[DeadStoreElimination] Remove dead zero store to calloc initialized memory
[oota-llvm.git] / lib / Transforms / Scalar / TailRecursionElimination.cpp
1 //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file transforms calls of the current function (self recursion) followed
11 // by a return instruction with a branch to the entry of the function, creating
12 // a loop.  This pass also implements the following extensions to the basic
13 // algorithm:
14 //
15 //  1. Trivial instructions between the call and return do not prevent the
16 //     transformation from taking place, though currently the analysis cannot
17 //     support moving any really useful instructions (only dead ones).
18 //  2. This pass transforms functions that are prevented from being tail
19 //     recursive by an associative and commutative expression to use an
20 //     accumulator variable, thus compiling the typical naive factorial or
21 //     'fib' implementation into efficient code.
22 //  3. TRE is performed if the function returns void, if the return
23 //     returns the result returned by the call, or if the function returns a
24 //     run-time constant on all exits from the function.  It is possible, though
25 //     unlikely, that the return returns something else (like constant 0), and
26 //     can still be TRE'd.  It can be TRE'd if ALL OTHER return instructions in
27 //     the function return the exact same value.
28 //  4. If it can prove that callees do not access their caller stack frame,
29 //     they are marked as eligible for tail call elimination (by the code
30 //     generator).
31 //
32 // There are several improvements that could be made:
33 //
34 //  1. If the function has any alloca instructions, these instructions will be
35 //     moved out of the entry block of the function, causing them to be
36 //     evaluated each time through the tail recursion.  Safely keeping allocas
37 //     in the entry block requires analysis to proves that the tail-called
38 //     function does not read or write the stack object.
39 //  2. Tail recursion is only performed if the call immediately precedes the
40 //     return instruction.  It's possible that there could be a jump between
41 //     the call and the return.
42 //  3. There can be intervening operations between the call and the return that
43 //     prevent the TRE from occurring.  For example, there could be GEP's and
44 //     stores to memory that will not be read or written by the call.  This
45 //     requires some substantial analysis (such as with DSA) to prove safe to
46 //     move ahead of the call, but doing so could allow many more TREs to be
47 //     performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
48 //  4. The algorithm we use to detect if callees access their caller stack
49 //     frames is very primitive.
50 //
51 //===----------------------------------------------------------------------===//
52
53 #include "llvm/Transforms/Scalar.h"
54 #include "llvm/ADT/STLExtras.h"
55 #include "llvm/ADT/SmallPtrSet.h"
56 #include "llvm/ADT/Statistic.h"
57 #include "llvm/Analysis/GlobalsModRef.h"
58 #include "llvm/Analysis/CFG.h"
59 #include "llvm/Analysis/CaptureTracking.h"
60 #include "llvm/Analysis/InlineCost.h"
61 #include "llvm/Analysis/InstructionSimplify.h"
62 #include "llvm/Analysis/Loads.h"
63 #include "llvm/Analysis/TargetTransformInfo.h"
64 #include "llvm/IR/CFG.h"
65 #include "llvm/IR/CallSite.h"
66 #include "llvm/IR/Constants.h"
67 #include "llvm/IR/DataLayout.h"
68 #include "llvm/IR/DerivedTypes.h"
69 #include "llvm/IR/DiagnosticInfo.h"
70 #include "llvm/IR/Function.h"
71 #include "llvm/IR/Instructions.h"
72 #include "llvm/IR/IntrinsicInst.h"
73 #include "llvm/IR/Module.h"
74 #include "llvm/IR/ValueHandle.h"
75 #include "llvm/Pass.h"
76 #include "llvm/Support/Debug.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
79 #include "llvm/Transforms/Utils/Local.h"
80 using namespace llvm;
81
82 #define DEBUG_TYPE "tailcallelim"
83
84 STATISTIC(NumEliminated, "Number of tail calls removed");
85 STATISTIC(NumRetDuped,   "Number of return duplicated");
86 STATISTIC(NumAccumAdded, "Number of accumulators introduced");
87
88 namespace {
89   struct TailCallElim : public FunctionPass {
90     const TargetTransformInfo *TTI;
91
92     static char ID; // Pass identification, replacement for typeid
93     TailCallElim() : FunctionPass(ID) {
94       initializeTailCallElimPass(*PassRegistry::getPassRegistry());
95     }
96
97     void getAnalysisUsage(AnalysisUsage &AU) const override;
98
99     bool runOnFunction(Function &F) override;
100
101   private:
102     bool runTRE(Function &F);
103     bool markTails(Function &F, bool &AllCallsAreTailCalls);
104
105     CallInst *FindTRECandidate(Instruction *I,
106                                bool CannotTailCallElimCallsMarkedTail);
107     bool EliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret,
108                                     BasicBlock *&OldEntry,
109                                     bool &TailCallsAreMarkedTail,
110                                     SmallVectorImpl<PHINode *> &ArgumentPHIs,
111                                     bool CannotTailCallElimCallsMarkedTail);
112     bool FoldReturnAndProcessPred(BasicBlock *BB,
113                                   ReturnInst *Ret, BasicBlock *&OldEntry,
114                                   bool &TailCallsAreMarkedTail,
115                                   SmallVectorImpl<PHINode *> &ArgumentPHIs,
116                                   bool CannotTailCallElimCallsMarkedTail);
117     bool ProcessReturningBlock(ReturnInst *RI, BasicBlock *&OldEntry,
118                                bool &TailCallsAreMarkedTail,
119                                SmallVectorImpl<PHINode *> &ArgumentPHIs,
120                                bool CannotTailCallElimCallsMarkedTail);
121     bool CanMoveAboveCall(Instruction *I, CallInst *CI);
122     Value *CanTransformAccumulatorRecursion(Instruction *I, CallInst *CI);
123   };
124 }
125
126 char TailCallElim::ID = 0;
127 INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim",
128                       "Tail Call Elimination", false, false)
129 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
130 INITIALIZE_PASS_END(TailCallElim, "tailcallelim",
131                     "Tail Call Elimination", false, false)
132
133 // Public interface to the TailCallElimination pass
134 FunctionPass *llvm::createTailCallEliminationPass() {
135   return new TailCallElim();
136 }
137
138 void TailCallElim::getAnalysisUsage(AnalysisUsage &AU) const {
139   AU.addRequired<TargetTransformInfoWrapperPass>();
140   AU.addPreserved<GlobalsAAWrapperPass>();
141 }
142
143 /// \brief Scan the specified function for alloca instructions.
144 /// If it contains any dynamic allocas, returns false.
145 static bool CanTRE(Function &F) {
146   // Because of PR962, we don't TRE dynamic allocas.
147   for (auto &BB : F) {
148     for (auto &I : BB) {
149       if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
150         if (!AI->isStaticAlloca())
151           return false;
152       }
153     }
154   }
155
156   return true;
157 }
158
159 bool TailCallElim::runOnFunction(Function &F) {
160   if (skipOptnoneFunction(F))
161     return false;
162
163   if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
164     return false;
165
166   bool AllCallsAreTailCalls = false;
167   bool Modified = markTails(F, AllCallsAreTailCalls);
168   if (AllCallsAreTailCalls)
169     Modified |= runTRE(F);
170   return Modified;
171 }
172
173 namespace {
174 struct AllocaDerivedValueTracker {
175   // Start at a root value and walk its use-def chain to mark calls that use the
176   // value or a derived value in AllocaUsers, and places where it may escape in
177   // EscapePoints.
178   void walk(Value *Root) {
179     SmallVector<Use *, 32> Worklist;
180     SmallPtrSet<Use *, 32> Visited;
181
182     auto AddUsesToWorklist = [&](Value *V) {
183       for (auto &U : V->uses()) {
184         if (!Visited.insert(&U).second)
185           continue;
186         Worklist.push_back(&U);
187       }
188     };
189
190     AddUsesToWorklist(Root);
191
192     while (!Worklist.empty()) {
193       Use *U = Worklist.pop_back_val();
194       Instruction *I = cast<Instruction>(U->getUser());
195
196       switch (I->getOpcode()) {
197       case Instruction::Call:
198       case Instruction::Invoke: {
199         CallSite CS(I);
200         bool IsNocapture = !CS.isCallee(U) &&
201                            CS.doesNotCapture(CS.getArgumentNo(U));
202         callUsesLocalStack(CS, IsNocapture);
203         if (IsNocapture) {
204           // If the alloca-derived argument is passed in as nocapture, then it
205           // can't propagate to the call's return. That would be capturing.
206           continue;
207         }
208         break;
209       }
210       case Instruction::Load: {
211         // The result of a load is not alloca-derived (unless an alloca has
212         // otherwise escaped, but this is a local analysis).
213         continue;
214       }
215       case Instruction::Store: {
216         if (U->getOperandNo() == 0)
217           EscapePoints.insert(I);
218         continue;  // Stores have no users to analyze.
219       }
220       case Instruction::BitCast:
221       case Instruction::GetElementPtr:
222       case Instruction::PHI:
223       case Instruction::Select:
224       case Instruction::AddrSpaceCast:
225         break;
226       default:
227         EscapePoints.insert(I);
228         break;
229       }
230
231       AddUsesToWorklist(I);
232     }
233   }
234
235   void callUsesLocalStack(CallSite CS, bool IsNocapture) {
236     // Add it to the list of alloca users.
237     AllocaUsers.insert(CS.getInstruction());
238
239     // If it's nocapture then it can't capture this alloca.
240     if (IsNocapture)
241       return;
242
243     // If it can write to memory, it can leak the alloca value.
244     if (!CS.onlyReadsMemory())
245       EscapePoints.insert(CS.getInstruction());
246   }
247
248   SmallPtrSet<Instruction *, 32> AllocaUsers;
249   SmallPtrSet<Instruction *, 32> EscapePoints;
250 };
251 }
252
253 bool TailCallElim::markTails(Function &F, bool &AllCallsAreTailCalls) {
254   if (F.callsFunctionThatReturnsTwice())
255     return false;
256   AllCallsAreTailCalls = true;
257
258   // The local stack holds all alloca instructions and all byval arguments.
259   AllocaDerivedValueTracker Tracker;
260   for (Argument &Arg : F.args()) {
261     if (Arg.hasByValAttr())
262       Tracker.walk(&Arg);
263   }
264   for (auto &BB : F) {
265     for (auto &I : BB)
266       if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
267         Tracker.walk(AI);
268   }
269
270   bool Modified = false;
271
272   // Track whether a block is reachable after an alloca has escaped. Blocks that
273   // contain the escaping instruction will be marked as being visited without an
274   // escaped alloca, since that is how the block began.
275   enum VisitType {
276     UNVISITED,
277     UNESCAPED,
278     ESCAPED
279   };
280   DenseMap<BasicBlock *, VisitType> Visited;
281
282   // We propagate the fact that an alloca has escaped from block to successor.
283   // Visit the blocks that are propagating the escapedness first. To do this, we
284   // maintain two worklists.
285   SmallVector<BasicBlock *, 32> WorklistUnescaped, WorklistEscaped;
286
287   // We may enter a block and visit it thinking that no alloca has escaped yet,
288   // then see an escape point and go back around a loop edge and come back to
289   // the same block twice. Because of this, we defer setting tail on calls when
290   // we first encounter them in a block. Every entry in this list does not
291   // statically use an alloca via use-def chain analysis, but may find an alloca
292   // through other means if the block turns out to be reachable after an escape
293   // point.
294   SmallVector<CallInst *, 32> DeferredTails;
295
296   BasicBlock *BB = &F.getEntryBlock();
297   VisitType Escaped = UNESCAPED;
298   do {
299     for (auto &I : *BB) {
300       if (Tracker.EscapePoints.count(&I))
301         Escaped = ESCAPED;
302
303       CallInst *CI = dyn_cast<CallInst>(&I);
304       if (!CI || CI->isTailCall())
305         continue;
306
307       if (CI->doesNotAccessMemory()) {
308         // A call to a readnone function whose arguments are all things computed
309         // outside this function can be marked tail. Even if you stored the
310         // alloca address into a global, a readnone function can't load the
311         // global anyhow.
312         //
313         // Note that this runs whether we know an alloca has escaped or not. If
314         // it has, then we can't trust Tracker.AllocaUsers to be accurate.
315         bool SafeToTail = true;
316         for (auto &Arg : CI->arg_operands()) {
317           if (isa<Constant>(Arg.getUser()))
318             continue;
319           if (Argument *A = dyn_cast<Argument>(Arg.getUser()))
320             if (!A->hasByValAttr())
321               continue;
322           SafeToTail = false;
323           break;
324         }
325         if (SafeToTail) {
326           emitOptimizationRemark(
327               F.getContext(), "tailcallelim", F, CI->getDebugLoc(),
328               "marked this readnone call a tail call candidate");
329           CI->setTailCall();
330           Modified = true;
331           continue;
332         }
333       }
334
335       if (Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI)) {
336         DeferredTails.push_back(CI);
337       } else {
338         AllCallsAreTailCalls = false;
339       }
340     }
341
342     for (auto *SuccBB : make_range(succ_begin(BB), succ_end(BB))) {
343       auto &State = Visited[SuccBB];
344       if (State < Escaped) {
345         State = Escaped;
346         if (State == ESCAPED)
347           WorklistEscaped.push_back(SuccBB);
348         else
349           WorklistUnescaped.push_back(SuccBB);
350       }
351     }
352
353     if (!WorklistEscaped.empty()) {
354       BB = WorklistEscaped.pop_back_val();
355       Escaped = ESCAPED;
356     } else {
357       BB = nullptr;
358       while (!WorklistUnescaped.empty()) {
359         auto *NextBB = WorklistUnescaped.pop_back_val();
360         if (Visited[NextBB] == UNESCAPED) {
361           BB = NextBB;
362           Escaped = UNESCAPED;
363           break;
364         }
365       }
366     }
367   } while (BB);
368
369   for (CallInst *CI : DeferredTails) {
370     if (Visited[CI->getParent()] != ESCAPED) {
371       // If the escape point was part way through the block, calls after the
372       // escape point wouldn't have been put into DeferredTails.
373       emitOptimizationRemark(F.getContext(), "tailcallelim", F,
374                              CI->getDebugLoc(),
375                              "marked this call a tail call candidate");
376       CI->setTailCall();
377       Modified = true;
378     } else {
379       AllCallsAreTailCalls = false;
380     }
381   }
382
383   return Modified;
384 }
385
386 bool TailCallElim::runTRE(Function &F) {
387   // If this function is a varargs function, we won't be able to PHI the args
388   // right, so don't even try to convert it...
389   if (F.getFunctionType()->isVarArg()) return false;
390
391   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
392   BasicBlock *OldEntry = nullptr;
393   bool TailCallsAreMarkedTail = false;
394   SmallVector<PHINode*, 8> ArgumentPHIs;
395   bool MadeChange = false;
396
397   // If false, we cannot perform TRE on tail calls marked with the 'tail'
398   // attribute, because doing so would cause the stack size to increase (real
399   // TRE would deallocate variable sized allocas, TRE doesn't).
400   bool CanTRETailMarkedCall = CanTRE(F);
401
402   // Change any tail recursive calls to loops.
403   //
404   // FIXME: The code generator produces really bad code when an 'escaping
405   // alloca' is changed from being a static alloca to being a dynamic alloca.
406   // Until this is resolved, disable this transformation if that would ever
407   // happen.  This bug is PR962.
408   for (Function::iterator BBI = F.begin(), E = F.end(); BBI != E; /*in loop*/) {
409     BasicBlock *BB = BBI++; // FoldReturnAndProcessPred may delete BB.
410     if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator())) {
411       bool Change = ProcessReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail,
412                                           ArgumentPHIs, !CanTRETailMarkedCall);
413       if (!Change && BB->getFirstNonPHIOrDbg() == Ret)
414         Change = FoldReturnAndProcessPred(BB, Ret, OldEntry,
415                                           TailCallsAreMarkedTail, ArgumentPHIs,
416                                           !CanTRETailMarkedCall);
417       MadeChange |= Change;
418     }
419   }
420
421   // If we eliminated any tail recursions, it's possible that we inserted some
422   // silly PHI nodes which just merge an initial value (the incoming operand)
423   // with themselves.  Check to see if we did and clean up our mess if so.  This
424   // occurs when a function passes an argument straight through to its tail
425   // call.
426   for (unsigned i = 0, e = ArgumentPHIs.size(); i != e; ++i) {
427     PHINode *PN = ArgumentPHIs[i];
428
429     // If the PHI Node is a dynamic constant, replace it with the value it is.
430     if (Value *PNV = SimplifyInstruction(PN, F.getParent()->getDataLayout())) {
431       PN->replaceAllUsesWith(PNV);
432       PN->eraseFromParent();
433     }
434   }
435
436   return MadeChange;
437 }
438
439
440 /// Return true if it is safe to move the specified
441 /// instruction from after the call to before the call, assuming that all
442 /// instructions between the call and this instruction are movable.
443 ///
444 bool TailCallElim::CanMoveAboveCall(Instruction *I, CallInst *CI) {
445   // FIXME: We can move load/store/call/free instructions above the call if the
446   // call does not mod/ref the memory location being processed.
447   if (I->mayHaveSideEffects())  // This also handles volatile loads.
448     return false;
449
450   if (LoadInst *L = dyn_cast<LoadInst>(I)) {
451     // Loads may always be moved above calls without side effects.
452     if (CI->mayHaveSideEffects()) {
453       // Non-volatile loads may be moved above a call with side effects if it
454       // does not write to memory and the load provably won't trap.
455       // FIXME: Writes to memory only matter if they may alias the pointer
456       // being loaded from.
457       if (CI->mayWriteToMemory() ||
458           !isSafeToLoadUnconditionally(L->getPointerOperand(), L,
459                                        L->getAlignment()))
460         return false;
461     }
462   }
463
464   // Otherwise, if this is a side-effect free instruction, check to make sure
465   // that it does not use the return value of the call.  If it doesn't use the
466   // return value of the call, it must only use things that are defined before
467   // the call, or movable instructions between the call and the instruction
468   // itself.
469   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
470     if (I->getOperand(i) == CI)
471       return false;
472   return true;
473 }
474
475 /// Return true if the specified value is the same when the return would exit
476 /// as it was when the initial iteration of the recursive function was executed.
477 ///
478 /// We currently handle static constants and arguments that are not modified as
479 /// part of the recursion.
480 static bool isDynamicConstant(Value *V, CallInst *CI, ReturnInst *RI) {
481   if (isa<Constant>(V)) return true; // Static constants are always dyn consts
482
483   // Check to see if this is an immutable argument, if so, the value
484   // will be available to initialize the accumulator.
485   if (Argument *Arg = dyn_cast<Argument>(V)) {
486     // Figure out which argument number this is...
487     unsigned ArgNo = 0;
488     Function *F = CI->getParent()->getParent();
489     for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI)
490       ++ArgNo;
491
492     // If we are passing this argument into call as the corresponding
493     // argument operand, then the argument is dynamically constant.
494     // Otherwise, we cannot transform this function safely.
495     if (CI->getArgOperand(ArgNo) == Arg)
496       return true;
497   }
498
499   // Switch cases are always constant integers. If the value is being switched
500   // on and the return is only reachable from one of its cases, it's
501   // effectively constant.
502   if (BasicBlock *UniquePred = RI->getParent()->getUniquePredecessor())
503     if (SwitchInst *SI = dyn_cast<SwitchInst>(UniquePred->getTerminator()))
504       if (SI->getCondition() == V)
505         return SI->getDefaultDest() != RI->getParent();
506
507   // Not a constant or immutable argument, we can't safely transform.
508   return false;
509 }
510
511 /// Check to see if the function containing the specified tail call consistently
512 /// returns the same runtime-constant value at all exit points except for
513 /// IgnoreRI. If so, return the returned value.
514 static Value *getCommonReturnValue(ReturnInst *IgnoreRI, CallInst *CI) {
515   Function *F = CI->getParent()->getParent();
516   Value *ReturnedValue = nullptr;
517
518   for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI) {
519     ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator());
520     if (RI == nullptr || RI == IgnoreRI) continue;
521
522     // We can only perform this transformation if the value returned is
523     // evaluatable at the start of the initial invocation of the function,
524     // instead of at the end of the evaluation.
525     //
526     Value *RetOp = RI->getOperand(0);
527     if (!isDynamicConstant(RetOp, CI, RI))
528       return nullptr;
529
530     if (ReturnedValue && RetOp != ReturnedValue)
531       return nullptr;     // Cannot transform if differing values are returned.
532     ReturnedValue = RetOp;
533   }
534   return ReturnedValue;
535 }
536
537 /// If the specified instruction can be transformed using accumulator recursion
538 /// elimination, return the constant which is the start of the accumulator
539 /// value.  Otherwise return null.
540 Value *TailCallElim::CanTransformAccumulatorRecursion(Instruction *I,
541                                                       CallInst *CI) {
542   if (!I->isAssociative() || !I->isCommutative()) return nullptr;
543   assert(I->getNumOperands() == 2 &&
544          "Associative/commutative operations should have 2 args!");
545
546   // Exactly one operand should be the result of the call instruction.
547   if ((I->getOperand(0) == CI && I->getOperand(1) == CI) ||
548       (I->getOperand(0) != CI && I->getOperand(1) != CI))
549     return nullptr;
550
551   // The only user of this instruction we allow is a single return instruction.
552   if (!I->hasOneUse() || !isa<ReturnInst>(I->user_back()))
553     return nullptr;
554
555   // Ok, now we have to check all of the other return instructions in this
556   // function.  If they return non-constants or differing values, then we cannot
557   // transform the function safely.
558   return getCommonReturnValue(cast<ReturnInst>(I->user_back()), CI);
559 }
560
561 static Instruction *FirstNonDbg(BasicBlock::iterator I) {
562   while (isa<DbgInfoIntrinsic>(I))
563     ++I;
564   return &*I;
565 }
566
567 CallInst*
568 TailCallElim::FindTRECandidate(Instruction *TI,
569                                bool CannotTailCallElimCallsMarkedTail) {
570   BasicBlock *BB = TI->getParent();
571   Function *F = BB->getParent();
572
573   if (&BB->front() == TI) // Make sure there is something before the terminator.
574     return nullptr;
575
576   // Scan backwards from the return, checking to see if there is a tail call in
577   // this block.  If so, set CI to it.
578   CallInst *CI = nullptr;
579   BasicBlock::iterator BBI = TI;
580   while (true) {
581     CI = dyn_cast<CallInst>(BBI);
582     if (CI && CI->getCalledFunction() == F)
583       break;
584
585     if (BBI == BB->begin())
586       return nullptr;          // Didn't find a potential tail call.
587     --BBI;
588   }
589
590   // If this call is marked as a tail call, and if there are dynamic allocas in
591   // the function, we cannot perform this optimization.
592   if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail)
593     return nullptr;
594
595   // As a special case, detect code like this:
596   //   double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
597   // and disable this xform in this case, because the code generator will
598   // lower the call to fabs into inline code.
599   if (BB == &F->getEntryBlock() &&
600       FirstNonDbg(BB->front()) == CI &&
601       FirstNonDbg(std::next(BB->begin())) == TI &&
602       CI->getCalledFunction() &&
603       !TTI->isLoweredToCall(CI->getCalledFunction())) {
604     // A single-block function with just a call and a return. Check that
605     // the arguments match.
606     CallSite::arg_iterator I = CallSite(CI).arg_begin(),
607                            E = CallSite(CI).arg_end();
608     Function::arg_iterator FI = F->arg_begin(),
609                            FE = F->arg_end();
610     for (; I != E && FI != FE; ++I, ++FI)
611       if (*I != &*FI) break;
612     if (I == E && FI == FE)
613       return nullptr;
614   }
615
616   return CI;
617 }
618
619 bool TailCallElim::EliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret,
620                                        BasicBlock *&OldEntry,
621                                        bool &TailCallsAreMarkedTail,
622                                        SmallVectorImpl<PHINode *> &ArgumentPHIs,
623                                        bool CannotTailCallElimCallsMarkedTail) {
624   // If we are introducing accumulator recursion to eliminate operations after
625   // the call instruction that are both associative and commutative, the initial
626   // value for the accumulator is placed in this variable.  If this value is set
627   // then we actually perform accumulator recursion elimination instead of
628   // simple tail recursion elimination.  If the operation is an LLVM instruction
629   // (eg: "add") then it is recorded in AccumulatorRecursionInstr.  If not, then
630   // we are handling the case when the return instruction returns a constant C
631   // which is different to the constant returned by other return instructions
632   // (which is recorded in AccumulatorRecursionEliminationInitVal).  This is a
633   // special case of accumulator recursion, the operation being "return C".
634   Value *AccumulatorRecursionEliminationInitVal = nullptr;
635   Instruction *AccumulatorRecursionInstr = nullptr;
636
637   // Ok, we found a potential tail call.  We can currently only transform the
638   // tail call if all of the instructions between the call and the return are
639   // movable to above the call itself, leaving the call next to the return.
640   // Check that this is the case now.
641   BasicBlock::iterator BBI = CI;
642   for (++BBI; &*BBI != Ret; ++BBI) {
643     if (CanMoveAboveCall(BBI, CI)) continue;
644
645     // If we can't move the instruction above the call, it might be because it
646     // is an associative and commutative operation that could be transformed
647     // using accumulator recursion elimination.  Check to see if this is the
648     // case, and if so, remember the initial accumulator value for later.
649     if ((AccumulatorRecursionEliminationInitVal =
650                            CanTransformAccumulatorRecursion(BBI, CI))) {
651       // Yes, this is accumulator recursion.  Remember which instruction
652       // accumulates.
653       AccumulatorRecursionInstr = BBI;
654     } else {
655       return false;   // Otherwise, we cannot eliminate the tail recursion!
656     }
657   }
658
659   // We can only transform call/return pairs that either ignore the return value
660   // of the call and return void, ignore the value of the call and return a
661   // constant, return the value returned by the tail call, or that are being
662   // accumulator recursion variable eliminated.
663   if (Ret->getNumOperands() == 1 && Ret->getReturnValue() != CI &&
664       !isa<UndefValue>(Ret->getReturnValue()) &&
665       AccumulatorRecursionEliminationInitVal == nullptr &&
666       !getCommonReturnValue(nullptr, CI)) {
667     // One case remains that we are able to handle: the current return
668     // instruction returns a constant, and all other return instructions
669     // return a different constant.
670     if (!isDynamicConstant(Ret->getReturnValue(), CI, Ret))
671       return false; // Current return instruction does not return a constant.
672     // Check that all other return instructions return a common constant.  If
673     // so, record it in AccumulatorRecursionEliminationInitVal.
674     AccumulatorRecursionEliminationInitVal = getCommonReturnValue(Ret, CI);
675     if (!AccumulatorRecursionEliminationInitVal)
676       return false;
677   }
678
679   BasicBlock *BB = Ret->getParent();
680   Function *F = BB->getParent();
681
682   emitOptimizationRemark(F->getContext(), "tailcallelim", *F, CI->getDebugLoc(),
683                          "transforming tail recursion to loop");
684
685   // OK! We can transform this tail call.  If this is the first one found,
686   // create the new entry block, allowing us to branch back to the old entry.
687   if (!OldEntry) {
688     OldEntry = &F->getEntryBlock();
689     BasicBlock *NewEntry = BasicBlock::Create(F->getContext(), "", F, OldEntry);
690     NewEntry->takeName(OldEntry);
691     OldEntry->setName("tailrecurse");
692     BranchInst::Create(OldEntry, NewEntry);
693
694     // If this tail call is marked 'tail' and if there are any allocas in the
695     // entry block, move them up to the new entry block.
696     TailCallsAreMarkedTail = CI->isTailCall();
697     if (TailCallsAreMarkedTail)
698       // Move all fixed sized allocas from OldEntry to NewEntry.
699       for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(),
700              NEBI = NewEntry->begin(); OEBI != E; )
701         if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
702           if (isa<ConstantInt>(AI->getArraySize()))
703             AI->moveBefore(NEBI);
704
705     // Now that we have created a new block, which jumps to the entry
706     // block, insert a PHI node for each argument of the function.
707     // For now, we initialize each PHI to only have the real arguments
708     // which are passed in.
709     Instruction *InsertPos = OldEntry->begin();
710     for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
711          I != E; ++I) {
712       PHINode *PN = PHINode::Create(I->getType(), 2,
713                                     I->getName() + ".tr", InsertPos);
714       I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
715       PN->addIncoming(I, NewEntry);
716       ArgumentPHIs.push_back(PN);
717     }
718   }
719
720   // If this function has self recursive calls in the tail position where some
721   // are marked tail and some are not, only transform one flavor or another.  We
722   // have to choose whether we move allocas in the entry block to the new entry
723   // block or not, so we can't make a good choice for both.  NOTE: We could do
724   // slightly better here in the case that the function has no entry block
725   // allocas.
726   if (TailCallsAreMarkedTail && !CI->isTailCall())
727     return false;
728
729   // Ok, now that we know we have a pseudo-entry block WITH all of the
730   // required PHI nodes, add entries into the PHI node for the actual
731   // parameters passed into the tail-recursive call.
732   for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
733     ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB);
734
735   // If we are introducing an accumulator variable to eliminate the recursion,
736   // do so now.  Note that we _know_ that no subsequent tail recursion
737   // eliminations will happen on this function because of the way the
738   // accumulator recursion predicate is set up.
739   //
740   if (AccumulatorRecursionEliminationInitVal) {
741     Instruction *AccRecInstr = AccumulatorRecursionInstr;
742     // Start by inserting a new PHI node for the accumulator.
743     pred_iterator PB = pred_begin(OldEntry), PE = pred_end(OldEntry);
744     PHINode *AccPN =
745       PHINode::Create(AccumulatorRecursionEliminationInitVal->getType(),
746                       std::distance(PB, PE) + 1,
747                       "accumulator.tr", OldEntry->begin());
748
749     // Loop over all of the predecessors of the tail recursion block.  For the
750     // real entry into the function we seed the PHI with the initial value,
751     // computed earlier.  For any other existing branches to this block (due to
752     // other tail recursions eliminated) the accumulator is not modified.
753     // Because we haven't added the branch in the current block to OldEntry yet,
754     // it will not show up as a predecessor.
755     for (pred_iterator PI = PB; PI != PE; ++PI) {
756       BasicBlock *P = *PI;
757       if (P == &F->getEntryBlock())
758         AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, P);
759       else
760         AccPN->addIncoming(AccPN, P);
761     }
762
763     if (AccRecInstr) {
764       // Add an incoming argument for the current block, which is computed by
765       // our associative and commutative accumulator instruction.
766       AccPN->addIncoming(AccRecInstr, BB);
767
768       // Next, rewrite the accumulator recursion instruction so that it does not
769       // use the result of the call anymore, instead, use the PHI node we just
770       // inserted.
771       AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
772     } else {
773       // Add an incoming argument for the current block, which is just the
774       // constant returned by the current return instruction.
775       AccPN->addIncoming(Ret->getReturnValue(), BB);
776     }
777
778     // Finally, rewrite any return instructions in the program to return the PHI
779     // node instead of the "initval" that they do currently.  This loop will
780     // actually rewrite the return value we are destroying, but that's ok.
781     for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI)
782       if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator()))
783         RI->setOperand(0, AccPN);
784     ++NumAccumAdded;
785   }
786
787   // Now that all of the PHI nodes are in place, remove the call and
788   // ret instructions, replacing them with an unconditional branch.
789   BranchInst *NewBI = BranchInst::Create(OldEntry, Ret);
790   NewBI->setDebugLoc(CI->getDebugLoc());
791
792   BB->getInstList().erase(Ret);  // Remove return.
793   BB->getInstList().erase(CI);   // Remove call.
794   ++NumEliminated;
795   return true;
796 }
797
798 bool TailCallElim::FoldReturnAndProcessPred(BasicBlock *BB,
799                                        ReturnInst *Ret, BasicBlock *&OldEntry,
800                                        bool &TailCallsAreMarkedTail,
801                                        SmallVectorImpl<PHINode *> &ArgumentPHIs,
802                                        bool CannotTailCallElimCallsMarkedTail) {
803   bool Change = false;
804
805   // If the return block contains nothing but the return and PHI's,
806   // there might be an opportunity to duplicate the return in its
807   // predecessors and perform TRC there. Look for predecessors that end
808   // in unconditional branch and recursive call(s).
809   SmallVector<BranchInst*, 8> UncondBranchPreds;
810   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
811     BasicBlock *Pred = *PI;
812     TerminatorInst *PTI = Pred->getTerminator();
813     if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
814       if (BI->isUnconditional())
815         UncondBranchPreds.push_back(BI);
816   }
817
818   while (!UncondBranchPreds.empty()) {
819     BranchInst *BI = UncondBranchPreds.pop_back_val();
820     BasicBlock *Pred = BI->getParent();
821     if (CallInst *CI = FindTRECandidate(BI, CannotTailCallElimCallsMarkedTail)){
822       DEBUG(dbgs() << "FOLDING: " << *BB
823             << "INTO UNCOND BRANCH PRED: " << *Pred);
824       ReturnInst *RI = FoldReturnIntoUncondBranch(Ret, BB, Pred);
825
826       // Cleanup: if all predecessors of BB have been eliminated by
827       // FoldReturnIntoUncondBranch, delete it.  It is important to empty it,
828       // because the ret instruction in there is still using a value which
829       // EliminateRecursiveTailCall will attempt to remove.
830       if (!BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
831         BB->eraseFromParent();
832
833       EliminateRecursiveTailCall(CI, RI, OldEntry, TailCallsAreMarkedTail,
834                                  ArgumentPHIs,
835                                  CannotTailCallElimCallsMarkedTail);
836       ++NumRetDuped;
837       Change = true;
838     }
839   }
840
841   return Change;
842 }
843
844 bool
845 TailCallElim::ProcessReturningBlock(ReturnInst *Ret, BasicBlock *&OldEntry,
846                                     bool &TailCallsAreMarkedTail,
847                                     SmallVectorImpl<PHINode *> &ArgumentPHIs,
848                                     bool CannotTailCallElimCallsMarkedTail) {
849   CallInst *CI = FindTRECandidate(Ret, CannotTailCallElimCallsMarkedTail);
850   if (!CI)
851     return false;
852
853   return EliminateRecursiveTailCall(CI, Ret, OldEntry, TailCallsAreMarkedTail,
854                                     ArgumentPHIs,
855                                     CannotTailCallElimCallsMarkedTail);
856 }