Use range based for loops to avoid needing to re-mention SmallPtrSet size.
[oota-llvm.git] / lib / Transforms / Utils / LoopSimplify.cpp
1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs several transformations to transform natural loops into a
11 // simpler form, which makes subsequent analyses and transformations simpler and
12 // more effective.
13 //
14 // Loop pre-header insertion guarantees that there is a single, non-critical
15 // entry edge from outside of the loop to the loop header.  This simplifies a
16 // number of analyses and transformations, such as LICM.
17 //
18 // Loop exit-block insertion guarantees that all exit blocks from the loop
19 // (blocks which are outside of the loop that have predecessors inside of the
20 // loop) only have predecessors from inside of the loop (and are thus dominated
21 // by the loop header).  This simplifies transformations such as store-sinking
22 // that are built into LICM.
23 //
24 // This pass also guarantees that loops will have exactly one backedge.
25 //
26 // Indirectbr instructions introduce several complications. If the loop
27 // contains or is entered by an indirectbr instruction, it may not be possible
28 // to transform the loop and make these guarantees. Client code should check
29 // that these conditions are true before relying on them.
30 //
31 // Note that the simplifycfg pass will clean up blocks which are split out but
32 // end up being unnecessary, so usage of this pass should not pessimize
33 // generated code.
34 //
35 // This pass obviously modifies the CFG, but updates loop information and
36 // dominator information.
37 //
38 //===----------------------------------------------------------------------===//
39
40 #include "llvm/Transforms/Scalar.h"
41 #include "llvm/ADT/DepthFirstIterator.h"
42 #include "llvm/ADT/SetOperations.h"
43 #include "llvm/ADT/SetVector.h"
44 #include "llvm/ADT/SmallVector.h"
45 #include "llvm/ADT/Statistic.h"
46 #include "llvm/Analysis/AliasAnalysis.h"
47 #include "llvm/Analysis/DependenceAnalysis.h"
48 #include "llvm/Analysis/InstructionSimplify.h"
49 #include "llvm/Analysis/LoopInfo.h"
50 #include "llvm/Analysis/ScalarEvolution.h"
51 #include "llvm/IR/CFG.h"
52 #include "llvm/IR/Constants.h"
53 #include "llvm/IR/DataLayout.h"
54 #include "llvm/IR/Dominators.h"
55 #include "llvm/IR/Function.h"
56 #include "llvm/IR/Instructions.h"
57 #include "llvm/IR/IntrinsicInst.h"
58 #include "llvm/IR/LLVMContext.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
62 #include "llvm/Transforms/Utils/Local.h"
63 #include "llvm/Transforms/Utils/LoopUtils.h"
64 using namespace llvm;
65
66 #define DEBUG_TYPE "loop-simplify"
67
68 STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted");
69 STATISTIC(NumNested  , "Number of nested loops split out");
70
71 // If the block isn't already, move the new block to right after some 'outside
72 // block' block.  This prevents the preheader from being placed inside the loop
73 // body, e.g. when the loop hasn't been rotated.
74 static void placeSplitBlockCarefully(BasicBlock *NewBB,
75                                      SmallVectorImpl<BasicBlock *> &SplitPreds,
76                                      Loop *L) {
77   // Check to see if NewBB is already well placed.
78   Function::iterator BBI = NewBB; --BBI;
79   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
80     if (&*BBI == SplitPreds[i])
81       return;
82   }
83
84   // If it isn't already after an outside block, move it after one.  This is
85   // always good as it makes the uncond branch from the outside block into a
86   // fall-through.
87
88   // Figure out *which* outside block to put this after.  Prefer an outside
89   // block that neighbors a BB actually in the loop.
90   BasicBlock *FoundBB = nullptr;
91   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
92     Function::iterator BBI = SplitPreds[i];
93     if (++BBI != NewBB->getParent()->end() &&
94         L->contains(BBI)) {
95       FoundBB = SplitPreds[i];
96       break;
97     }
98   }
99
100   // If our heuristic for a *good* bb to place this after doesn't find
101   // anything, just pick something.  It's likely better than leaving it within
102   // the loop.
103   if (!FoundBB)
104     FoundBB = SplitPreds[0];
105   NewBB->moveAfter(FoundBB);
106 }
107
108 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
109 /// preheader, this method is called to insert one.  This method has two phases:
110 /// preheader insertion and analysis updating.
111 ///
112 BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, Pass *PP) {
113   BasicBlock *Header = L->getHeader();
114
115   // Compute the set of predecessors of the loop that are not in the loop.
116   SmallVector<BasicBlock*, 8> OutsideBlocks;
117   for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
118        PI != PE; ++PI) {
119     BasicBlock *P = *PI;
120     if (!L->contains(P)) {         // Coming in from outside the loop?
121       // If the loop is branched to from an indirect branch, we won't
122       // be able to fully transform the loop, because it prohibits
123       // edge splitting.
124       if (isa<IndirectBrInst>(P->getTerminator())) return nullptr;
125
126       // Keep track of it.
127       OutsideBlocks.push_back(P);
128     }
129   }
130
131   // Split out the loop pre-header.
132   BasicBlock *PreheaderBB;
133   if (!Header->isLandingPad()) {
134     PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader",
135                                          PP);
136   } else {
137     SmallVector<BasicBlock*, 2> NewBBs;
138     SplitLandingPadPredecessors(Header, OutsideBlocks, ".preheader",
139                                 ".split-lp", PP, NewBBs);
140     PreheaderBB = NewBBs[0];
141   }
142
143   PreheaderBB->getTerminator()->setDebugLoc(
144                                       Header->getFirstNonPHI()->getDebugLoc());
145   DEBUG(dbgs() << "LoopSimplify: Creating pre-header "
146                << PreheaderBB->getName() << "\n");
147
148   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
149   // code layout too horribly.
150   placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L);
151
152   return PreheaderBB;
153 }
154
155 /// \brief Ensure that the loop preheader dominates all exit blocks.
156 ///
157 /// This method is used to split exit blocks that have predecessors outside of
158 /// the loop.
159 static BasicBlock *rewriteLoopExitBlock(Loop *L, BasicBlock *Exit, Pass *PP) {
160   SmallVector<BasicBlock*, 8> LoopBlocks;
161   for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) {
162     BasicBlock *P = *I;
163     if (L->contains(P)) {
164       // Don't do this if the loop is exited via an indirect branch.
165       if (isa<IndirectBrInst>(P->getTerminator())) return nullptr;
166
167       LoopBlocks.push_back(P);
168     }
169   }
170
171   assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
172   BasicBlock *NewExitBB = nullptr;
173
174   if (Exit->isLandingPad()) {
175     SmallVector<BasicBlock*, 2> NewBBs;
176     SplitLandingPadPredecessors(Exit, ArrayRef<BasicBlock*>(&LoopBlocks[0],
177                                                             LoopBlocks.size()),
178                                 ".loopexit", ".nonloopexit",
179                                 PP, NewBBs);
180     NewExitBB = NewBBs[0];
181   } else {
182     NewExitBB = SplitBlockPredecessors(Exit, LoopBlocks, ".loopexit", PP);
183   }
184
185   DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
186                << NewExitBB->getName() << "\n");
187   return NewExitBB;
188 }
189
190 /// Add the specified block, and all of its predecessors, to the specified set,
191 /// if it's not already in there.  Stop predecessor traversal when we reach
192 /// StopBlock.
193 static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
194                                   std::set<BasicBlock*> &Blocks) {
195   SmallVector<BasicBlock *, 8> Worklist;
196   Worklist.push_back(InputBB);
197   do {
198     BasicBlock *BB = Worklist.pop_back_val();
199     if (Blocks.insert(BB).second && BB != StopBlock)
200       // If BB is not already processed and it is not a stop block then
201       // insert its predecessor in the work list
202       for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
203         BasicBlock *WBB = *I;
204         Worklist.push_back(WBB);
205       }
206   } while (!Worklist.empty());
207 }
208
209 /// \brief The first part of loop-nestification is to find a PHI node that tells
210 /// us how to partition the loops.
211 static PHINode *findPHIToPartitionLoops(Loop *L, AliasAnalysis *AA,
212                                         DominatorTree *DT) {
213   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
214     PHINode *PN = cast<PHINode>(I);
215     ++I;
216     if (Value *V = SimplifyInstruction(PN, nullptr, nullptr, DT)) {
217       // This is a degenerate PHI already, don't modify it!
218       PN->replaceAllUsesWith(V);
219       if (AA) AA->deleteValue(PN);
220       PN->eraseFromParent();
221       continue;
222     }
223
224     // Scan this PHI node looking for a use of the PHI node by itself.
225     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
226       if (PN->getIncomingValue(i) == PN &&
227           L->contains(PN->getIncomingBlock(i)))
228         // We found something tasty to remove.
229         return PN;
230   }
231   return nullptr;
232 }
233
234 /// \brief If this loop has multiple backedges, try to pull one of them out into
235 /// a nested loop.
236 ///
237 /// This is important for code that looks like
238 /// this:
239 ///
240 ///  Loop:
241 ///     ...
242 ///     br cond, Loop, Next
243 ///     ...
244 ///     br cond2, Loop, Out
245 ///
246 /// To identify this common case, we look at the PHI nodes in the header of the
247 /// loop.  PHI nodes with unchanging values on one backedge correspond to values
248 /// that change in the "outer" loop, but not in the "inner" loop.
249 ///
250 /// If we are able to separate out a loop, return the new outer loop that was
251 /// created.
252 ///
253 static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader,
254                                 AliasAnalysis *AA, DominatorTree *DT,
255                                 LoopInfo *LI, ScalarEvolution *SE, Pass *PP) {
256   // Don't try to separate loops without a preheader.
257   if (!Preheader)
258     return nullptr;
259
260   // The header is not a landing pad; preheader insertion should ensure this.
261   assert(!L->getHeader()->isLandingPad() &&
262          "Can't insert backedge to landing pad");
263
264   PHINode *PN = findPHIToPartitionLoops(L, AA, DT);
265   if (!PN) return nullptr;  // No known way to partition.
266
267   // Pull out all predecessors that have varying values in the loop.  This
268   // handles the case when a PHI node has multiple instances of itself as
269   // arguments.
270   SmallVector<BasicBlock*, 8> OuterLoopPreds;
271   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
272     if (PN->getIncomingValue(i) != PN ||
273         !L->contains(PN->getIncomingBlock(i))) {
274       // We can't split indirectbr edges.
275       if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator()))
276         return nullptr;
277       OuterLoopPreds.push_back(PN->getIncomingBlock(i));
278     }
279   }
280   DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
281
282   // If ScalarEvolution is around and knows anything about values in
283   // this loop, tell it to forget them, because we're about to
284   // substantially change it.
285   if (SE)
286     SE->forgetLoop(L);
287
288   BasicBlock *Header = L->getHeader();
289   BasicBlock *NewBB =
290     SplitBlockPredecessors(Header, OuterLoopPreds,  ".outer", PP);
291
292   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
293   // code layout too horribly.
294   placeSplitBlockCarefully(NewBB, OuterLoopPreds, L);
295
296   // Create the new outer loop.
297   Loop *NewOuter = new Loop();
298
299   // Change the parent loop to use the outer loop as its child now.
300   if (Loop *Parent = L->getParentLoop())
301     Parent->replaceChildLoopWith(L, NewOuter);
302   else
303     LI->changeTopLevelLoop(L, NewOuter);
304
305   // L is now a subloop of our outer loop.
306   NewOuter->addChildLoop(L);
307
308   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
309        I != E; ++I)
310     NewOuter->addBlockEntry(*I);
311
312   // Now reset the header in L, which had been moved by
313   // SplitBlockPredecessors for the outer loop.
314   L->moveToHeader(Header);
315
316   // Determine which blocks should stay in L and which should be moved out to
317   // the Outer loop now.
318   std::set<BasicBlock*> BlocksInL;
319   for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) {
320     BasicBlock *P = *PI;
321     if (DT->dominates(Header, P))
322       addBlockAndPredsToSet(P, Header, BlocksInL);
323   }
324
325   // Scan all of the loop children of L, moving them to OuterLoop if they are
326   // not part of the inner loop.
327   const std::vector<Loop*> &SubLoops = L->getSubLoops();
328   for (size_t I = 0; I != SubLoops.size(); )
329     if (BlocksInL.count(SubLoops[I]->getHeader()))
330       ++I;   // Loop remains in L
331     else
332       NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
333
334   // Now that we know which blocks are in L and which need to be moved to
335   // OuterLoop, move any blocks that need it.
336   for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
337     BasicBlock *BB = L->getBlocks()[i];
338     if (!BlocksInL.count(BB)) {
339       // Move this block to the parent, updating the exit blocks sets
340       L->removeBlockFromLoop(BB);
341       if ((*LI)[BB] == L)
342         LI->changeLoopFor(BB, NewOuter);
343       --i;
344     }
345   }
346
347   return NewOuter;
348 }
349
350 /// \brief This method is called when the specified loop has more than one
351 /// backedge in it.
352 ///
353 /// If this occurs, revector all of these backedges to target a new basic block
354 /// and have that block branch to the loop header.  This ensures that loops
355 /// have exactly one backedge.
356 static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader,
357                                              AliasAnalysis *AA,
358                                              DominatorTree *DT, LoopInfo *LI) {
359   assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
360
361   // Get information about the loop
362   BasicBlock *Header = L->getHeader();
363   Function *F = Header->getParent();
364
365   // Unique backedge insertion currently depends on having a preheader.
366   if (!Preheader)
367     return nullptr;
368
369   // The header is not a landing pad; preheader insertion should ensure this.
370   assert(!Header->isLandingPad() && "Can't insert backedge to landing pad");
371
372   // Figure out which basic blocks contain back-edges to the loop header.
373   std::vector<BasicBlock*> BackedgeBlocks;
374   for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){
375     BasicBlock *P = *I;
376
377     // Indirectbr edges cannot be split, so we must fail if we find one.
378     if (isa<IndirectBrInst>(P->getTerminator()))
379       return nullptr;
380
381     if (P != Preheader) BackedgeBlocks.push_back(P);
382   }
383
384   // Create and insert the new backedge block...
385   BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
386                                            Header->getName()+".backedge", F);
387   BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
388
389   DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
390                << BEBlock->getName() << "\n");
391
392   // Move the new backedge block to right after the last backedge block.
393   Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos;
394   F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
395
396   // Now that the block has been inserted into the function, create PHI nodes in
397   // the backedge block which correspond to any PHI nodes in the header block.
398   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
399     PHINode *PN = cast<PHINode>(I);
400     PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(),
401                                      PN->getName()+".be", BETerminator);
402     if (AA) AA->copyValue(PN, NewPN);
403
404     // Loop over the PHI node, moving all entries except the one for the
405     // preheader over to the new PHI node.
406     unsigned PreheaderIdx = ~0U;
407     bool HasUniqueIncomingValue = true;
408     Value *UniqueValue = nullptr;
409     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
410       BasicBlock *IBB = PN->getIncomingBlock(i);
411       Value *IV = PN->getIncomingValue(i);
412       if (IBB == Preheader) {
413         PreheaderIdx = i;
414       } else {
415         NewPN->addIncoming(IV, IBB);
416         if (HasUniqueIncomingValue) {
417           if (!UniqueValue)
418             UniqueValue = IV;
419           else if (UniqueValue != IV)
420             HasUniqueIncomingValue = false;
421         }
422       }
423     }
424
425     // Delete all of the incoming values from the old PN except the preheader's
426     assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
427     if (PreheaderIdx != 0) {
428       PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
429       PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
430     }
431     // Nuke all entries except the zero'th.
432     for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
433       PN->removeIncomingValue(e-i, false);
434
435     // Finally, add the newly constructed PHI node as the entry for the BEBlock.
436     PN->addIncoming(NewPN, BEBlock);
437
438     // As an optimization, if all incoming values in the new PhiNode (which is a
439     // subset of the incoming values of the old PHI node) have the same value,
440     // eliminate the PHI Node.
441     if (HasUniqueIncomingValue) {
442       NewPN->replaceAllUsesWith(UniqueValue);
443       if (AA) AA->deleteValue(NewPN);
444       BEBlock->getInstList().erase(NewPN);
445     }
446   }
447
448   // Now that all of the PHI nodes have been inserted and adjusted, modify the
449   // backedge blocks to just to the BEBlock instead of the header.
450   for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
451     TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
452     for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
453       if (TI->getSuccessor(Op) == Header)
454         TI->setSuccessor(Op, BEBlock);
455   }
456
457   //===--- Update all analyses which we must preserve now -----------------===//
458
459   // Update Loop Information - we know that this block is now in the current
460   // loop and all parent loops.
461   L->addBasicBlockToLoop(BEBlock, LI->getBase());
462
463   // Update dominator information
464   DT->splitBlock(BEBlock);
465
466   return BEBlock;
467 }
468
469 /// \brief Simplify one loop and queue further loops for simplification.
470 ///
471 /// FIXME: Currently this accepts both lots of analyses that it uses and a raw
472 /// Pass pointer. The Pass pointer is used by numerous utilities to update
473 /// specific analyses. Rather than a pass it would be much cleaner and more
474 /// explicit if they accepted the analysis directly and then updated it.
475 static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist,
476                             AliasAnalysis *AA, DominatorTree *DT, LoopInfo *LI,
477                             ScalarEvolution *SE, Pass *PP,
478                             const DataLayout *DL) {
479   bool Changed = false;
480 ReprocessLoop:
481
482   // Check to see that no blocks (other than the header) in this loop have
483   // predecessors that are not in the loop.  This is not valid for natural
484   // loops, but can occur if the blocks are unreachable.  Since they are
485   // unreachable we can just shamelessly delete those CFG edges!
486   for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
487        BB != E; ++BB) {
488     if (*BB == L->getHeader()) continue;
489
490     SmallPtrSet<BasicBlock*, 4> BadPreds;
491     for (pred_iterator PI = pred_begin(*BB),
492          PE = pred_end(*BB); PI != PE; ++PI) {
493       BasicBlock *P = *PI;
494       if (!L->contains(P))
495         BadPreds.insert(P);
496     }
497
498     // Delete each unique out-of-loop (and thus dead) predecessor.
499     for (BasicBlock *P : BadPreds) {
500
501       DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
502                    << P->getName() << "\n");
503
504       // Inform each successor of each dead pred.
505       for (succ_iterator SI = succ_begin(P), SE = succ_end(P); SI != SE; ++SI)
506         (*SI)->removePredecessor(P);
507       // Zap the dead pred's terminator and replace it with unreachable.
508       TerminatorInst *TI = P->getTerminator();
509        TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
510       P->getTerminator()->eraseFromParent();
511       new UnreachableInst(P->getContext(), P);
512       Changed = true;
513     }
514   }
515
516   // If there are exiting blocks with branches on undef, resolve the undef in
517   // the direction which will exit the loop. This will help simplify loop
518   // trip count computations.
519   SmallVector<BasicBlock*, 8> ExitingBlocks;
520   L->getExitingBlocks(ExitingBlocks);
521   for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(),
522        E = ExitingBlocks.end(); I != E; ++I)
523     if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator()))
524       if (BI->isConditional()) {
525         if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
526
527           DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
528                        << (*I)->getName() << "\n");
529
530           BI->setCondition(ConstantInt::get(Cond->getType(),
531                                             !L->contains(BI->getSuccessor(0))));
532
533           // This may make the loop analyzable, force SCEV recomputation.
534           if (SE)
535             SE->forgetLoop(L);
536
537           Changed = true;
538         }
539       }
540
541   // Does the loop already have a preheader?  If so, don't insert one.
542   BasicBlock *Preheader = L->getLoopPreheader();
543   if (!Preheader) {
544     Preheader = InsertPreheaderForLoop(L, PP);
545     if (Preheader) {
546       ++NumInserted;
547       Changed = true;
548     }
549   }
550
551   // Next, check to make sure that all exit nodes of the loop only have
552   // predecessors that are inside of the loop.  This check guarantees that the
553   // loop preheader/header will dominate the exit blocks.  If the exit block has
554   // predecessors from outside of the loop, split the edge now.
555   SmallVector<BasicBlock*, 8> ExitBlocks;
556   L->getExitBlocks(ExitBlocks);
557
558   SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(),
559                                                ExitBlocks.end());
560   for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(),
561          E = ExitBlockSet.end(); I != E; ++I) {
562     BasicBlock *ExitBlock = *I;
563     for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
564          PI != PE; ++PI)
565       // Must be exactly this loop: no subloops, parent loops, or non-loop preds
566       // allowed.
567       if (!L->contains(*PI)) {
568         if (rewriteLoopExitBlock(L, ExitBlock, PP)) {
569           ++NumInserted;
570           Changed = true;
571         }
572         break;
573       }
574   }
575
576   // If the header has more than two predecessors at this point (from the
577   // preheader and from multiple backedges), we must adjust the loop.
578   BasicBlock *LoopLatch = L->getLoopLatch();
579   if (!LoopLatch) {
580     // If this is really a nested loop, rip it out into a child loop.  Don't do
581     // this for loops with a giant number of backedges, just factor them into a
582     // common backedge instead.
583     if (L->getNumBackEdges() < 8) {
584       if (Loop *OuterL = separateNestedLoop(L, Preheader, AA, DT, LI, SE, PP)) {
585         ++NumNested;
586         // Enqueue the outer loop as it should be processed next in our
587         // depth-first nest walk.
588         Worklist.push_back(OuterL);
589
590         // This is a big restructuring change, reprocess the whole loop.
591         Changed = true;
592         // GCC doesn't tail recursion eliminate this.
593         // FIXME: It isn't clear we can't rely on LLVM to TRE this.
594         goto ReprocessLoop;
595       }
596     }
597
598     // If we either couldn't, or didn't want to, identify nesting of the loops,
599     // insert a new block that all backedges target, then make it jump to the
600     // loop header.
601     LoopLatch = insertUniqueBackedgeBlock(L, Preheader, AA, DT, LI);
602     if (LoopLatch) {
603       ++NumInserted;
604       Changed = true;
605     }
606   }
607
608   // Scan over the PHI nodes in the loop header.  Since they now have only two
609   // incoming values (the loop is canonicalized), we may have simplified the PHI
610   // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
611   PHINode *PN;
612   for (BasicBlock::iterator I = L->getHeader()->begin();
613        (PN = dyn_cast<PHINode>(I++)); )
614     if (Value *V = SimplifyInstruction(PN, nullptr, nullptr, DT)) {
615       if (AA) AA->deleteValue(PN);
616       if (SE) SE->forgetValue(PN);
617       PN->replaceAllUsesWith(V);
618       PN->eraseFromParent();
619     }
620
621   // If this loop has multiple exits and the exits all go to the same
622   // block, attempt to merge the exits. This helps several passes, such
623   // as LoopRotation, which do not support loops with multiple exits.
624   // SimplifyCFG also does this (and this code uses the same utility
625   // function), however this code is loop-aware, where SimplifyCFG is
626   // not. That gives it the advantage of being able to hoist
627   // loop-invariant instructions out of the way to open up more
628   // opportunities, and the disadvantage of having the responsibility
629   // to preserve dominator information.
630   bool UniqueExit = true;
631   if (!ExitBlocks.empty())
632     for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i)
633       if (ExitBlocks[i] != ExitBlocks[0]) {
634         UniqueExit = false;
635         break;
636       }
637   if (UniqueExit) {
638     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
639       BasicBlock *ExitingBlock = ExitingBlocks[i];
640       if (!ExitingBlock->getSinglePredecessor()) continue;
641       BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
642       if (!BI || !BI->isConditional()) continue;
643       CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
644       if (!CI || CI->getParent() != ExitingBlock) continue;
645
646       // Attempt to hoist out all instructions except for the
647       // comparison and the branch.
648       bool AllInvariant = true;
649       bool AnyInvariant = false;
650       for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) {
651         Instruction *Inst = I++;
652         // Skip debug info intrinsics.
653         if (isa<DbgInfoIntrinsic>(Inst))
654           continue;
655         if (Inst == CI)
656           continue;
657         if (!L->makeLoopInvariant(Inst, AnyInvariant,
658                                   Preheader ? Preheader->getTerminator()
659                                             : nullptr)) {
660           AllInvariant = false;
661           break;
662         }
663       }
664       if (AnyInvariant) {
665         Changed = true;
666         // The loop disposition of all SCEV expressions that depend on any
667         // hoisted values have also changed.
668         if (SE)
669           SE->forgetLoopDispositions(L);
670       }
671       if (!AllInvariant) continue;
672
673       // The block has now been cleared of all instructions except for
674       // a comparison and a conditional branch. SimplifyCFG may be able
675       // to fold it now.
676       if (!FoldBranchToCommonDest(BI, DL)) continue;
677
678       // Success. The block is now dead, so remove it from the loop,
679       // update the dominator tree and delete it.
680       DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
681                    << ExitingBlock->getName() << "\n");
682
683       // Notify ScalarEvolution before deleting this block. Currently assume the
684       // parent loop doesn't change (spliting edges doesn't count). If blocks,
685       // CFG edges, or other values in the parent loop change, then we need call
686       // to forgetLoop() for the parent instead.
687       if (SE)
688         SE->forgetLoop(L);
689
690       assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
691       Changed = true;
692       LI->removeBlock(ExitingBlock);
693
694       DomTreeNode *Node = DT->getNode(ExitingBlock);
695       const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
696         Node->getChildren();
697       while (!Children.empty()) {
698         DomTreeNode *Child = Children.front();
699         DT->changeImmediateDominator(Child, Node->getIDom());
700       }
701       DT->eraseNode(ExitingBlock);
702
703       BI->getSuccessor(0)->removePredecessor(ExitingBlock);
704       BI->getSuccessor(1)->removePredecessor(ExitingBlock);
705       ExitingBlock->eraseFromParent();
706     }
707   }
708
709   return Changed;
710 }
711
712 bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, Pass *PP,
713                         AliasAnalysis *AA, ScalarEvolution *SE,
714                         const DataLayout *DL) {
715   bool Changed = false;
716
717   // Worklist maintains our depth-first queue of loops in this nest to process.
718   SmallVector<Loop *, 4> Worklist;
719   Worklist.push_back(L);
720
721   // Walk the worklist from front to back, pushing newly found sub loops onto
722   // the back. This will let us process loops from back to front in depth-first
723   // order. We can use this simple process because loops form a tree.
724   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
725     Loop *L2 = Worklist[Idx];
726     for (Loop::iterator I = L2->begin(), E = L2->end(); I != E; ++I)
727       Worklist.push_back(*I);
728   }
729
730   while (!Worklist.empty())
731     Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, AA, DT, LI,
732                                SE, PP, DL);
733
734   return Changed;
735 }
736
737 namespace {
738   struct LoopSimplify : public FunctionPass {
739     static char ID; // Pass identification, replacement for typeid
740     LoopSimplify() : FunctionPass(ID) {
741       initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
742     }
743
744     // AA - If we have an alias analysis object to update, this is it, otherwise
745     // this is null.
746     AliasAnalysis *AA;
747     DominatorTree *DT;
748     LoopInfo *LI;
749     ScalarEvolution *SE;
750     const DataLayout *DL;
751
752     bool runOnFunction(Function &F) override;
753
754     void getAnalysisUsage(AnalysisUsage &AU) const override {
755       // We need loop information to identify the loops...
756       AU.addRequired<DominatorTreeWrapperPass>();
757       AU.addPreserved<DominatorTreeWrapperPass>();
758
759       AU.addRequired<LoopInfo>();
760       AU.addPreserved<LoopInfo>();
761
762       AU.addPreserved<AliasAnalysis>();
763       AU.addPreserved<ScalarEvolution>();
764       AU.addPreserved<DependenceAnalysis>();
765       AU.addPreservedID(BreakCriticalEdgesID);  // No critical edges added.
766     }
767
768     /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
769     void verifyAnalysis() const override;
770   };
771 }
772
773 char LoopSimplify::ID = 0;
774 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
775                 "Canonicalize natural loops", true, false)
776 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
777 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
778 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
779                 "Canonicalize natural loops", true, false)
780
781 // Publicly exposed interface to pass...
782 char &llvm::LoopSimplifyID = LoopSimplify::ID;
783 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
784
785 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do
786 /// it in any convenient order) inserting preheaders...
787 ///
788 bool LoopSimplify::runOnFunction(Function &F) {
789   bool Changed = false;
790   AA = getAnalysisIfAvailable<AliasAnalysis>();
791   LI = &getAnalysis<LoopInfo>();
792   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
793   SE = getAnalysisIfAvailable<ScalarEvolution>();
794   DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
795   DL = DLP ? &DLP->getDataLayout() : nullptr;
796
797   // Simplify each loop nest in the function.
798   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
799     Changed |= simplifyLoop(*I, DT, LI, this, AA, SE, DL);
800
801   return Changed;
802 }
803
804 // FIXME: Restore this code when we re-enable verification in verifyAnalysis
805 // below.
806 #if 0
807 static void verifyLoop(Loop *L) {
808   // Verify subloops.
809   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
810     verifyLoop(*I);
811
812   // It used to be possible to just assert L->isLoopSimplifyForm(), however
813   // with the introduction of indirectbr, there are now cases where it's
814   // not possible to transform a loop as necessary. We can at least check
815   // that there is an indirectbr near any time there's trouble.
816
817   // Indirectbr can interfere with preheader and unique backedge insertion.
818   if (!L->getLoopPreheader() || !L->getLoopLatch()) {
819     bool HasIndBrPred = false;
820     for (pred_iterator PI = pred_begin(L->getHeader()),
821          PE = pred_end(L->getHeader()); PI != PE; ++PI)
822       if (isa<IndirectBrInst>((*PI)->getTerminator())) {
823         HasIndBrPred = true;
824         break;
825       }
826     assert(HasIndBrPred &&
827            "LoopSimplify has no excuse for missing loop header info!");
828     (void)HasIndBrPred;
829   }
830
831   // Indirectbr can interfere with exit block canonicalization.
832   if (!L->hasDedicatedExits()) {
833     bool HasIndBrExiting = false;
834     SmallVector<BasicBlock*, 8> ExitingBlocks;
835     L->getExitingBlocks(ExitingBlocks);
836     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
837       if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
838         HasIndBrExiting = true;
839         break;
840       }
841     }
842
843     assert(HasIndBrExiting &&
844            "LoopSimplify has no excuse for missing exit block info!");
845     (void)HasIndBrExiting;
846   }
847 }
848 #endif
849
850 void LoopSimplify::verifyAnalysis() const {
851   // FIXME: This routine is being called mid-way through the loop pass manager
852   // as loop passes destroy this analysis. That's actually fine, but we have no
853   // way of expressing that here. Once all of the passes that destroy this are
854   // hoisted out of the loop pass manager we can add back verification here.
855 #if 0
856   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
857     verifyLoop(*I);
858 #endif
859 }