   Value *LenV = ConstantInt::get(SizeTTy, Len);
2357   Value *Ret = EmitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
2358   // If the function was an __stpcpy_chk, and we were able to fold it into
2359   // a __memcpy_chk, we still need to return the correct end pointer.
2360   if (Ret && Func == LibFunc::stpcpy_chk)
2361     return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
2362   return Ret;
2363 }
2364
2365 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
2366                                                        IRBuilder<> &B,
2367                                                        LibFunc::Func Func) {
2368   Function *Callee = CI->getCalledFunction();
2369   StringRef Name = Callee->getName();
2370
2371   if (!checkStringCopyLibFuncSignature(Callee, Func))
2372     return nullptr;
2373   if (isFortifiedCallFoldable(CI, 3, 2, false)) {
2374     Value *Ret = EmitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
2375                              CI->getArgOperand(2), B, TLI, Name.substr(2, 7));
2376     return Ret;
2377   }
2378   return nullptr;
2379 }
2380
2381 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) {
2382   // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
2383   // Some clang users checked for _chk libcall availability using:
2384   //   __has_builtin(__builtin___memcpy_chk)
2385   // When compiling with -fno-builtin, this is always true.
2386   // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
2387   // end up with fortified libcalls, which isn't acceptable in a freestanding
2388   // environment which only provides their non-fortified counterparts.
2389   //
2390   // Until we change clang and/or teach external users to check for availability
2391   // differently, disregard the "nobuiltin" attribute and TLI::has.
2392   //
2393   // PR23093.
2394
2395   LibFunc::Func Func;
2396   Function *Callee = CI->getCalledFunction();
2397   StringRef FuncName = Callee->getName();
2398   IRBuilder<> Builder(CI);
2399   bool isCallingConvC = CI->getCallingConv() == llvm::CallingConv::C;
2400
2401   // First, check that this is a known library functions.
2402   if (!TLI->getLibFunc(FuncName, Func))
2403     return nullptr;
2404
2405   // We never change the calling convention.
2406   if (!ignoreCallingConv(Func) && !isCallingConvC)
2407     return nullptr;
2408
2409   switch (Func) {
2410   case LibFunc::memcpy_chk:
2411     return optimizeMemCpyChk(CI, Builder);
2412   case LibFunc::memmove_chk:
2413     return optimizeMemMoveChk(CI, Builder);
2414   case LibFunc::memset_chk:
2415     return optimizeMemSetChk(CI, Builder);
2416   case LibFunc::stpcpy_chk:
2417   case LibFunc::strcpy_chk:
2418     return optimizeStrpCpyChk(CI, Builder, Func);
2419   case LibFunc::stpncpy_chk:
2420   case LibFunc::strncpy_chk:
2421     return optimizeStrpNCpyChk(CI, Builder, Func);
2422   default:
2423     break;
2424   }
2425   return nullptr;
2426 }
2427
2428 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
2429     const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
2430     : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}