Reapply r237520 with another fix for infinite looping
[oota-llvm.git] / lib / Transforms / Utils / SimplifyIndVar.cpp
1 //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements induction variable simplification. It does
11 // not define any actual pass or policy, but provides a single function to
12 // simplify a loop's induction variables based on ScalarEvolution.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/IVUsers.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/LoopPass.h"
23 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/raw_ostream.h"
32
33 using namespace llvm;
34
35 #define DEBUG_TYPE "indvars"
36
37 STATISTIC(NumElimIdentity, "Number of IV identities eliminated");
38 STATISTIC(NumElimOperand,  "Number of IV operands folded into a use");
39 STATISTIC(NumElimRem     , "Number of IV remainder operations eliminated");
40 STATISTIC(NumElimCmp     , "Number of IV comparisons eliminated");
41
42 namespace {
43   /// This is a utility for simplifying induction variables
44   /// based on ScalarEvolution. It is the primary instrument of the
45   /// IndvarSimplify pass, but it may also be directly invoked to cleanup after
46   /// other loop passes that preserve SCEV.
47   class SimplifyIndvar {
48     Loop             *L;
49     LoopInfo         *LI;
50     ScalarEvolution  *SE;
51
52     SmallVectorImpl<WeakVH> &DeadInsts;
53
54     bool Changed;
55
56   public:
57     SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, LoopInfo *LI,
58                    SmallVectorImpl<WeakVH> &Dead, IVUsers *IVU = nullptr)
59         : L(Loop), LI(LI), SE(SE), DeadInsts(Dead), Changed(false) {
60       assert(LI && "IV simplification requires LoopInfo");
61     }
62
63     bool hasChanged() const { return Changed; }
64
65     /// Iteratively perform simplification on a worklist of users of the
66     /// specified induction variable. This is the top-level driver that applies
67     /// all simplicitions to users of an IV.
68     void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr);
69
70     Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand);
71
72     bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
73     void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand);
74     void eliminateIVRemainder(BinaryOperator *Rem, Value *IVOperand,
75                               bool IsSigned);
76     bool strengthenOverflowingOperation(BinaryOperator *OBO, Value *IVOperand);
77
78     Instruction *splitOverflowIntrinsic(Instruction *IVUser,
79                                         const DominatorTree *DT);
80   };
81 }
82
83 /// Fold an IV operand into its use.  This removes increments of an
84 /// aligned IV when used by a instruction that ignores the low bits.
85 ///
86 /// IVOperand is guaranteed SCEVable, but UseInst may not be.
87 ///
88 /// Return the operand of IVOperand for this induction variable if IVOperand can
89 /// be folded (in case more folding opportunities have been exposed).
90 /// Otherwise return null.
91 Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) {
92   Value *IVSrc = nullptr;
93   unsigned OperIdx = 0;
94   const SCEV *FoldedExpr = nullptr;
95   switch (UseInst->getOpcode()) {
96   default:
97     return nullptr;
98   case Instruction::UDiv:
99   case Instruction::LShr:
100     // We're only interested in the case where we know something about
101     // the numerator and have a constant denominator.
102     if (IVOperand != UseInst->getOperand(OperIdx) ||
103         !isa<ConstantInt>(UseInst->getOperand(1)))
104       return nullptr;
105
106     // Attempt to fold a binary operator with constant operand.
107     // e.g. ((I + 1) >> 2) => I >> 2
108     if (!isa<BinaryOperator>(IVOperand)
109         || !isa<ConstantInt>(IVOperand->getOperand(1)))
110       return nullptr;
111
112     IVSrc = IVOperand->getOperand(0);
113     // IVSrc must be the (SCEVable) IV, since the other operand is const.
114     assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand");
115
116     ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1));
117     if (UseInst->getOpcode() == Instruction::LShr) {
118       // Get a constant for the divisor. See createSCEV.
119       uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth();
120       if (D->getValue().uge(BitWidth))
121         return nullptr;
122
123       D = ConstantInt::get(UseInst->getContext(),
124                            APInt::getOneBitSet(BitWidth, D->getZExtValue()));
125     }
126     FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D));
127   }
128   // We have something that might fold it's operand. Compare SCEVs.
129   if (!SE->isSCEVable(UseInst->getType()))
130     return nullptr;
131
132   // Bypass the operand if SCEV can prove it has no effect.
133   if (SE->getSCEV(UseInst) != FoldedExpr)
134     return nullptr;
135
136   DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand
137         << " -> " << *UseInst << '\n');
138
139   UseInst->setOperand(OperIdx, IVSrc);
140   assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper");
141
142   ++NumElimOperand;
143   Changed = true;
144   if (IVOperand->use_empty())
145     DeadInsts.push_back(IVOperand);
146   return IVSrc;
147 }
148
149 /// SimplifyIVUsers helper for eliminating useless
150 /// comparisons against an induction variable.
151 void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) {
152   unsigned IVOperIdx = 0;
153   ICmpInst::Predicate Pred = ICmp->getPredicate();
154   if (IVOperand != ICmp->getOperand(0)) {
155     // Swapped
156     assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
157     IVOperIdx = 1;
158     Pred = ICmpInst::getSwappedPredicate(Pred);
159   }
160
161   // Get the SCEVs for the ICmp operands.
162   const SCEV *S = SE->getSCEV(ICmp->getOperand(IVOperIdx));
163   const SCEV *X = SE->getSCEV(ICmp->getOperand(1 - IVOperIdx));
164
165   // Simplify unnecessary loops away.
166   const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
167   S = SE->getSCEVAtScope(S, ICmpLoop);
168   X = SE->getSCEVAtScope(X, ICmpLoop);
169
170   // If the condition is always true or always false, replace it with
171   // a constant value.
172   if (SE->isKnownPredicate(Pred, S, X))
173     ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext()));
174   else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X))
175     ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext()));
176   else
177     return;
178
179   DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
180   ++NumElimCmp;
181   Changed = true;
182   DeadInsts.push_back(ICmp);
183 }
184
185 /// SimplifyIVUsers helper for eliminating useless
186 /// remainder operations operating on an induction variable.
187 void SimplifyIndvar::eliminateIVRemainder(BinaryOperator *Rem,
188                                       Value *IVOperand,
189                                       bool IsSigned) {
190   // We're only interested in the case where we know something about
191   // the numerator.
192   if (IVOperand != Rem->getOperand(0))
193     return;
194
195   // Get the SCEVs for the ICmp operands.
196   const SCEV *S = SE->getSCEV(Rem->getOperand(0));
197   const SCEV *X = SE->getSCEV(Rem->getOperand(1));
198
199   // Simplify unnecessary loops away.
200   const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
201   S = SE->getSCEVAtScope(S, ICmpLoop);
202   X = SE->getSCEVAtScope(X, ICmpLoop);
203
204   // i % n  -->  i  if i is in [0,n).
205   if ((!IsSigned || SE->isKnownNonNegative(S)) &&
206       SE->isKnownPredicate(IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
207                            S, X))
208     Rem->replaceAllUsesWith(Rem->getOperand(0));
209   else {
210     // (i+1) % n  -->  (i+1)==n?0:(i+1)  if i is in [0,n).
211     const SCEV *LessOne =
212       SE->getMinusSCEV(S, SE->getConstant(S->getType(), 1));
213     if (IsSigned && !SE->isKnownNonNegative(LessOne))
214       return;
215
216     if (!SE->isKnownPredicate(IsSigned ?
217                               ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
218                               LessOne, X))
219       return;
220
221     ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ,
222                                   Rem->getOperand(0), Rem->getOperand(1));
223     SelectInst *Sel =
224       SelectInst::Create(ICmp,
225                          ConstantInt::get(Rem->getType(), 0),
226                          Rem->getOperand(0), "tmp", Rem);
227     Rem->replaceAllUsesWith(Sel);
228   }
229
230   DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
231   ++NumElimRem;
232   Changed = true;
233   DeadInsts.push_back(Rem);
234 }
235
236 /// Eliminate an operation that consumes a simple IV and has
237 /// no observable side-effect given the range of IV values.
238 /// IVOperand is guaranteed SCEVable, but UseInst may not be.
239 bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst,
240                                      Instruction *IVOperand) {
241   if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
242     eliminateIVComparison(ICmp, IVOperand);
243     return true;
244   }
245   if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) {
246     bool IsSigned = Rem->getOpcode() == Instruction::SRem;
247     if (IsSigned || Rem->getOpcode() == Instruction::URem) {
248       eliminateIVRemainder(Rem, IVOperand, IsSigned);
249       return true;
250     }
251   }
252
253   // Eliminate any operation that SCEV can prove is an identity function.
254   if (!SE->isSCEVable(UseInst->getType()) ||
255       (UseInst->getType() != IVOperand->getType()) ||
256       (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand)))
257     return false;
258
259   DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n');
260
261   UseInst->replaceAllUsesWith(IVOperand);
262   ++NumElimIdentity;
263   Changed = true;
264   DeadInsts.push_back(UseInst);
265   return true;
266 }
267
268 /// Annotate BO with nsw / nuw if it provably does not signed-overflow /
269 /// unsigned-overflow.  Returns true if anything changed, false otherwise.
270 bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO,
271                                                     Value *IVOperand) {
272
273   // Fastpath: we don't have any work to do if `BO` is `nuw` and `nsw`.
274   if (BO->hasNoUnsignedWrap() && BO->hasNoSignedWrap())
275     return false;
276
277   const SCEV *(ScalarEvolution::*GetExprForBO)(const SCEV *, const SCEV *,
278                                                SCEV::NoWrapFlags);
279
280   switch (BO->getOpcode()) {
281   default:
282     return false;
283
284   case Instruction::Add:
285     GetExprForBO = &ScalarEvolution::getAddExpr;
286     break;
287
288   case Instruction::Sub:
289     GetExprForBO = &ScalarEvolution::getMinusSCEV;
290     break;
291
292   case Instruction::Mul:
293     GetExprForBO = &ScalarEvolution::getMulExpr;
294     break;
295   }
296
297   unsigned BitWidth = cast<IntegerType>(BO->getType())->getBitWidth();
298   Type *WideTy = IntegerType::get(BO->getContext(), BitWidth * 2);
299   const SCEV *LHS = SE->getSCEV(BO->getOperand(0));
300   const SCEV *RHS = SE->getSCEV(BO->getOperand(1));
301
302   bool Changed = false;
303
304   if (!BO->hasNoUnsignedWrap()) {
305     const SCEV *ExtendAfterOp = SE->getZeroExtendExpr(SE->getSCEV(BO), WideTy);
306     const SCEV *OpAfterExtend = (SE->*GetExprForBO)(
307       SE->getZeroExtendExpr(LHS, WideTy), SE->getZeroExtendExpr(RHS, WideTy),
308       SCEV::FlagAnyWrap);
309     if (ExtendAfterOp == OpAfterExtend) {
310       BO->setHasNoUnsignedWrap();
311       SE->forgetValue(BO);
312       Changed = true;
313     }
314   }
315
316   if (!BO->hasNoSignedWrap()) {
317     const SCEV *ExtendAfterOp = SE->getSignExtendExpr(SE->getSCEV(BO), WideTy);
318     const SCEV *OpAfterExtend = (SE->*GetExprForBO)(
319       SE->getSignExtendExpr(LHS, WideTy), SE->getSignExtendExpr(RHS, WideTy),
320       SCEV::FlagAnyWrap);
321     if (ExtendAfterOp == OpAfterExtend) {
322       BO->setHasNoSignedWrap();
323       SE->forgetValue(BO);
324       Changed = true;
325     }
326   }
327
328   return Changed;
329 }
330
331 /// \brief Split sadd.with.overflow into add + sadd.with.overflow to allow
332 /// analysis and optimization.
333 ///
334 /// \return A new value representing the non-overflowing add if possible,
335 /// otherwise return the original value.
336 Instruction *SimplifyIndvar::splitOverflowIntrinsic(Instruction *IVUser,
337                                                     const DominatorTree *DT) {
338   IntrinsicInst *II = dyn_cast<IntrinsicInst>(IVUser);
339   if (!II || II->getIntrinsicID() != Intrinsic::sadd_with_overflow)
340     return IVUser;
341
342   // Find a branch guarded by the overflow check.
343   BranchInst *Branch = nullptr;
344   Instruction *AddVal = nullptr;
345   for (User *U : II->users()) {
346     if (ExtractValueInst *ExtractInst = dyn_cast<ExtractValueInst>(U)) {
347       if (ExtractInst->getNumIndices() != 1)
348         continue;
349       if (ExtractInst->getIndices()[0] == 0)
350         AddVal = ExtractInst;
351       else if (ExtractInst->getIndices()[0] == 1 && ExtractInst->hasOneUse())
352         Branch = dyn_cast<BranchInst>(ExtractInst->user_back());
353     }
354   }
355   if (!AddVal || !Branch)
356     return IVUser;
357
358   BasicBlock *ContinueBB = Branch->getSuccessor(1);
359   if (std::next(pred_begin(ContinueBB)) != pred_end(ContinueBB))
360     return IVUser;
361
362   // Check if all users of the add are provably NSW.
363   bool AllNSW = true;
364   for (Use &U : AddVal->uses()) {
365     if (Instruction *UseInst = dyn_cast<Instruction>(U.getUser())) {
366       BasicBlock *UseBB = UseInst->getParent();
367       if (PHINode *PHI = dyn_cast<PHINode>(UseInst))
368         UseBB = PHI->getIncomingBlock(U);
369       if (!DT->dominates(ContinueBB, UseBB)) {
370         AllNSW = false;
371         break;
372       }
373     }
374   }
375   if (!AllNSW)
376     return IVUser;
377
378   // Go for it...
379   IRBuilder<> Builder(IVUser);
380   Instruction *AddInst = dyn_cast<Instruction>(
381     Builder.CreateNSWAdd(II->getOperand(0), II->getOperand(1)));
382
383   // The caller expects the new add to have the same form as the intrinsic. The
384   // IV operand position must be the same.
385   assert((AddInst->getOpcode() == Instruction::Add &&
386           AddInst->getOperand(0) == II->getOperand(0)) &&
387          "Bad add instruction created from overflow intrinsic.");
388
389   AddVal->replaceAllUsesWith(AddInst);
390   DeadInsts.push_back(AddVal);
391   return AddInst;
392 }
393
394 /// Add all uses of Def to the current IV's worklist.
395 static void pushIVUsers(
396   Instruction *Def,
397   SmallPtrSet<Instruction*,16> &Simplified,
398   SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) {
399
400   for (User *U : Def->users()) {
401     Instruction *UI = cast<Instruction>(U);
402
403     // Avoid infinite or exponential worklist processing.
404     // Also ensure unique worklist users.
405     // If Def is a LoopPhi, it may not be in the Simplified set, so check for
406     // self edges first.
407     if (UI != Def && Simplified.insert(UI).second)
408       SimpleIVUsers.push_back(std::make_pair(UI, Def));
409   }
410 }
411
412 /// Return true if this instruction generates a simple SCEV
413 /// expression in terms of that IV.
414 ///
415 /// This is similar to IVUsers' isInteresting() but processes each instruction
416 /// non-recursively when the operand is already known to be a simpleIVUser.
417 ///
418 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) {
419   if (!SE->isSCEVable(I->getType()))
420     return false;
421
422   // Get the symbolic expression for this instruction.
423   const SCEV *S = SE->getSCEV(I);
424
425   // Only consider affine recurrences.
426   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
427   if (AR && AR->getLoop() == L)
428     return true;
429
430   return false;
431 }
432
433 /// Iteratively perform simplification on a worklist of users
434 /// of the specified induction variable. Each successive simplification may push
435 /// more users which may themselves be candidates for simplification.
436 ///
437 /// This algorithm does not require IVUsers analysis. Instead, it simplifies
438 /// instructions in-place during analysis. Rather than rewriting induction
439 /// variables bottom-up from their users, it transforms a chain of IVUsers
440 /// top-down, updating the IR only when it encouters a clear optimization
441 /// opportunitiy.
442 ///
443 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
444 ///
445 void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) {
446   if (!SE->isSCEVable(CurrIV->getType()))
447     return;
448
449   // Instructions processed by SimplifyIndvar for CurrIV.
450   SmallPtrSet<Instruction*,16> Simplified;
451
452   // Use-def pairs if IV users waiting to be processed for CurrIV.
453   SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers;
454
455   // Push users of the current LoopPhi. In rare cases, pushIVUsers may be
456   // called multiple times for the same LoopPhi. This is the proper thing to
457   // do for loop header phis that use each other.
458   pushIVUsers(CurrIV, Simplified, SimpleIVUsers);
459
460   while (!SimpleIVUsers.empty()) {
461     std::pair<Instruction*, Instruction*> UseOper =
462       SimpleIVUsers.pop_back_val();
463     Instruction *UseInst = UseOper.first;
464
465     // Bypass back edges to avoid extra work.
466     if (UseInst == CurrIV) continue;
467
468     if (V && V->shouldSplitOverflowInstrinsics()) {
469       UseInst = splitOverflowIntrinsic(UseInst, V->getDomTree());
470       if (!UseInst)
471         continue;
472     }
473
474     Instruction *IVOperand = UseOper.second;
475     for (unsigned N = 0; IVOperand; ++N) {
476       assert(N <= Simplified.size() && "runaway iteration");
477
478       Value *NewOper = foldIVUser(UseOper.first, IVOperand);
479       if (!NewOper)
480         break; // done folding
481       IVOperand = dyn_cast<Instruction>(NewOper);
482     }
483     if (!IVOperand)
484       continue;
485
486     if (eliminateIVUser(UseOper.first, IVOperand)) {
487       pushIVUsers(IVOperand, Simplified, SimpleIVUsers);
488       continue;
489     }
490
491     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseOper.first)) {
492       if (isa<OverflowingBinaryOperator>(BO) &&
493           strengthenOverflowingOperation(BO, IVOperand)) {
494         // re-queue uses of the now modified binary operator and fall
495         // through to the checks that remain.
496         pushIVUsers(IVOperand, Simplified, SimpleIVUsers);
497       }
498     }
499
500     CastInst *Cast = dyn_cast<CastInst>(UseOper.first);
501     if (V && Cast) {
502       V->visitCast(Cast);
503       continue;
504     }
505     if (isSimpleIVUser(UseOper.first, L, SE)) {
506       pushIVUsers(UseOper.first, Simplified, SimpleIVUsers);
507     }
508   }
509 }
510
511 namespace llvm {
512
513 void IVVisitor::anchor() { }
514
515 /// Simplify instructions that use this induction variable
516 /// by using ScalarEvolution to analyze the IV's recurrence.
517 bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, LPPassManager *LPM,
518                        SmallVectorImpl<WeakVH> &Dead, IVVisitor *V)
519 {
520   LoopInfo *LI = &LPM->getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
521   SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, LI, Dead);
522   SIV.simplifyUsers(CurrIV, V);
523   return SIV.hasChanged();
524 }
525
526 /// Simplify users of induction variables within this
527 /// loop. This does not actually change or add IVs.
528 bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, LPPassManager *LPM,
529                      SmallVectorImpl<WeakVH> &Dead) {
530   bool Changed = false;
531   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
532     Changed |= simplifyUsersOfIV(cast<PHINode>(I), SE, LPM, Dead);
533   }
534   return Changed;
535 }
536
537 } // namespace llvm