Fix LoopInterchange/reductions.ll test for debug builds
[oota-llvm.git] / lib / Transforms / Scalar / TailRecursionElimination.cpp
1 //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file transforms calls of the current function (self recursion) followed
11 // by a return instruction with a branch to the entry of the function, creating
12 // a loop.  This pass also implements the following extensions to the basic
13 // algorithm:
14 //
15 //  1. Trivial instructions between the call and return do not prevent the
16 //     transformation from taking place, though currently the analysis cannot
17 //     support moving any really useful instructions (only dead ones).
18 //  2. This pass transforms functions that are prevented from being tail
19 //     recursive by an associative and commutative expression to use an
20 //     accumulator variable, thus compiling the typical naive factorial or
21 //     'fib' implementation into efficient code.
22 //  3. TRE is performed if the function returns void, if the return
23 //     returns the result returned by the call, or if the function returns a
24 //     run-time constant on all exits from the function.  It is possible, though
25 //     unlikely, that the return returns something else (like constant 0), and
26 //     can still be TRE'd.  It can be TRE'd if ALL OTHER return instructions in
27 //     the function return the exact same value.
28 //  4. If it can prove that callees do not access their caller stack frame,
29 //     they are marked as eligible for tail call elimination (by the code
30 //     generator).
31 //
32 // There are several improvements that could be made:
33 //
34 //  1. If the function has any alloca instructions, these instructions will be
35 //     moved out of the entry block of the function, causing them to be
36 //     evaluated each time through the tail recursion.  Safely keeping allocas
37 //     in the entry block requires analysis to proves that the tail-called
38 //     function does not read or write the stack object.
39 //  2. Tail recursion is only performed if the call immediately precedes the
40 //     return instruction.  It's possible that there could be a jump between
41 //     the call and the return.
42 //  3. There can be intervening operations between the call and the return that
43 //     prevent the TRE from occurring.  For example, there could be GEP's and
44 //     stores to memory that will not be read or written by the call.  This
45 //     requires some substantial analysis (such as with DSA) to prove safe to
46 //     move ahead of the call, but doing so could allow many more TREs to be
47 //     performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
48 //  4. The algorithm we use to detect if callees access their caller stack
49 //     frames is very primitive.
50 //
51 //===----------------------------------------------------------------------===//
52
53 #include "llvm/Transforms/Scalar.h"
54 #include "llvm/ADT/STLExtras.h"
55 #include "llvm/ADT/SmallPtrSet.h"
56 #include "llvm/ADT/Statistic.h"
57 #include "llvm/Analysis/CFG.h"
58 #include "llvm/Analysis/CaptureTracking.h"
59 #include "llvm/Analysis/InlineCost.h"
60 #include "llvm/Analysis/InstructionSimplify.h"
61 #include "llvm/Analysis/Loads.h"
62 #include "llvm/Analysis/TargetTransformInfo.h"
63 #include "llvm/IR/CFG.h"
64 #include "llvm/IR/CallSite.h"
65 #include "llvm/IR/Constants.h"
66 #include "llvm/IR/DataLayout.h"
67 #include "llvm/IR/DerivedTypes.h"
68 #include "llvm/IR/DiagnosticInfo.h"
69 #include "llvm/IR/Function.h"
70 #include "llvm/IR/Instructions.h"
71 #include "llvm/IR/IntrinsicInst.h"
72 #include "llvm/IR/Module.h"
73 #include "llvm/IR/ValueHandle.h"
74 #include "llvm/Pass.h"
75 #include "llvm/Support/Debug.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
78 #include "llvm/Transforms/Utils/Local.h"
79 using namespace llvm;
80
81 #define DEBUG_TYPE "tailcallelim"
82
83 STATISTIC(NumEliminated, "Number of tail calls removed");
84 STATISTIC(NumRetDuped,   "Number of return duplicated");
85 STATISTIC(NumAccumAdded, "Number of accumulators introduced");
86
87 namespace {
88   struct TailCallElim : public FunctionPass {
89     const TargetTransformInfo *TTI;
90
91     static char ID; // Pass identification, replacement for typeid
92     TailCallElim() : FunctionPass(ID) {
93       initializeTailCallElimPass(*PassRegistry::getPassRegistry());
94     }
95
96     void getAnalysisUsage(AnalysisUsage &AU) const override;
97
98     bool runOnFunction(Function &F) override;
99
100   private:
101     bool runTRE(Function &F);
102     bool markTails(Function &F, bool &AllCallsAreTailCalls);
103
104     CallInst *FindTRECandidate(Instruction *I,
105                                bool CannotTailCallElimCallsMarkedTail);
106     bool EliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret,
107                                     BasicBlock *&OldEntry,
108                                     bool &TailCallsAreMarkedTail,
109                                     SmallVectorImpl<PHINode *> &ArgumentPHIs,
110                                     bool CannotTailCallElimCallsMarkedTail);
111     bool FoldReturnAndProcessPred(BasicBlock *BB,
112                                   ReturnInst *Ret, BasicBlock *&OldEntry,
113                                   bool &TailCallsAreMarkedTail,
114                                   SmallVectorImpl<PHINode *> &ArgumentPHIs,
115                                   bool CannotTailCallElimCallsMarkedTail);
116     bool ProcessReturningBlock(ReturnInst *RI, BasicBlock *&OldEntry,
117                                bool &TailCallsAreMarkedTail,
118                                SmallVectorImpl<PHINode *> &ArgumentPHIs,
119                                bool CannotTailCallElimCallsMarkedTail);
120     bool CanMoveAboveCall(Instruction *I, CallInst *CI);
121     Value *CanTransformAccumulatorRecursion(Instruction *I, CallInst *CI);
122   };
123 }
124
125 char TailCallElim::ID = 0;
126 INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim",
127                       "Tail Call Elimination", false, false)
128 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
129 INITIALIZE_PASS_END(TailCallElim, "tailcallelim",
130                     "Tail Call Elimination", false, false)
131
132 // Public interface to the TailCallElimination pass
133 FunctionPass *llvm::createTailCallEliminationPass() {
134   return new TailCallElim();
135 }
136
137 void TailCallElim::getAnalysisUsage(AnalysisUsage &AU) const {
138   AU.addRequired<TargetTransformInfoWrapperPass>();
139 }
140
141 /// \brief Scan the specified function for alloca instructions.
142 /// If it contains any dynamic allocas, returns false.
143 static bool CanTRE(Function &F) {
144   // Because of PR962, we don't TRE dynamic allocas.
145   for (auto &BB : F) {
146     for (auto &I : BB) {
147       if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
148         if (!AI->isStaticAlloca())
149           return false;
150       }
151     }
152   }
153
154   return true;
155 }
156
157 bool TailCallElim::runOnFunction(Function &F) {
158   if (skipOptnoneFunction(F))
159     return false;
160
161   bool AllCallsAreTailCalls = false;
162   bool Modified = markTails(F, AllCallsAreTailCalls);
163   if (AllCallsAreTailCalls)
164     Modified |= runTRE(F);
165   return Modified;
166 }
167
168 namespace {
169 struct AllocaDerivedValueTracker {
170   // Start at a root value and walk its use-def chain to mark calls that use the
171   // value or a derived value in AllocaUsers, and places where it may escape in
172   // EscapePoints.
173   void walk(Value *Root) {
174     SmallVector<Use *, 32> Worklist;
175     SmallPtrSet<Use *, 32> Visited;
176
177     auto AddUsesToWorklist = [&](Value *V) {
178       for (auto &U : V->uses()) {
179         if (!Visited.insert(&U).second)
180           continue;
181         Worklist.push_back(&U);
182       }
183     };
184
185     AddUsesToWorklist(Root);
186
187     while (!Worklist.empty()) {
188       Use *U = Worklist.pop_back_val();
189       Instruction *I = cast<Instruction>(U->getUser());
190
191       switch (I->getOpcode()) {
192       case Instruction::Call:
193       case Instruction::Invoke: {
194         CallSite CS(I);
195         bool IsNocapture = !CS.isCallee(U) &&
196                            CS.doesNotCapture(CS.getArgumentNo(U));
197         callUsesLocalStack(CS, IsNocapture);
198         if (IsNocapture) {
199           // If the alloca-derived argument is passed in as nocapture, then it
200           // can't propagate to the call's return. That would be capturing.
201           continue;
202         }
203         break;
204       }
205       case Instruction::Load: {
206         // The result of a load is not alloca-derived (unless an alloca has
207         // otherwise escaped, but this is a local analysis).
208         continue;
209       }
210       case Instruction::Store: {
211         if (U->getOperandNo() == 0)
212           EscapePoints.insert(I);
213         continue;  // Stores have no users to analyze.
214       }
215       case Instruction::BitCast:
216       case Instruction::GetElementPtr:
217       case Instruction::PHI:
218       case Instruction::Select:
219       case Instruction::AddrSpaceCast:
220         break;
221       default:
222         EscapePoints.insert(I);
223         break;
224       }
225
226       AddUsesToWorklist(I);
227     }
228   }
229
230   void callUsesLocalStack(CallSite CS, bool IsNocapture) {
231     // Add it to the list of alloca users.
232     AllocaUsers.insert(CS.getInstruction());
233
234     // If it's nocapture then it can't capture this alloca.
235     if (IsNocapture)
236       return;
237
238     // If it can write to memory, it can leak the alloca value.
239     if (!CS.onlyReadsMemory())
240       EscapePoints.insert(CS.getInstruction());
241   }
242
243   SmallPtrSet<Instruction *, 32> AllocaUsers;
244   SmallPtrSet<Instruction *, 32> EscapePoints;
245 };
246 }
247
248 bool TailCallElim::markTails(Function &F, bool &AllCallsAreTailCalls) {
249   if (F.callsFunctionThatReturnsTwice())
250     return false;
251   AllCallsAreTailCalls = true;
252
253   // The local stack holds all alloca instructions and all byval arguments.
254   AllocaDerivedValueTracker Tracker;
255   for (Argument &Arg : F.args()) {
256     if (Arg.hasByValAttr())
257       Tracker.walk(&Arg);
258   }
259   for (auto &BB : F) {
260     for (auto &I : BB)
261       if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
262         Tracker.walk(AI);
263   }
264
265   bool Modified = false;
266
267   // Track whether a block is reachable after an alloca has escaped. Blocks that
268   // contain the escaping instruction will be marked as being visited without an
269   // escaped alloca, since that is how the block began.
270   enum VisitType {
271     UNVISITED,
272     UNESCAPED,
273     ESCAPED
274   };
275   DenseMap<BasicBlock *, VisitType> Visited;
276
277   // We propagate the fact that an alloca has escaped from block to successor.
278   // Visit the blocks that are propagating the escapedness first. To do this, we
279   // maintain two worklists.
280   SmallVector<BasicBlock *, 32> WorklistUnescaped, WorklistEscaped;
281
282   // We may enter a block and visit it thinking that no alloca has escaped yet,
283   // then see an escape point and go back around a loop edge and come back to
284   // the same block twice. Because of this, we defer setting tail on calls when
285   // we first encounter them in a block. Every entry in this list does not
286   // statically use an alloca via use-def chain analysis, but may find an alloca
287   // through other means if the block turns out to be reachable after an escape
288   // point.
289   SmallVector<CallInst *, 32> DeferredTails;
290
291   BasicBlock *BB = &F.getEntryBlock();
292   VisitType Escaped = UNESCAPED;
293   do {
294     for (auto &I : *BB) {
295       if (Tracker.EscapePoints.count(&I))
296         Escaped = ESCAPED;
297
298       CallInst *CI = dyn_cast<CallInst>(&I);
299       if (!CI || CI->isTailCall())
300         continue;
301
302       if (CI->doesNotAccessMemory()) {
303         // A call to a readnone function whose arguments are all things computed
304         // outside this function can be marked tail. Even if you stored the
305         // alloca address into a global, a readnone function can't load the
306         // global anyhow.
307         //
308         // Note that this runs whether we know an alloca has escaped or not. If
309         // it has, then we can't trust Tracker.AllocaUsers to be accurate.
310         bool SafeToTail = true;
311         for (auto &Arg : CI->arg_operands()) {
312           if (isa<Constant>(Arg.getUser()))
313             continue;
314           if (Argument *A = dyn_cast<Argument>(Arg.getUser()))
315             if (!A->hasByValAttr())
316               continue;
317           SafeToTail = false;
318           break;
319         }
320         if (SafeToTail) {
321           emitOptimizationRemark(
322               F.getContext(), "tailcallelim", F, CI->getDebugLoc(),
323               "marked this readnone call a tail call candidate");
324           CI->setTailCall();
325           Modified = true;
326           continue;
327         }
328       }
329
330       if (Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI)) {
331         DeferredTails.push_back(CI);
332       } else {
333         AllCallsAreTailCalls = false;
334       }
335     }
336
337     for (auto *SuccBB : make_range(succ_begin(BB), succ_end(BB))) {
338       auto &State = Visited[SuccBB];
339       if (State < Escaped) {
340         State = Escaped;
341         if (State == ESCAPED)
342           WorklistEscaped.push_back(SuccBB);
343         else
344           WorklistUnescaped.push_back(SuccBB);
345       }
346     }
347
348     if (!WorklistEscaped.empty()) {
349       BB = WorklistEscaped.pop_back_val();
350       Escaped = ESCAPED;
351     } else {
352       BB = nullptr;
353       while (!WorklistUnescaped.empty()) {
354         auto *NextBB = WorklistUnescaped.pop_back_val();
355         if (Visited[NextBB] == UNESCAPED) {
356           BB = NextBB;
357           Escaped = UNESCAPED;
358           break;
359         }
360       }
361     }
362   } while (BB);
363
364   for (CallInst *CI : DeferredTails) {
365     if (Visited[CI->getParent()] != ESCAPED) {
366       // If the escape point was part way through the block, calls after the
367       // escape point wouldn't have been put into DeferredTails.
368       emitOptimizationRemark(F.getContext(), "tailcallelim", F,
369                              CI->getDebugLoc(),
370                              "marked this call a tail call candidate");
371       CI->setTailCall();
372       Modified = true;
373     } else {
374       AllCallsAreTailCalls = false;
375     }
376   }
377
378   return Modified;
379 }
380
381 bool TailCallElim::runTRE(Function &F) {
382   // If this function is a varargs function, we won't be able to PHI the args
383   // right, so don't even try to convert it...
384   if (F.getFunctionType()->isVarArg()) return false;
385
386   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
387   BasicBlock *OldEntry = nullptr;
388   bool TailCallsAreMarkedTail = false;
389   SmallVector<PHINode*, 8> ArgumentPHIs;
390   bool MadeChange = false;
391
392   // If false, we cannot perform TRE on tail calls marked with the 'tail'
393   // attribute, because doing so would cause the stack size to increase (real
394   // TRE would deallocate variable sized allocas, TRE doesn't).
395   bool CanTRETailMarkedCall = CanTRE(F);
396
397   // Change any tail recursive calls to loops.
398   //
399   // FIXME: The code generator produces really bad code when an 'escaping
400   // alloca' is changed from being a static alloca to being a dynamic alloca.
401   // Until this is resolved, disable this transformation if that would ever
402   // happen.  This bug is PR962.
403   for (Function::iterator BBI = F.begin(), E = F.end(); BBI != E; /*in loop*/) {
404     BasicBlock *BB = BBI++; // FoldReturnAndProcessPred may delete BB.
405     if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator())) {
406       bool Change = ProcessReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail,
407                                           ArgumentPHIs, !CanTRETailMarkedCall);
408       if (!Change && BB->getFirstNonPHIOrDbg() == Ret)
409         Change = FoldReturnAndProcessPred(BB, Ret, OldEntry,
410                                           TailCallsAreMarkedTail, ArgumentPHIs,
411                                           !CanTRETailMarkedCall);
412       MadeChange |= Change;
413     }
414   }
415
416   // If we eliminated any tail recursions, it's possible that we inserted some
417   // silly PHI nodes which just merge an initial value (the incoming operand)
418   // with themselves.  Check to see if we did and clean up our mess if so.  This
419   // occurs when a function passes an argument straight through to its tail
420   // call.
421   for (unsigned i = 0, e = ArgumentPHIs.size(); i != e; ++i) {
422     PHINode *PN = ArgumentPHIs[i];
423
424     // If the PHI Node is a dynamic constant, replace it with the value it is.
425     if (Value *PNV = SimplifyInstruction(PN, F.getParent()->getDataLayout())) {
426       PN->replaceAllUsesWith(PNV);
427       PN->eraseFromParent();
428     }
429   }
430
431   return MadeChange;
432 }
433
434
435 /// Return true if it is safe to move the specified
436 /// instruction from after the call to before the call, assuming that all
437 /// instructions between the call and this instruction are movable.
438 ///
439 bool TailCallElim::CanMoveAboveCall(Instruction *I, CallInst *CI) {
440   // FIXME: We can move load/store/call/free instructions above the call if the
441   // call does not mod/ref the memory location being processed.
442   if (I->mayHaveSideEffects())  // This also handles volatile loads.
443     return false;
444
445   if (LoadInst *L = dyn_cast<LoadInst>(I)) {
446     // Loads may always be moved above calls without side effects.
447     if (CI->mayHaveSideEffects()) {
448       // Non-volatile loads may be moved above a call with side effects if it
449       // does not write to memory and the load provably won't trap.
450       // FIXME: Writes to memory only matter if they may alias the pointer
451       // being loaded from.
452       if (CI->mayWriteToMemory() ||
453           !isSafeToLoadUnconditionally(L->getPointerOperand(), L,
454                                        L->getAlignment()))
455         return false;
456     }
457   }
458
459   // Otherwise, if this is a side-effect free instruction, check to make sure
460   // that it does not use the return value of the call.  If it doesn't use the
461   // return value of the call, it must only use things that are defined before
462   // the call, or movable instructions between the call and the instruction
463   // itself.
464   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
465     if (I->getOperand(i) == CI)
466       return false;
467   return true;
468 }
469
470 /// Return true if the specified value is the same when the return would exit
471 /// as it was when the initial iteration of the recursive function was executed.
472 ///
473 /// We currently handle static constants and arguments that are not modified as
474 /// part of the recursion.
475 static bool isDynamicConstant(Value *V, CallInst *CI, ReturnInst *RI) {
476   if (isa<Constant>(V)) return true; // Static constants are always dyn consts
477
478   // Check to see if this is an immutable argument, if so, the value
479   // will be available to initialize the accumulator.
480   if (Argument *Arg = dyn_cast<Argument>(V)) {
481     // Figure out which argument number this is...
482     unsigned ArgNo = 0;
483     Function *F = CI->getParent()->getParent();
484     for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI)
485       ++ArgNo;
486
487     // If we are passing this argument into call as the corresponding
488     // argument operand, then the argument is dynamically constant.
489     // Otherwise, we cannot transform this function safely.
490     if (CI->getArgOperand(ArgNo) == Arg)
491       return true;
492   }
493
494   // Switch cases are always constant integers. If the value is being switched
495   // on and the return is only reachable from one of its cases, it's
496   // effectively constant.
497   if (BasicBlock *UniquePred = RI->getParent()->getUniquePredecessor())
498     if (SwitchInst *SI = dyn_cast<SwitchInst>(UniquePred->getTerminator()))
499       if (SI->getCondition() == V)
500         return SI->getDefaultDest() != RI->getParent();
501
502   // Not a constant or immutable argument, we can't safely transform.
503   return false;
504 }
505
506 /// Check to see if the function containing the specified tail call consistently
507 /// returns the same runtime-constant value at all exit points except for
508 /// IgnoreRI. If so, return the returned value.
509 static Value *getCommonReturnValue(ReturnInst *IgnoreRI, CallInst *CI) {
510   Function *F = CI->getParent()->getParent();
511   Value *ReturnedValue = nullptr;
512
513   for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI) {
514     ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator());
515     if (RI == nullptr || RI == IgnoreRI) continue;
516
517     // We can only perform this transformation if the value returned is
518     // evaluatable at the start of the initial invocation of the function,
519     // instead of at the end of the evaluation.
520     //
521     Value *RetOp = RI->getOperand(0);
522     if (!isDynamicConstant(RetOp, CI, RI))
523       return nullptr;
524
525     if (ReturnedValue && RetOp != ReturnedValue)
526       return nullptr;     // Cannot transform if differing values are returned.
527     ReturnedValue = RetOp;
528   }
529   return ReturnedValue;
530 }
531
532 /// If the specified instruction can be transformed using accumulator recursion
533 /// elimination, return the constant which is the start of the accumulator
534 /// value.  Otherwise return null.
535 Value *TailCallElim::CanTransformAccumulatorRecursion(Instruction *I,
536                                                       CallInst *CI) {
537   if (!I->isAssociative() || !I->isCommutative()) return nullptr;
538   assert(I->getNumOperands() == 2 &&
539          "Associative/commutative operations should have 2 args!");
540
541   // Exactly one operand should be the result of the call instruction.
542   if ((I->getOperand(0) == CI && I->getOperand(1) == CI) ||
543       (I->getOperand(0) != CI && I->getOperand(1) != CI))
544     return nullptr;
545
546   // The only user of this instruction we allow is a single return instruction.
547   if (!I->hasOneUse() || !isa<ReturnInst>(I->user_back()))
548     return nullptr;
549
550   // Ok, now we have to check all of the other return instructions in this
551   // function.  If they return non-constants or differing values, then we cannot
552   // transform the function safely.
553   return getCommonReturnValue(cast<ReturnInst>(I->user_back()), CI);
554 }
555
556 static Instruction *FirstNonDbg(BasicBlock::iterator I) {
557   while (isa<DbgInfoIntrinsic>(I))
558     ++I;
559   return &*I;
560 }
561
562 CallInst*
563 TailCallElim::FindTRECandidate(Instruction *TI,
564                                bool CannotTailCallElimCallsMarkedTail) {
565   BasicBlock *BB = TI->getParent();
566   Function *F = BB->getParent();
567
568   if (&BB->front() == TI) // Make sure there is something before the terminator.
569     return nullptr;
570
571   // Scan backwards from the return, checking to see if there is a tail call in
572   // this block.  If so, set CI to it.
573   CallInst *CI = nullptr;
574   BasicBlock::iterator BBI = TI;
575   while (true) {
576     CI = dyn_cast<CallInst>(BBI);
577     if (CI && CI->getCalledFunction() == F)
578       break;
579
580     if (BBI == BB->begin())
581       return nullptr;          // Didn't find a potential tail call.
582     --BBI;
583   }
584
585   // If this call is marked as a tail call, and if there are dynamic allocas in
586   // the function, we cannot perform this optimization.
587   if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail)
588     return nullptr;
589
590   // As a special case, detect code like this:
591   //   double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
592   // and disable this xform in this case, because the code generator will
593   // lower the call to fabs into inline code.
594   if (BB == &F->getEntryBlock() &&
595       FirstNonDbg(BB->front()) == CI &&
596       FirstNonDbg(std::next(BB->begin())) == TI &&
597       CI->getCalledFunction() &&
598       !TTI->isLoweredToCall(CI->getCalledFunction())) {
599     // A single-block function with just a call and a return. Check that
600     // the arguments match.
601     CallSite::arg_iterator I = CallSite(CI).arg_begin(),
602                            E = CallSite(CI).arg_end();
603     Function::arg_iterator FI = F->arg_begin(),
604                            FE = F->arg_end();
605     for (; I != E && FI != FE; ++I, ++FI)
606       if (*I != &*FI) break;
607     if (I == E && FI == FE)
608       return nullptr;
609   }
610
611   return CI;
612 }
613
614 bool TailCallElim::EliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret,
615                                        BasicBlock *&OldEntry,
616                                        bool &TailCallsAreMarkedTail,
617                                        SmallVectorImpl<PHINode *> &ArgumentPHIs,
618                                        bool CannotTailCallElimCallsMarkedTail) {
619   // If we are introducing accumulator recursion to eliminate operations after
620   // the call instruction that are both associative and commutative, the initial
621   // value for the accumulator is placed in this variable.  If this value is set
622   // then we actually perform accumulator recursion elimination instead of
623   // simple tail recursion elimination.  If the operation is an LLVM instruction
624   // (eg: "add") then it is recorded in AccumulatorRecursionInstr.  If not, then
625   // we are handling the case when the return instruction returns a constant C
626   // which is different to the constant returned by other return instructions
627   // (which is recorded in AccumulatorRecursionEliminationInitVal).  This is a
628   // special case of accumulator recursion, the operation being "return C".
629   Value *AccumulatorRecursionEliminationInitVal = nullptr;
630   Instruction *AccumulatorRecursionInstr = nullptr;
631
632   // Ok, we found a potential tail call.  We can currently only transform the
633   // tail call if all of the instructions between the call and the return are
634   // movable to above the call itself, leaving the call next to the return.
635   // Check that this is the case now.
636   BasicBlock::iterator BBI = CI;
637   for (++BBI; &*BBI != Ret; ++BBI) {
638     if (CanMoveAboveCall(BBI, CI)) continue;
639
640     // If we can't move the instruction above the call, it might be because it
641     // is an associative and commutative operation that could be transformed
642     // using accumulator recursion elimination.  Check to see if this is the
643     // case, and if so, remember the initial accumulator value for later.
644     if ((AccumulatorRecursionEliminationInitVal =
645                            CanTransformAccumulatorRecursion(BBI, CI))) {
646       // Yes, this is accumulator recursion.  Remember which instruction
647       // accumulates.
648       AccumulatorRecursionInstr = BBI;
649     } else {
650       return false;   // Otherwise, we cannot eliminate the tail recursion!
651     }
652   }
653
654   // We can only transform call/return pairs that either ignore the return value
655   // of the call and return void, ignore the value of the call and return a
656   // constant, return the value returned by the tail call, or that are being
657   // accumulator recursion variable eliminated.
658   if (Ret->getNumOperands() == 1 && Ret->getReturnValue() != CI &&
659       !isa<UndefValue>(Ret->getReturnValue()) &&
660       AccumulatorRecursionEliminationInitVal == nullptr &&
661       !getCommonReturnValue(nullptr, CI)) {
662     // One case remains that we are able to handle: the current return
663     // instruction returns a constant, and all other return instructions
664     // return a different constant.
665     if (!isDynamicConstant(Ret->getReturnValue(), CI, Ret))
666       return false; // Current return instruction does not return a constant.
667     // Check that all other return instructions return a common constant.  If
668     // so, record it in AccumulatorRecursionEliminationInitVal.
669     AccumulatorRecursionEliminationInitVal = getCommonReturnValue(Ret, CI);
670     if (!AccumulatorRecursionEliminationInitVal)
671       return false;
672   }
673
674   BasicBlock *BB = Ret->getParent();
675   Function *F = BB->getParent();
676
677   emitOptimizationRemark(F->getContext(), "tailcallelim", *F, CI->getDebugLoc(),
678                          "transforming tail recursion to loop");
679
680   // OK! We can transform this tail call.  If this is the first one found,
681   // create the new entry block, allowing us to branch back to the old entry.
682   if (!OldEntry) {
683     OldEntry = &F->getEntryBlock();
684     BasicBlock *NewEntry = BasicBlock::Create(F->getContext(), "", F, OldEntry);
685     NewEntry->takeName(OldEntry);
686     OldEntry->setName("tailrecurse");
687     BranchInst::Create(OldEntry, NewEntry);
688
689     // If this tail call is marked 'tail' and if there are any allocas in the
690     // entry block, move them up to the new entry block.
691     TailCallsAreMarkedTail = CI->isTailCall();
692     if (TailCallsAreMarkedTail)
693       // Move all fixed sized allocas from OldEntry to NewEntry.
694       for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(),
695              NEBI = NewEntry->begin(); OEBI != E; )
696         if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
697           if (isa<ConstantInt>(AI->getArraySize()))
698             AI->moveBefore(NEBI);
699
700     // Now that we have created a new block, which jumps to the entry
701     // block, insert a PHI node for each argument of the function.
702     // For now, we initialize each PHI to only have the real arguments
703     // which are passed in.
704     Instruction *InsertPos = OldEntry->begin();
705     for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
706          I != E; ++I) {
707       PHINode *PN = PHINode::Create(I->getType(), 2,
708                                     I->getName() + ".tr", InsertPos);
709       I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
710       PN->addIncoming(I, NewEntry);
711       ArgumentPHIs.push_back(PN);
712     }
713   }
714
715   // If this function has self recursive calls in the tail position where some
716   // are marked tail and some are not, only transform one flavor or another.  We
717   // have to choose whether we move allocas in the entry block to the new entry
718   // block or not, so we can't make a good choice for both.  NOTE: We could do
719   // slightly better here in the case that the function has no entry block
720   // allocas.
721   if (TailCallsAreMarkedTail && !CI->isTailCall())
722     return false;
723
724   // Ok, now that we know we have a pseudo-entry block WITH all of the
725   // required PHI nodes, add entries into the PHI node for the actual
726   // parameters passed into the tail-recursive call.
727   for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
728     ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB);
729
730   // If we are introducing an accumulator variable to eliminate the recursion,
731   // do so now.  Note that we _know_ that no subsequent tail recursion
732   // eliminations will happen on this function because of the way the
733   // accumulator recursion predicate is set up.
734   //
735   if (AccumulatorRecursionEliminationInitVal) {
736     Instruction *AccRecInstr = AccumulatorRecursionInstr;
737     // Start by inserting a new PHI node for the accumulator.
738     pred_iterator PB = pred_begin(OldEntry), PE = pred_end(OldEntry);
739     PHINode *AccPN =
740       PHINode::Create(AccumulatorRecursionEliminationInitVal->getType(),
741                       std::distance(PB, PE) + 1,
742                       "accumulator.tr", OldEntry->begin());
743
744     // Loop over all of the predecessors of the tail recursion block.  For the
745     // real entry into the function we seed the PHI with the initial value,
746     // computed earlier.  For any other existing branches to this block (due to
747     // other tail recursions eliminated) the accumulator is not modified.
748     // Because we haven't added the branch in the current block to OldEntry yet,
749     // it will not show up as a predecessor.
750     for (pred_iterator PI = PB; PI != PE; ++PI) {
751       BasicBlock *P = *PI;
752       if (P == &F->getEntryBlock())
753         AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, P);
754       else
755         AccPN->addIncoming(AccPN, P);
756     }
757
758     if (AccRecInstr) {
759       // Add an incoming argument for the current block, which is computed by
760       // our associative and commutative accumulator instruction.
761       AccPN->addIncoming(AccRecInstr, BB);
762
763       // Next, rewrite the accumulator recursion instruction so that it does not
764       // use the result of the call anymore, instead, use the PHI node we just
765       // inserted.
766       AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
767     } else {
768       // Add an incoming argument for the current block, which is just the
769       // constant returned by the current return instruction.
770       AccPN->addIncoming(Ret->getReturnValue(), BB);
771     }
772
773     // Finally, rewrite any return instructions in the program to return the PHI
774     // node instead of the "initval" that they do currently.  This loop will
775     // actually rewrite the return value we are destroying, but that's ok.
776     for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI)
777       if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator()))
778         RI->setOperand(0, AccPN);
779     ++NumAccumAdded;
780   }
781
782   // Now that all of the PHI nodes are in place, remove the call and
783   // ret instructions, replacing them with an unconditional branch.
784   BranchInst *NewBI = BranchInst::Create(OldEntry, Ret);
785   NewBI->setDebugLoc(CI->getDebugLoc());
786
787   BB->getInstList().erase(Ret);  // Remove return.
788   BB->getInstList().erase(CI);   // Remove call.
789   ++NumEliminated;
790   return true;
791 }
792
793 bool TailCallElim::FoldReturnAndProcessPred(BasicBlock *BB,
794                                        ReturnInst *Ret, BasicBlock *&OldEntry,
795                                        bool &TailCallsAreMarkedTail,
796                                        SmallVectorImpl<PHINode *> &ArgumentPHIs,
797                                        bool CannotTailCallElimCallsMarkedTail) {
798   bool Change = false;
799
800   // If the return block contains nothing but the return and PHI's,
801   // there might be an opportunity to duplicate the return in its
802   // predecessors and perform TRC there. Look for predecessors that end
803   // in unconditional branch and recursive call(s).
804   SmallVector<BranchInst*, 8> UncondBranchPreds;
805   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
806     BasicBlock *Pred = *PI;
807     TerminatorInst *PTI = Pred->getTerminator();
808     if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
809       if (BI->isUnconditional())
810         UncondBranchPreds.push_back(BI);
811   }
812
813   while (!UncondBranchPreds.empty()) {
814     BranchInst *BI = UncondBranchPreds.pop_back_val();
815     BasicBlock *Pred = BI->getParent();
816     if (CallInst *CI = FindTRECandidate(BI, CannotTailCallElimCallsMarkedTail)){
817       DEBUG(dbgs() << "FOLDING: " << *BB
818             << "INTO UNCOND BRANCH PRED: " << *Pred);
819       ReturnInst *RI = FoldReturnIntoUncondBranch(Ret, BB, Pred);
820
821       // Cleanup: if all predecessors of BB have been eliminated by
822       // FoldReturnIntoUncondBranch, delete it.  It is important to empty it,
823       // because the ret instruction in there is still using a value which
824       // EliminateRecursiveTailCall will attempt to remove.
825       if (!BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
826         BB->eraseFromParent();
827
828       EliminateRecursiveTailCall(CI, RI, OldEntry, TailCallsAreMarkedTail,
829                                  ArgumentPHIs,
830                                  CannotTailCallElimCallsMarkedTail);
831       ++NumRetDuped;
832       Change = true;
833     }
834   }
835
836   return Change;
837 }
838
839 bool
840 TailCallElim::ProcessReturningBlock(ReturnInst *Ret, BasicBlock *&OldEntry,
841                                     bool &TailCallsAreMarkedTail,
842                                     SmallVectorImpl<PHINode *> &ArgumentPHIs,
843                                     bool CannotTailCallElimCallsMarkedTail) {
844   CallInst *CI = FindTRECandidate(Ret, CannotTailCallElimCallsMarkedTail);
845   if (!CI)
846     return false;
847
848   return EliminateRecursiveTailCall(CI, Ret, OldEntry, TailCallsAreMarkedTail,
849                                     ArgumentPHIs,
850                                     CannotTailCallElimCallsMarkedTail);
851 }