Update comments for SSAUpdater to use the modern doxygen comment
[oota-llvm.git] / lib / Transforms / Utils / PromoteMemoryToRegister.cpp
1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file promotes memory references to be register references.  It promotes
11 // alloca instructions which only have loads and stores as uses.  An alloca is
12 // transformed by using iterated dominator frontiers to place PHI nodes, then
13 // traversing the function in depth-first order to rewrite loads and stores as
14 // appropriate.
15 //
16 // The algorithm used here is based on:
17 //
18 //   Sreedhar and Gao. A linear time algorithm for placing phi-nodes.
19 //   In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
20 //   Programming Languages
21 //   POPL '95. ACM, New York, NY, 62-73.
22 //
23 // It has been modified to not explicitly use the DJ graph data structure and to
24 // directly compute pruned SSA using per-variable liveness information.
25 //
26 //===----------------------------------------------------------------------===//
27
28 #define DEBUG_TYPE "mem2reg"
29 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
30 #include "llvm/ADT/ArrayRef.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/ADT/SetVector.h"
34 #include "llvm/ADT/SmallPtrSet.h"
35 #include "llvm/ADT/SmallVector.h"
36 #include "llvm/ADT/Statistic.h"
37 #include "llvm/Analysis/AliasSetTracker.h"
38 #include "llvm/Analysis/Dominators.h"
39 #include "llvm/Analysis/InstructionSimplify.h"
40 #include "llvm/Analysis/ValueTracking.h"
41 #include "llvm/DIBuilder.h"
42 #include "llvm/DebugInfo.h"
43 #include "llvm/IR/Constants.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/IntrinsicInst.h"
48 #include "llvm/IR/Metadata.h"
49 #include "llvm/InstVisitor.h"
50 #include "llvm/Support/CFG.h"
51 #include "llvm/Transforms/Utils/Local.h"
52 #include <algorithm>
53 #include <queue>
54 using namespace llvm;
55
56 STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
57 STATISTIC(NumSingleStore,   "Number of alloca's promoted with a single store");
58 STATISTIC(NumDeadAlloca,    "Number of dead alloca's removed");
59 STATISTIC(NumPHIInsert,     "Number of PHI nodes inserted");
60
61 namespace {
62
63 struct AllocaInfo : private InstVisitor<AllocaInfo, bool> {
64   const DataLayout *DL;
65
66   SmallVector<BasicBlock *, 32> DefiningBlocks;
67   SmallVector<BasicBlock *, 32> UsingBlocks;
68   SmallVector<Instruction *, 8> DeadInsts;
69
70   Type *AllocaTy;
71   StoreInst *OnlyStore;
72   BasicBlock *OnlyBlock;
73   bool OnlyUsedInOneBlock;
74
75   Value *AllocaPointerVal;
76   DbgDeclareInst *DbgDeclare;
77
78   AllocaInfo(const DataLayout *DL) : DL(DL) {}
79
80   void clear() {
81     DefiningBlocks.clear();
82     UsingBlocks.clear();
83     DeadInsts.clear();
84     AllocaTy = 0;
85     OnlyStore = 0;
86     OnlyBlock = 0;
87     OnlyUsedInOneBlock = true;
88     AllocaPointerVal = 0;
89     DbgDeclare = 0;
90   }
91
92   /// Scan the uses of the specified alloca, filling in the AllocaInfo used
93   /// by the rest of the pass to reason about the uses of this alloca.
94   bool analyzeAlloca(AllocaInst &AI) {
95     clear();
96
97     AllocaTy = AI.getAllocatedType();
98     enqueueUsers(AI);
99
100     // Walk queued up uses in the worklist to handle nested uses.
101     while (!UseWorklist.empty()) {
102       U = UseWorklist.pop_back_val();
103       Instruction &I = *cast<Instruction>(U->getUser());
104       if (!visit(I))
105         return false; // Propagate failure to promote up.
106
107       if (OnlyUsedInOneBlock) {
108         if (OnlyBlock == 0)
109           OnlyBlock = I.getParent();
110         else if (OnlyBlock != I.getParent())
111           OnlyUsedInOneBlock = false;
112       }
113     }
114
115     DbgDeclare = FindAllocaDbgDeclare(&AI);
116     return true;
117   }
118
119 private:
120   // Befriend the base class so it can call through private visitor methods.
121   friend class InstVisitor<AllocaInfo, bool>;
122
123   /// \brief A use pointer that is non-null when visiting uses.
124   Use *U;
125
126   /// \brief A worklist for recursively visiting all uses of an alloca.
127   SmallVector<Use *, 8> UseWorklist;
128
129   /// \brief A set for preventing cyclic visitation.
130   SmallPtrSet<Use *, 8> VisitedUses;
131
132   void enqueueUsers(Instruction &I) {
133     for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE;
134          ++UI)
135       if (VisitedUses.insert(&UI.getUse()))
136         UseWorklist.push_back(&UI.getUse());
137   }
138
139   bool visitLoadInst(LoadInst &LI) {
140     if (LI.isVolatile() || LI.getType() != AllocaTy)
141       return false;
142
143     // Keep track of variable reads.
144     UsingBlocks.push_back(LI.getParent());
145     AllocaPointerVal = &LI;
146     return true;
147   }
148
149   bool visitStoreInst(StoreInst &SI) {
150     if (SI.isVolatile() || SI.getValueOperand() == U->get() ||
151         SI.getValueOperand()->getType() != AllocaTy)
152       return false;
153
154     // Remember the basic blocks which define new values for the alloca
155     DefiningBlocks.push_back(SI.getParent());
156     AllocaPointerVal = SI.getOperand(0);
157     OnlyStore = &SI;
158     return true;
159   }
160
161   bool visitBitCastInst(BitCastInst &BC) {
162     if (BC.use_empty())
163       DeadInsts.push_back(&BC);
164     else
165       enqueueUsers(BC);
166     return true;
167   }
168
169   bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
170     if (GEPI.use_empty()) {
171       DeadInsts.push_back(&GEPI);
172       return true;
173     }
174
175     enqueueUsers(GEPI);
176
177     return GEPI.hasAllZeroIndices();
178   }
179
180   // We can promote through debug info intrinsics as they don't alter the
181   // value stored in memory.
182   bool visitDbgInfoIntrinsic(DbgInfoIntrinsic &I) {
183     DeadInsts.push_back(&I);
184     return true;
185   }
186
187   bool visitIntrinsicInst(IntrinsicInst &II) {
188     switch (II.getIntrinsicID()) {
189     default:
190       return false;
191
192       // Lifetime intrinsics don't preclude promoting the memory to a register.
193       // FIXME: We should use these to promote to undef when outside of a valid
194       // lifetime.
195     case Intrinsic::lifetime_start:
196     case Intrinsic::lifetime_end:
197       DeadInsts.push_back(&II);
198       return true;
199     }
200   }
201
202   // The fallback is that the alloca cannot be promoted.
203   bool visitInstruction(Instruction &I) { return false; }
204 };
205
206 // Data package used by RenamePass()
207 class RenamePassData {
208 public:
209   typedef std::vector<Value *> ValVector;
210
211   RenamePassData() : BB(NULL), Pred(NULL), Values() {}
212   RenamePassData(BasicBlock *B, BasicBlock *P, const ValVector &V)
213       : BB(B), Pred(P), Values(V) {}
214   BasicBlock *BB;
215   BasicBlock *Pred;
216   ValVector Values;
217
218   void swap(RenamePassData &RHS) {
219     std::swap(BB, RHS.BB);
220     std::swap(Pred, RHS.Pred);
221     Values.swap(RHS.Values);
222   }
223 };
224
225 /// \brief This assigns and keeps a per-bb relative ordering of load/store
226 /// instructions in the block that directly load or store an alloca.
227 ///
228 /// This functionality is important because it avoids scanning large basic
229 /// blocks multiple times when promoting many allocas in the same block.
230 class LargeBlockInfo {
231   /// \brief For each instruction that we track, keep the index of the
232   /// instruction.
233   ///
234   /// The index starts out as the number of the instruction from the start of
235   /// the block.
236   DenseMap<const Instruction *, unsigned> InstNumbers;
237
238 public:
239
240   /// This code only looks at accesses to allocas.
241   static bool isInterestingInstruction(const Instruction *I) {
242     return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) ||
243            (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1)));
244   }
245
246   /// Get or calculate the index of the specified instruction.
247   unsigned getInstructionIndex(const Instruction *I) {
248     assert(isInterestingInstruction(I) &&
249            "Not a load/store to/from an alloca?");
250
251     // If we already have this instruction number, return it.
252     DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I);
253     if (It != InstNumbers.end())
254       return It->second;
255
256     // Scan the whole block to get the instruction.  This accumulates
257     // information for every interesting instruction in the block, in order to
258     // avoid gratuitus rescans.
259     const BasicBlock *BB = I->getParent();
260     unsigned InstNo = 0;
261     for (BasicBlock::const_iterator BBI = BB->begin(), E = BB->end(); BBI != E;
262          ++BBI)
263       if (isInterestingInstruction(BBI))
264         InstNumbers[BBI] = InstNo++;
265     It = InstNumbers.find(I);
266
267     assert(It != InstNumbers.end() && "Didn't insert instruction?");
268     return It->second;
269   }
270
271   void deleteValue(const Instruction *I) { InstNumbers.erase(I); }
272
273   void clear() { InstNumbers.clear(); }
274 };
275
276 struct PromoteMem2Reg {
277   /// The alloca instructions being promoted.
278   std::vector<AllocaInst *> Allocas;
279   DominatorTree &DT;
280   DIBuilder DIB;
281   const DataLayout *DL;
282
283   /// An AliasSetTracker object to update.  If null, don't update it.
284   AliasSetTracker *AST;
285
286   /// Reverse mapping of Allocas.
287   DenseMap<AllocaInst *, unsigned> AllocaLookup;
288
289   /// \brief The PhiNodes we're adding.
290   ///
291   /// That map is used to simplify some Phi nodes as we iterate over it, so
292   /// it should have deterministic iterators.  We could use a MapVector, but
293   /// since we already maintain a map from BasicBlock* to a stable numbering
294   /// (BBNumbers), the DenseMap is more efficient (also supports removal).
295   DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes;
296
297   /// For each PHI node, keep track of which entry in Allocas it corresponds
298   /// to.
299   DenseMap<PHINode *, unsigned> PhiToAllocaMap;
300
301   /// If we are updating an AliasSetTracker, then for each alloca that is of
302   /// pointer type, we keep track of what to copyValue to the inserted PHI
303   /// nodes here.
304   std::vector<Value *> PointerAllocaValues;
305
306   /// For each alloca, we keep track of the dbg.declare intrinsic that
307   /// describes it, if any, so that we can convert it to a dbg.value
308   /// intrinsic if the alloca gets promoted.
309   SmallVector<DbgDeclareInst *, 8> AllocaDbgDeclares;
310
311   /// The set of basic blocks the renamer has already visited.
312   ///
313   SmallPtrSet<BasicBlock *, 16> Visited;
314
315   /// Contains a stable numbering of basic blocks to avoid non-determinstic
316   /// behavior.
317   DenseMap<BasicBlock *, unsigned> BBNumbers;
318
319   /// Maps DomTreeNodes to their level in the dominator tree.
320   DenseMap<DomTreeNode *, unsigned> DomLevels;
321
322   /// Lazily compute the number of predecessors a block has.
323   DenseMap<const BasicBlock *, unsigned> BBNumPreds;
324
325 public:
326   PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
327                  const DataLayout *DL, AliasSetTracker *AST)
328       : Allocas(Allocas.begin(), Allocas.end()), DT(DT),
329         DIB(*DT.getRoot()->getParent()->getParent()), DL(DL), AST(AST) {}
330
331   void run();
332
333 private:
334   void RemoveFromAllocasList(unsigned &AllocaIdx) {
335     Allocas[AllocaIdx] = Allocas.back();
336     Allocas.pop_back();
337     --AllocaIdx;
338   }
339
340   unsigned getNumPreds(const BasicBlock *BB) {
341     unsigned &NP = BBNumPreds[BB];
342     if (NP == 0)
343       NP = std::distance(pred_begin(BB), pred_end(BB)) + 1;
344     return NP - 1;
345   }
346
347   void DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
348                                AllocaInfo &Info);
349   void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
350                            const SmallPtrSet<BasicBlock *, 32> &DefBlocks,
351                            SmallPtrSet<BasicBlock *, 32> &LiveInBlocks);
352   void RenamePass(BasicBlock *BB, BasicBlock *Pred,
353                   RenamePassData::ValVector &IncVals,
354                   std::vector<RenamePassData> &Worklist);
355   bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version);
356 };
357
358 } // end of anonymous namespace
359
360 /// \brief Walk a small vector of dead instructions and recursively remove them
361 /// and subsequently dead instructions.
362 ///
363 /// This is only valid to call on dead instructions using an alloca which is
364 /// promotable, as we leverage that assumption to delete them faster.
365 static void removeDeadInstructions(AllocaInst *AI,
366                                    SmallVectorImpl<Instruction *> &DeadInsts) {
367   while (!DeadInsts.empty()) {
368     Instruction *I = DeadInsts.pop_back_val();
369
370     // Don't delete the alloca itself.
371     if (I == AI)
372       continue;
373
374     // Note that we open code the deletion algorithm here because we know
375     // apriori that all of the instructions using an alloca that reaches here
376     // are trivially dead when their use list becomes empty (The only risk are
377     // lifetime markers which we specifically want to nuke). By coding it here
378     // we can skip the triviality test and be more efficient.
379     //
380     // Null out all of the instruction's operands to see if any operand becomes
381     // dead as we go.
382     for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE;
383          ++OI) {
384       Instruction *Op = dyn_cast<Instruction>(*OI);
385       if (!Op)
386         continue;
387
388       OI->set(0);
389       if (!Op->use_empty())
390         continue;
391
392       DeadInsts.push_back(Op);
393     }
394     I->eraseFromParent();
395   }
396 }
397
398 /// \brief Rewrite as many loads as possible given a single store.
399 ///
400 /// When there is only a single store, we can use the domtree to trivially
401 /// replace all of the dominated loads with the stored value. Do so, and return
402 /// true if this has successfully promoted the alloca entirely. If this returns
403 /// false there were some loads which were not dominated by the single store
404 /// and thus must be phi-ed with undef. We fall back to the standard alloca
405 /// promotion algorithm in that case.
406 static bool rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info,
407                                      LargeBlockInfo &LBI,
408                                      DominatorTree &DT,
409                                      AliasSetTracker *AST) {
410   StoreInst *OnlyStore = Info.OnlyStore;
411   bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
412   BasicBlock *StoreBB = OnlyStore->getParent();
413   int StoreIndex = -1;
414
415   // Clear out UsingBlocks.  We will reconstruct it here if needed.
416   Info.UsingBlocks.clear();
417
418   for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;) {
419     Instruction *UserInst = cast<Instruction>(*UI++);
420     if (!isa<LoadInst>(UserInst)) {
421       assert(UserInst == OnlyStore && "Should only have load/stores");
422       continue;
423     }
424     LoadInst *LI = cast<LoadInst>(UserInst);
425
426     // Okay, if we have a load from the alloca, we want to replace it with the
427     // only value stored to the alloca.  We can do this if the value is
428     // dominated by the store.  If not, we use the rest of the mem2reg machinery
429     // to insert the phi nodes as needed.
430     if (!StoringGlobalVal) { // Non-instructions are always dominated.
431       if (LI->getParent() == StoreBB) {
432         // If we have a use that is in the same block as the store, compare the
433         // indices of the two instructions to see which one came first.  If the
434         // load came before the store, we can't handle it.
435         if (StoreIndex == -1)
436           StoreIndex = LBI.getInstructionIndex(OnlyStore);
437
438         if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) {
439           // Can't handle this load, bail out.
440           Info.UsingBlocks.push_back(StoreBB);
441           continue;
442         }
443
444       } else if (LI->getParent() != StoreBB &&
445                  !DT.dominates(StoreBB, LI->getParent())) {
446         // If the load and store are in different blocks, use BB dominance to
447         // check their relationships.  If the store doesn't dom the use, bail
448         // out.
449         Info.UsingBlocks.push_back(LI->getParent());
450         continue;
451       }
452     }
453
454     // Otherwise, we *can* safely rewrite this load.
455     Value *ReplVal = OnlyStore->getOperand(0);
456     // If the replacement value is the load, this must occur in unreachable
457     // code.
458     if (ReplVal == LI)
459       ReplVal = UndefValue::get(LI->getType());
460     LI->replaceAllUsesWith(ReplVal);
461     if (AST && LI->getType()->isPointerTy())
462       AST->deleteValue(LI);
463     LI->eraseFromParent();
464     LBI.deleteValue(LI);
465   }
466
467   // Finally, after the scan, check to see if the store is all that is left.
468   if (!Info.UsingBlocks.empty())
469     return false; // If not, we'll have to fall back for the remainder.
470
471   // Record debuginfo for the store and remove the declaration's
472   // debuginfo.
473   if (DbgDeclareInst *DDI = Info.DbgDeclare) {
474     DIBuilder DIB(*AI->getParent()->getParent()->getParent());
475     ConvertDebugDeclareToDebugValue(DDI, Info.OnlyStore, DIB);
476     DDI->eraseFromParent();
477   }
478   // Remove the (now dead) store and alloca.
479   Info.OnlyStore->eraseFromParent();
480   LBI.deleteValue(Info.OnlyStore);
481
482   if (AST)
483     AST->deleteValue(AI);
484   AI->eraseFromParent();
485   LBI.deleteValue(AI);
486   return true;
487 }
488
489 namespace {
490 /// This is a helper predicate used to search by the first element of a pair.
491 struct StoreIndexSearchPredicate {
492   bool operator()(const std::pair<unsigned, StoreInst *> &LHS,
493                   const std::pair<unsigned, StoreInst *> &RHS) {
494     return LHS.first < RHS.first;
495   }
496 };
497 }
498
499 /// Many allocas are only used within a single basic block.  If this is the
500 /// case, avoid traversing the CFG and inserting a lot of potentially useless
501 /// PHI nodes by just performing a single linear pass over the basic block
502 /// using the Alloca.
503 ///
504 /// If we cannot promote this alloca (because it is read before it is written),
505 /// return true.  This is necessary in cases where, due to control flow, the
506 /// alloca is potentially undefined on some control flow paths.  e.g. code like
507 /// this is potentially correct:
508 ///
509 ///   for (...) { if (c) { A = undef; undef = B; } }
510 ///
511 /// ... so long as A is not used before undef is set.
512 static void promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info,
513                                      LargeBlockInfo &LBI,
514                                      AliasSetTracker *AST) {
515   // The trickiest case to handle is when we have large blocks. Because of this,
516   // this code is optimized assuming that large blocks happen.  This does not
517   // significantly pessimize the small block case.  This uses LargeBlockInfo to
518   // make it efficient to get the index of various operations in the block.
519
520   // Walk the use-def list of the alloca, getting the locations of all stores.
521   typedef SmallVector<std::pair<unsigned, StoreInst *>, 64> StoresByIndexTy;
522   StoresByIndexTy StoresByIndex;
523
524   for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;
525        ++UI)
526     if (StoreInst *SI = dyn_cast<StoreInst>(*UI))
527       StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));
528
529   // Sort the stores by their index, making it efficient to do a lookup with a
530   // binary search.
531   std::sort(StoresByIndex.begin(), StoresByIndex.end(),
532             StoreIndexSearchPredicate());
533
534   // Walk all of the loads from this alloca, replacing them with the nearest
535   // store above them, if any.
536   for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;) {
537     LoadInst *LI = dyn_cast<LoadInst>(*UI++);
538     if (!LI)
539       continue;
540
541     unsigned LoadIdx = LBI.getInstructionIndex(LI);
542
543     // Find the nearest store that has a lower index than this load.
544     StoresByIndexTy::iterator I =
545         std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(),
546                          std::make_pair(LoadIdx, static_cast<StoreInst *>(0)),
547                          StoreIndexSearchPredicate());
548
549     if (I == StoresByIndex.begin())
550       // If there is no store before this load, the load takes the undef value.
551       LI->replaceAllUsesWith(UndefValue::get(LI->getType()));
552     else
553       // Otherwise, there was a store before this load, the load takes its value.
554       LI->replaceAllUsesWith(llvm::prior(I)->second->getOperand(0));
555
556     if (AST && LI->getType()->isPointerTy())
557       AST->deleteValue(LI);
558     LI->eraseFromParent();
559     LBI.deleteValue(LI);
560   }
561
562   // Remove the (now dead) stores and alloca.
563   while (!AI->use_empty()) {
564     StoreInst *SI = cast<StoreInst>(AI->use_back());
565     // Record debuginfo for the store before removing it.
566     if (DbgDeclareInst *DDI = Info.DbgDeclare) {
567       DIBuilder DIB(*AI->getParent()->getParent()->getParent());
568       ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
569     }
570     SI->eraseFromParent();
571     LBI.deleteValue(SI);
572   }
573
574   if (AST)
575     AST->deleteValue(AI);
576   AI->eraseFromParent();
577   LBI.deleteValue(AI);
578
579   // The alloca's debuginfo can be removed as well.
580   if (DbgDeclareInst *DDI = Info.DbgDeclare)
581     DDI->eraseFromParent();
582
583   ++NumLocalPromoted;
584 }
585
586 void PromoteMem2Reg::run() {
587   Function &F = *DT.getRoot()->getParent();
588
589   if (AST)
590     PointerAllocaValues.resize(Allocas.size());
591   AllocaDbgDeclares.resize(Allocas.size());
592
593   AllocaInfo Info(DL);
594   LargeBlockInfo LBI;
595
596   for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
597     AllocaInst *AI = Allocas[AllocaNum];
598
599     assert(AI->getParent()->getParent() == &F &&
600            "All allocas should be in the same function, which is same as DF!");
601
602     // Calculate the set of read and write-locations for each alloca.  This is
603     // analogous to finding the 'uses' and 'definitions' of each variable.
604     bool Good = Info.analyzeAlloca(*AI);
605     (void)Good;
606     assert(Good && "Cannot promote non-promotable alloca!");
607
608     // Nuke all of the dead instructions.
609     removeDeadInstructions(AI, Info.DeadInsts);
610
611     if (AI->use_empty()) {
612       // If there are no uses of the alloca, just delete it now.
613       if (AST)
614         AST->deleteValue(AI);
615       AI->eraseFromParent();
616
617       // Remove the alloca from the Allocas list, since it has been processed
618       RemoveFromAllocasList(AllocaNum);
619       ++NumDeadAlloca;
620       continue;
621     }
622
623     // If there is only a single store to this value, replace any loads of
624     // it that are directly dominated by the definition with the value stored.
625     if (Info.DefiningBlocks.size() == 1) {
626       if (rewriteSingleStoreAlloca(AI, Info, LBI, DT, AST)) {
627         // The alloca has been processed, move on.
628         RemoveFromAllocasList(AllocaNum);
629         ++NumSingleStore;
630         continue;
631       }
632     }
633
634     // If the alloca is only read and written in one basic block, just perform a
635     // linear sweep over the block to eliminate it.
636     if (Info.OnlyUsedInOneBlock) {
637       promoteSingleBlockAlloca(AI, Info, LBI, AST);
638
639       // The alloca has been processed, move on.
640       RemoveFromAllocasList(AllocaNum);
641       continue;
642     }
643
644     // If we haven't computed dominator tree levels, do so now.
645     if (DomLevels.empty()) {
646       SmallVector<DomTreeNode *, 32> Worklist;
647
648       DomTreeNode *Root = DT.getRootNode();
649       DomLevels[Root] = 0;
650       Worklist.push_back(Root);
651
652       while (!Worklist.empty()) {
653         DomTreeNode *Node = Worklist.pop_back_val();
654         unsigned ChildLevel = DomLevels[Node] + 1;
655         for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end();
656              CI != CE; ++CI) {
657           DomLevels[*CI] = ChildLevel;
658           Worklist.push_back(*CI);
659         }
660       }
661     }
662
663     // If we haven't computed a numbering for the BB's in the function, do so
664     // now.
665     if (BBNumbers.empty()) {
666       unsigned ID = 0;
667       for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
668         BBNumbers[I] = ID++;
669     }
670
671     // If we have an AST to keep updated, remember some pointer value that is
672     // stored into the alloca.
673     if (AST)
674       PointerAllocaValues[AllocaNum] = Info.AllocaPointerVal;
675
676     // Remember the dbg.declare intrinsic describing this alloca, if any.
677     if (Info.DbgDeclare)
678       AllocaDbgDeclares[AllocaNum] = Info.DbgDeclare;
679
680     // Keep the reverse mapping of the 'Allocas' array for the rename pass.
681     AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
682
683     // At this point, we're committed to promoting the alloca using IDF's, and
684     // the standard SSA construction algorithm.  Determine which blocks need PHI
685     // nodes and see if we can optimize out some work by avoiding insertion of
686     // dead phi nodes.
687     DetermineInsertionPoint(AI, AllocaNum, Info);
688   }
689
690   if (Allocas.empty())
691     return; // All of the allocas must have been trivial!
692
693   LBI.clear();
694
695   // Set the incoming values for the basic block to be null values for all of
696   // the alloca's.  We do this in case there is a load of a value that has not
697   // been stored yet.  In this case, it will get this null value.
698   //
699   RenamePassData::ValVector Values(Allocas.size());
700   for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
701     Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
702
703   // Walks all basic blocks in the function performing the SSA rename algorithm
704   // and inserting the phi nodes we marked as necessary
705   //
706   std::vector<RenamePassData> RenamePassWorkList;
707   RenamePassWorkList.push_back(RenamePassData(F.begin(), 0, Values));
708   do {
709     RenamePassData RPD;
710     RPD.swap(RenamePassWorkList.back());
711     RenamePassWorkList.pop_back();
712     // RenamePass may add new worklist entries.
713     RenamePass(RPD.BB, RPD.Pred, RPD.Values, RenamePassWorkList);
714   } while (!RenamePassWorkList.empty());
715
716   // The renamer uses the Visited set to avoid infinite loops.  Clear it now.
717   Visited.clear();
718
719   // Remove the allocas themselves from the function.
720   for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
721     Instruction *A = Allocas[i];
722
723     // If there are any uses of the alloca instructions left, they must be in
724     // unreachable basic blocks that were not processed by walking the dominator
725     // tree. Just delete the users now.
726     if (!A->use_empty())
727       A->replaceAllUsesWith(UndefValue::get(A->getType()));
728     if (AST)
729       AST->deleteValue(A);
730     A->eraseFromParent();
731   }
732
733   // Remove alloca's dbg.declare instrinsics from the function.
734   for (unsigned i = 0, e = AllocaDbgDeclares.size(); i != e; ++i)
735     if (DbgDeclareInst *DDI = AllocaDbgDeclares[i])
736       DDI->eraseFromParent();
737
738   // Loop over all of the PHI nodes and see if there are any that we can get
739   // rid of because they merge all of the same incoming values.  This can
740   // happen due to undef values coming into the PHI nodes.  This process is
741   // iterative, because eliminating one PHI node can cause others to be removed.
742   bool EliminatedAPHI = true;
743   while (EliminatedAPHI) {
744     EliminatedAPHI = false;
745
746     // Iterating over NewPhiNodes is deterministic, so it is safe to try to
747     // simplify and RAUW them as we go.  If it was not, we could add uses to
748     // the values we replace with in a non deterministic order, thus creating
749     // non deterministic def->use chains.
750     for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
751              I = NewPhiNodes.begin(),
752              E = NewPhiNodes.end();
753          I != E;) {
754       PHINode *PN = I->second;
755
756       // If this PHI node merges one value and/or undefs, get the value.
757       if (Value *V = SimplifyInstruction(PN, 0, 0, &DT)) {
758         if (AST && PN->getType()->isPointerTy())
759           AST->deleteValue(PN);
760         PN->replaceAllUsesWith(V);
761         PN->eraseFromParent();
762         NewPhiNodes.erase(I++);
763         EliminatedAPHI = true;
764         continue;
765       }
766       ++I;
767     }
768   }
769
770   // At this point, the renamer has added entries to PHI nodes for all reachable
771   // code.  Unfortunately, there may be unreachable blocks which the renamer
772   // hasn't traversed.  If this is the case, the PHI nodes may not
773   // have incoming values for all predecessors.  Loop over all PHI nodes we have
774   // created, inserting undef values if they are missing any incoming values.
775   //
776   for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
777            I = NewPhiNodes.begin(),
778            E = NewPhiNodes.end();
779        I != E; ++I) {
780     // We want to do this once per basic block.  As such, only process a block
781     // when we find the PHI that is the first entry in the block.
782     PHINode *SomePHI = I->second;
783     BasicBlock *BB = SomePHI->getParent();
784     if (&BB->front() != SomePHI)
785       continue;
786
787     // Only do work here if there the PHI nodes are missing incoming values.  We
788     // know that all PHI nodes that were inserted in a block will have the same
789     // number of incoming values, so we can just check any of them.
790     if (SomePHI->getNumIncomingValues() == getNumPreds(BB))
791       continue;
792
793     // Get the preds for BB.
794     SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
795
796     // Ok, now we know that all of the PHI nodes are missing entries for some
797     // basic blocks.  Start by sorting the incoming predecessors for efficient
798     // access.
799     std::sort(Preds.begin(), Preds.end());
800
801     // Now we loop through all BB's which have entries in SomePHI and remove
802     // them from the Preds list.
803     for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
804       // Do a log(n) search of the Preds list for the entry we want.
805       SmallVectorImpl<BasicBlock *>::iterator EntIt = std::lower_bound(
806           Preds.begin(), Preds.end(), SomePHI->getIncomingBlock(i));
807       assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) &&
808              "PHI node has entry for a block which is not a predecessor!");
809
810       // Remove the entry
811       Preds.erase(EntIt);
812     }
813
814     // At this point, the blocks left in the preds list must have dummy
815     // entries inserted into every PHI nodes for the block.  Update all the phi
816     // nodes in this block that we are inserting (there could be phis before
817     // mem2reg runs).
818     unsigned NumBadPreds = SomePHI->getNumIncomingValues();
819     BasicBlock::iterator BBI = BB->begin();
820     while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
821            SomePHI->getNumIncomingValues() == NumBadPreds) {
822       Value *UndefVal = UndefValue::get(SomePHI->getType());
823       for (unsigned pred = 0, e = Preds.size(); pred != e; ++pred)
824         SomePHI->addIncoming(UndefVal, Preds[pred]);
825     }
826   }
827
828   NewPhiNodes.clear();
829 }
830
831 /// \brief Determine which blocks the value is live in.
832 ///
833 /// These are blocks which lead to uses.  Knowing this allows us to avoid
834 /// inserting PHI nodes into blocks which don't lead to uses (thus, the
835 /// inserted phi nodes would be dead).
836 void PromoteMem2Reg::ComputeLiveInBlocks(
837     AllocaInst *AI, AllocaInfo &Info,
838     const SmallPtrSet<BasicBlock *, 32> &DefBlocks,
839     SmallPtrSet<BasicBlock *, 32> &LiveInBlocks) {
840
841   // To determine liveness, we must iterate through the predecessors of blocks
842   // where the def is live.  Blocks are added to the worklist if we need to
843   // check their predecessors.  Start with all the using blocks.
844   SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(),
845                                                     Info.UsingBlocks.end());
846
847   // If any of the using blocks is also a definition block, check to see if the
848   // definition occurs before or after the use.  If it happens before the use,
849   // the value isn't really live-in.
850   for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) {
851     BasicBlock *BB = LiveInBlockWorklist[i];
852     if (!DefBlocks.count(BB))
853       continue;
854
855     // Okay, this is a block that both uses and defines the value.  If the first
856     // reference to the alloca is a def (store), then we know it isn't live-in.
857     for (BasicBlock::iterator I = BB->begin();; ++I) {
858       if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
859         if (SI->getOperand(1) != AI)
860           continue;
861
862         // We found a store to the alloca before a load.  The alloca is not
863         // actually live-in here.
864         LiveInBlockWorklist[i] = LiveInBlockWorklist.back();
865         LiveInBlockWorklist.pop_back();
866         --i, --e;
867         break;
868       }
869
870       if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
871         if (LI->getOperand(0) != AI)
872           continue;
873
874         // Okay, we found a load before a store to the alloca.  It is actually
875         // live into this block.
876         break;
877       }
878     }
879   }
880
881   // Now that we have a set of blocks where the phi is live-in, recursively add
882   // their predecessors until we find the full region the value is live.
883   while (!LiveInBlockWorklist.empty()) {
884     BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
885
886     // The block really is live in here, insert it into the set.  If already in
887     // the set, then it has already been processed.
888     if (!LiveInBlocks.insert(BB))
889       continue;
890
891     // Since the value is live into BB, it is either defined in a predecessor or
892     // live into it to.  Add the preds to the worklist unless they are a
893     // defining block.
894     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
895       BasicBlock *P = *PI;
896
897       // The value is not live into a predecessor if it defines the value.
898       if (DefBlocks.count(P))
899         continue;
900
901       // Otherwise it is, add to the worklist.
902       LiveInBlockWorklist.push_back(P);
903     }
904   }
905 }
906
907 namespace {
908 typedef std::pair<DomTreeNode *, unsigned> DomTreeNodePair;
909
910 struct DomTreeNodeCompare {
911   bool operator()(const DomTreeNodePair &LHS, const DomTreeNodePair &RHS) {
912     return LHS.second < RHS.second;
913   }
914 };
915 } // end anonymous namespace
916
917 /// At this point, we're committed to promoting the alloca using IDF's, and the
918 /// standard SSA construction algorithm.  Determine which blocks need phi nodes
919 /// and see if we can optimize out some work by avoiding insertion of dead phi
920 /// nodes.
921 void PromoteMem2Reg::DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
922                                              AllocaInfo &Info) {
923   // Unique the set of defining blocks for efficient lookup.
924   SmallPtrSet<BasicBlock *, 32> DefBlocks;
925   DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end());
926
927   // Determine which blocks the value is live in.  These are blocks which lead
928   // to uses.
929   SmallPtrSet<BasicBlock *, 32> LiveInBlocks;
930   ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
931
932   // Use a priority queue keyed on dominator tree level so that inserted nodes
933   // are handled from the bottom of the dominator tree upwards.
934   typedef std::priority_queue<DomTreeNodePair,
935                               SmallVector<DomTreeNodePair, 32>,
936                               DomTreeNodeCompare> IDFPriorityQueue;
937   IDFPriorityQueue PQ;
938
939   for (SmallPtrSet<BasicBlock *, 32>::const_iterator I = DefBlocks.begin(),
940                                                      E = DefBlocks.end();
941        I != E; ++I) {
942     if (DomTreeNode *Node = DT.getNode(*I))
943       PQ.push(std::make_pair(Node, DomLevels[Node]));
944   }
945
946   SmallVector<std::pair<unsigned, BasicBlock *>, 32> DFBlocks;
947   SmallPtrSet<DomTreeNode *, 32> Visited;
948   SmallVector<DomTreeNode *, 32> Worklist;
949   while (!PQ.empty()) {
950     DomTreeNodePair RootPair = PQ.top();
951     PQ.pop();
952     DomTreeNode *Root = RootPair.first;
953     unsigned RootLevel = RootPair.second;
954
955     // Walk all dominator tree children of Root, inspecting their CFG edges with
956     // targets elsewhere on the dominator tree. Only targets whose level is at
957     // most Root's level are added to the iterated dominance frontier of the
958     // definition set.
959
960     Worklist.clear();
961     Worklist.push_back(Root);
962
963     while (!Worklist.empty()) {
964       DomTreeNode *Node = Worklist.pop_back_val();
965       BasicBlock *BB = Node->getBlock();
966
967       for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE;
968            ++SI) {
969         DomTreeNode *SuccNode = DT.getNode(*SI);
970
971         // Quickly skip all CFG edges that are also dominator tree edges instead
972         // of catching them below.
973         if (SuccNode->getIDom() == Node)
974           continue;
975
976         unsigned SuccLevel = DomLevels[SuccNode];
977         if (SuccLevel > RootLevel)
978           continue;
979
980         if (!Visited.insert(SuccNode))
981           continue;
982
983         BasicBlock *SuccBB = SuccNode->getBlock();
984         if (!LiveInBlocks.count(SuccBB))
985           continue;
986
987         DFBlocks.push_back(std::make_pair(BBNumbers[SuccBB], SuccBB));
988         if (!DefBlocks.count(SuccBB))
989           PQ.push(std::make_pair(SuccNode, SuccLevel));
990       }
991
992       for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end(); CI != CE;
993            ++CI) {
994         if (!Visited.count(*CI))
995           Worklist.push_back(*CI);
996       }
997     }
998   }
999
1000   if (DFBlocks.size() > 1)
1001     std::sort(DFBlocks.begin(), DFBlocks.end());
1002
1003   unsigned CurrentVersion = 0;
1004   for (unsigned i = 0, e = DFBlocks.size(); i != e; ++i)
1005     QueuePhiNode(DFBlocks[i].second, AllocaNum, CurrentVersion);
1006 }
1007
1008 /// \brief Queue a phi-node to be added to a basic-block for a specific Alloca.
1009 ///
1010 /// Returns true if there wasn't already a phi-node for that variable
1011 bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
1012                                   unsigned &Version) {
1013   // Look up the basic-block in question.
1014   PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)];
1015
1016   // If the BB already has a phi node added for the i'th alloca then we're done!
1017   if (PN)
1018     return false;
1019
1020   // Create a PhiNode using the dereferenced type... and add the phi-node to the
1021   // BasicBlock.
1022   PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB),
1023                        Allocas[AllocaNo]->getName() + "." + Twine(Version++),
1024                        BB->begin());
1025   ++NumPHIInsert;
1026   PhiToAllocaMap[PN] = AllocaNo;
1027
1028   if (AST && PN->getType()->isPointerTy())
1029     AST->copyValue(PointerAllocaValues[AllocaNo], PN);
1030
1031   return true;
1032 }
1033
1034 /// \brief Recursively traverse the CFG of the function, renaming loads and
1035 /// stores to the allocas which we are promoting.
1036 ///
1037 /// IncomingVals indicates what value each Alloca contains on exit from the
1038 /// predecessor block Pred.
1039 void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
1040                                 RenamePassData::ValVector &IncomingVals,
1041                                 std::vector<RenamePassData> &Worklist) {
1042 NextIteration:
1043   // If we are inserting any phi nodes into this BB, they will already be in the
1044   // block.
1045   if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
1046     // If we have PHI nodes to update, compute the number of edges from Pred to
1047     // BB.
1048     if (PhiToAllocaMap.count(APN)) {
1049       // We want to be able to distinguish between PHI nodes being inserted by
1050       // this invocation of mem2reg from those phi nodes that already existed in
1051       // the IR before mem2reg was run.  We determine that APN is being inserted
1052       // because it is missing incoming edges.  All other PHI nodes being
1053       // inserted by this pass of mem2reg will have the same number of incoming
1054       // operands so far.  Remember this count.
1055       unsigned NewPHINumOperands = APN->getNumOperands();
1056
1057       unsigned NumEdges = std::count(succ_begin(Pred), succ_end(Pred), BB);
1058       assert(NumEdges && "Must be at least one edge from Pred to BB!");
1059
1060       // Add entries for all the phis.
1061       BasicBlock::iterator PNI = BB->begin();
1062       do {
1063         unsigned AllocaNo = PhiToAllocaMap[APN];
1064
1065         // Add N incoming values to the PHI node.
1066         for (unsigned i = 0; i != NumEdges; ++i)
1067           APN->addIncoming(IncomingVals[AllocaNo], Pred);
1068
1069         // The currently active variable for this block is now the PHI.
1070         IncomingVals[AllocaNo] = APN;
1071
1072         // Get the next phi node.
1073         ++PNI;
1074         APN = dyn_cast<PHINode>(PNI);
1075         if (APN == 0)
1076           break;
1077
1078         // Verify that it is missing entries.  If not, it is not being inserted
1079         // by this mem2reg invocation so we want to ignore it.
1080       } while (APN->getNumOperands() == NewPHINumOperands);
1081     }
1082   }
1083
1084   // Don't revisit blocks.
1085   if (!Visited.insert(BB))
1086     return;
1087
1088   for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II);) {
1089     Instruction *I = II++; // get the instruction, increment iterator
1090
1091     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1092       AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand());
1093       if (!Src)
1094         continue;
1095
1096       DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src);
1097       if (AI == AllocaLookup.end())
1098         continue;
1099
1100       Value *V = IncomingVals[AI->second];
1101
1102       // Anything using the load now uses the current value.
1103       LI->replaceAllUsesWith(V);
1104       if (AST && LI->getType()->isPointerTy())
1105         AST->deleteValue(LI);
1106       BB->getInstList().erase(LI);
1107     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1108       // Delete this instruction and mark the name as the current holder of the
1109       // value
1110       AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
1111       if (!Dest)
1112         continue;
1113
1114       DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
1115       if (ai == AllocaLookup.end())
1116         continue;
1117
1118       // what value were we writing?
1119       IncomingVals[ai->second] = SI->getOperand(0);
1120       // Record debuginfo for the store before removing it.
1121       if (DbgDeclareInst *DDI = AllocaDbgDeclares[ai->second])
1122         ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1123       BB->getInstList().erase(SI);
1124     }
1125   }
1126
1127   // 'Recurse' to our successors.
1128   succ_iterator I = succ_begin(BB), E = succ_end(BB);
1129   if (I == E)
1130     return;
1131
1132   // Keep track of the successors so we don't visit the same successor twice
1133   SmallPtrSet<BasicBlock *, 8> VisitedSuccs;
1134
1135   // Handle the first successor without using the worklist.
1136   VisitedSuccs.insert(*I);
1137   Pred = BB;
1138   BB = *I;
1139   ++I;
1140
1141   for (; I != E; ++I)
1142     if (VisitedSuccs.insert(*I))
1143       Worklist.push_back(RenamePassData(*I, Pred, IncomingVals));
1144
1145   goto NextIteration;
1146 }
1147
1148 bool llvm::isAllocaPromotable(const AllocaInst *AI, const DataLayout *DL) {
1149   // We cast away constness because we re-use the non-const analysis that the
1150   // actual promotion routine uses. While it is non-const, it doesn't actually
1151   // mutate anything at this phase, and we discard the non-const results that
1152   // promotion uses to mutate the alloca.
1153   return AllocaInfo(DL).analyzeAlloca(*const_cast<AllocaInst *>(AI));
1154 }
1155
1156 void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
1157                            const DataLayout *DL, AliasSetTracker *AST) {
1158   // If there is nothing to do, bail out...
1159   if (Allocas.empty())
1160     return;
1161
1162   PromoteMem2Reg(Allocas, DT, DL, AST).run();
1163 }