[IR] Reformulate LLVM's EH funclet IR
[oota-llvm.git] / lib / Transforms / Scalar / Reassociate.cpp
1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass reassociates commutative expressions in an order that is designed
11 // to promote better constant propagation, GCSE, LICM, PRE, etc.
12 //
13 // For example: 4 + (x + 5) -> x + (4 + 5)
14 //
15 // In the implementation of this algorithm, constants are assigned rank = 0,
16 // function arguments are rank = 1, and other values are assigned ranks
17 // corresponding to the reverse post order traversal of current function
18 // (starting at 2), which effectively gives values in deep loops higher rank
19 // than values not in loops.
20 //
21 //===----------------------------------------------------------------------===//
22
23 #include "llvm/Transforms/Scalar.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/PostOrderIterator.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SetVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/Analysis/GlobalsModRef.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/CFG.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/IR/IRBuilder.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/IntrinsicInst.h"
38 #include "llvm/IR/ValueHandle.h"
39 #include "llvm/Pass.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Transforms/Utils/Local.h"
43 #include <algorithm>
44 using namespace llvm;
45
46 #define DEBUG_TYPE "reassociate"
47
48 STATISTIC(NumChanged, "Number of insts reassociated");
49 STATISTIC(NumAnnihil, "Number of expr tree annihilated");
50 STATISTIC(NumFactor , "Number of multiplies factored");
51
52 namespace {
53   struct ValueEntry {
54     unsigned Rank;
55     Value *Op;
56     ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
57   };
58   inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
59     return LHS.Rank > RHS.Rank;   // Sort so that highest rank goes to start.
60   }
61 }
62
63 #ifndef NDEBUG
64 /// Print out the expression identified in the Ops list.
65 ///
66 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
67   Module *M = I->getParent()->getParent()->getParent();
68   dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
69        << *Ops[0].Op->getType() << '\t';
70   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
71     dbgs() << "[ ";
72     Ops[i].Op->printAsOperand(dbgs(), false, M);
73     dbgs() << ", #" << Ops[i].Rank << "] ";
74   }
75 }
76 #endif
77
78 namespace {
79   /// \brief Utility class representing a base and exponent pair which form one
80   /// factor of some product.
81   struct Factor {
82     Value *Base;
83     unsigned Power;
84
85     Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {}
86
87     /// \brief Sort factors in descending order by their power.
88     struct PowerDescendingSorter {
89       bool operator()(const Factor &LHS, const Factor &RHS) {
90         return LHS.Power > RHS.Power;
91       }
92     };
93
94     /// \brief Compare factors for equal powers.
95     struct PowerEqual {
96       bool operator()(const Factor &LHS, const Factor &RHS) {
97         return LHS.Power == RHS.Power;
98       }
99     };
100   };
101   
102   /// Utility class representing a non-constant Xor-operand. We classify
103   /// non-constant Xor-Operands into two categories:
104   ///  C1) The operand is in the form "X & C", where C is a constant and C != ~0
105   ///  C2)
106   ///    C2.1) The operand is in the form of "X | C", where C is a non-zero
107   ///          constant.
108   ///    C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
109   ///          operand as "E | 0"
110   class XorOpnd {
111   public:
112     XorOpnd(Value *V);
113
114     bool isInvalid() const { return SymbolicPart == nullptr; }
115     bool isOrExpr() const { return isOr; }
116     Value *getValue() const { return OrigVal; }
117     Value *getSymbolicPart() const { return SymbolicPart; }
118     unsigned getSymbolicRank() const { return SymbolicRank; }
119     const APInt &getConstPart() const { return ConstPart; }
120
121     void Invalidate() { SymbolicPart = OrigVal = nullptr; }
122     void setSymbolicRank(unsigned R) { SymbolicRank = R; }
123
124     // Sort the XorOpnd-Pointer in ascending order of symbolic-value-rank.
125     // The purpose is twofold:
126     // 1) Cluster together the operands sharing the same symbolic-value.
127     // 2) Operand having smaller symbolic-value-rank is permuted earlier, which 
128     //   could potentially shorten crital path, and expose more loop-invariants.
129     //   Note that values' rank are basically defined in RPO order (FIXME). 
130     //   So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier 
131     //   than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
132     //   "z" in the order of X-Y-Z is better than any other orders.
133     struct PtrSortFunctor {
134       bool operator()(XorOpnd * const &LHS, XorOpnd * const &RHS) {
135         return LHS->getSymbolicRank() < RHS->getSymbolicRank();
136       }
137     };
138   private:
139     Value *OrigVal;
140     Value *SymbolicPart;
141     APInt ConstPart;
142     unsigned SymbolicRank;
143     bool isOr;
144   };
145 }
146
147 namespace {
148   class Reassociate : public FunctionPass {
149     DenseMap<BasicBlock*, unsigned> RankMap;
150     DenseMap<AssertingVH<Value>, unsigned> ValueRankMap;
151     SetVector<AssertingVH<Instruction> > RedoInsts;
152     bool MadeChange;
153   public:
154     static char ID; // Pass identification, replacement for typeid
155     Reassociate() : FunctionPass(ID) {
156       initializeReassociatePass(*PassRegistry::getPassRegistry());
157     }
158
159     bool runOnFunction(Function &F) override;
160
161     void getAnalysisUsage(AnalysisUsage &AU) const override {
162       AU.setPreservesCFG();
163       AU.addPreserved<GlobalsAAWrapperPass>();
164     }
165   private:
166     void BuildRankMap(Function &F);
167     unsigned getRank(Value *V);
168     void canonicalizeOperands(Instruction *I);
169     void ReassociateExpression(BinaryOperator *I);
170     void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
171     Value *OptimizeExpression(BinaryOperator *I,
172                               SmallVectorImpl<ValueEntry> &Ops);
173     Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
174     Value *OptimizeXor(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
175     bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, APInt &ConstOpnd,
176                         Value *&Res);
177     bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
178                         APInt &ConstOpnd, Value *&Res);
179     bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
180                                 SmallVectorImpl<Factor> &Factors);
181     Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder,
182                                    SmallVectorImpl<Factor> &Factors);
183     Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
184     Value *RemoveFactorFromExpression(Value *V, Value *Factor);
185     void EraseInst(Instruction *I);
186     void OptimizeInst(Instruction *I);
187     Instruction *canonicalizeNegConstExpr(Instruction *I);
188   };
189 }
190
191 XorOpnd::XorOpnd(Value *V) {
192   assert(!isa<ConstantInt>(V) && "No ConstantInt");
193   OrigVal = V;
194   Instruction *I = dyn_cast<Instruction>(V);
195   SymbolicRank = 0;
196
197   if (I && (I->getOpcode() == Instruction::Or ||
198             I->getOpcode() == Instruction::And)) {
199     Value *V0 = I->getOperand(0);
200     Value *V1 = I->getOperand(1);
201     if (isa<ConstantInt>(V0))
202       std::swap(V0, V1);
203
204     if (ConstantInt *C = dyn_cast<ConstantInt>(V1)) {
205       ConstPart = C->getValue();
206       SymbolicPart = V0;
207       isOr = (I->getOpcode() == Instruction::Or);
208       return;
209     }
210   }
211
212   // view the operand as "V | 0"
213   SymbolicPart = V;
214   ConstPart = APInt::getNullValue(V->getType()->getIntegerBitWidth());
215   isOr = true;
216 }
217
218 char Reassociate::ID = 0;
219 INITIALIZE_PASS(Reassociate, "reassociate",
220                 "Reassociate expressions", false, false)
221
222 // Public interface to the Reassociate pass
223 FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
224
225 /// Return true if V is an instruction of the specified opcode and if it
226 /// only has one use.
227 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
228   if (V->hasOneUse() && isa<Instruction>(V) &&
229       cast<Instruction>(V)->getOpcode() == Opcode &&
230       (!isa<FPMathOperator>(V) ||
231        cast<Instruction>(V)->hasUnsafeAlgebra()))
232     return cast<BinaryOperator>(V);
233   return nullptr;
234 }
235
236 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
237                                         unsigned Opcode2) {
238   if (V->hasOneUse() && isa<Instruction>(V) &&
239       (cast<Instruction>(V)->getOpcode() == Opcode1 ||
240        cast<Instruction>(V)->getOpcode() == Opcode2) &&
241       (!isa<FPMathOperator>(V) ||
242        cast<Instruction>(V)->hasUnsafeAlgebra()))
243     return cast<BinaryOperator>(V);
244   return nullptr;
245 }
246
247 void Reassociate::BuildRankMap(Function &F) {
248   unsigned i = 2;
249
250   // Assign distinct ranks to function arguments.
251   for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
252     ValueRankMap[&*I] = ++i;
253     DEBUG(dbgs() << "Calculated Rank[" << I->getName() << "] = " << i << "\n");
254   }
255
256   ReversePostOrderTraversal<Function*> RPOT(&F);
257   for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
258          E = RPOT.end(); I != E; ++I) {
259     BasicBlock *BB = *I;
260     unsigned BBRank = RankMap[BB] = ++i << 16;
261
262     // Walk the basic block, adding precomputed ranks for any instructions that
263     // we cannot move.  This ensures that the ranks for these instructions are
264     // all different in the block.
265     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
266       if (mayBeMemoryDependent(*I))
267         ValueRankMap[&*I] = ++BBRank;
268   }
269 }
270
271 unsigned Reassociate::getRank(Value *V) {
272   Instruction *I = dyn_cast<Instruction>(V);
273   if (!I) {
274     if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
275     return 0;  // Otherwise it's a global or constant, rank 0.
276   }
277
278   if (unsigned Rank = ValueRankMap[I])
279     return Rank;    // Rank already known?
280
281   // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
282   // we can reassociate expressions for code motion!  Since we do not recurse
283   // for PHI nodes, we cannot have infinite recursion here, because there
284   // cannot be loops in the value graph that do not go through PHI nodes.
285   unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
286   for (unsigned i = 0, e = I->getNumOperands();
287        i != e && Rank != MaxRank; ++i)
288     Rank = std::max(Rank, getRank(I->getOperand(i)));
289
290   // If this is a not or neg instruction, do not count it for rank.  This
291   // assures us that X and ~X will have the same rank.
292   if  (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) &&
293        !BinaryOperator::isFNeg(I))
294     ++Rank;
295
296   DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank << "\n");
297
298   return ValueRankMap[I] = Rank;
299 }
300
301 // Canonicalize constants to RHS.  Otherwise, sort the operands by rank.
302 void Reassociate::canonicalizeOperands(Instruction *I) {
303   assert(isa<BinaryOperator>(I) && "Expected binary operator.");
304   assert(I->isCommutative() && "Expected commutative operator.");
305
306   Value *LHS = I->getOperand(0);
307   Value *RHS = I->getOperand(1);
308   unsigned LHSRank = getRank(LHS);
309   unsigned RHSRank = getRank(RHS);
310
311   if (isa<Constant>(RHS))
312     return;
313
314   if (isa<Constant>(LHS) || RHSRank < LHSRank)
315     cast<BinaryOperator>(I)->swapOperands();
316 }
317
318 static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
319                                  Instruction *InsertBefore, Value *FlagsOp) {
320   if (S1->getType()->isIntOrIntVectorTy())
321     return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
322   else {
323     BinaryOperator *Res =
324         BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
325     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
326     return Res;
327   }
328 }
329
330 static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
331                                  Instruction *InsertBefore, Value *FlagsOp) {
332   if (S1->getType()->isIntOrIntVectorTy())
333     return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
334   else {
335     BinaryOperator *Res =
336       BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
337     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
338     return Res;
339   }
340 }
341
342 static BinaryOperator *CreateNeg(Value *S1, const Twine &Name,
343                                  Instruction *InsertBefore, Value *FlagsOp) {
344   if (S1->getType()->isIntOrIntVectorTy())
345     return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
346   else {
347     BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore);
348     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
349     return Res;
350   }
351 }
352
353 /// Replace 0-X with X*-1.
354 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
355   Type *Ty = Neg->getType();
356   Constant *NegOne = Ty->isIntOrIntVectorTy() ?
357     ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0);
358
359   BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg);
360   Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op.
361   Res->takeName(Neg);
362   Neg->replaceAllUsesWith(Res);
363   Res->setDebugLoc(Neg->getDebugLoc());
364   return Res;
365 }
366
367 /// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael
368 /// function. This means that x^(2^k) === 1 mod 2^Bitwidth for
369 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
370 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
371 /// even x in Bitwidth-bit arithmetic.
372 static unsigned CarmichaelShift(unsigned Bitwidth) {
373   if (Bitwidth < 3)
374     return Bitwidth - 1;
375   return Bitwidth - 2;
376 }
377
378 /// Add the extra weight 'RHS' to the existing weight 'LHS',
379 /// reducing the combined weight using any special properties of the operation.
380 /// The existing weight LHS represents the computation X op X op ... op X where
381 /// X occurs LHS times.  The combined weight represents  X op X op ... op X with
382 /// X occurring LHS + RHS times.  If op is "Xor" for example then the combined
383 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
384 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
385 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
386   // If we were working with infinite precision arithmetic then the combined
387   // weight would be LHS + RHS.  But we are using finite precision arithmetic,
388   // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
389   // for nilpotent operations and addition, but not for idempotent operations
390   // and multiplication), so it is important to correctly reduce the combined
391   // weight back into range if wrapping would be wrong.
392
393   // If RHS is zero then the weight didn't change.
394   if (RHS.isMinValue())
395     return;
396   // If LHS is zero then the combined weight is RHS.
397   if (LHS.isMinValue()) {
398     LHS = RHS;
399     return;
400   }
401   // From this point on we know that neither LHS nor RHS is zero.
402
403   if (Instruction::isIdempotent(Opcode)) {
404     // Idempotent means X op X === X, so any non-zero weight is equivalent to a
405     // weight of 1.  Keeping weights at zero or one also means that wrapping is
406     // not a problem.
407     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
408     return; // Return a weight of 1.
409   }
410   if (Instruction::isNilpotent(Opcode)) {
411     // Nilpotent means X op X === 0, so reduce weights modulo 2.
412     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
413     LHS = 0; // 1 + 1 === 0 modulo 2.
414     return;
415   }
416   if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
417     // TODO: Reduce the weight by exploiting nsw/nuw?
418     LHS += RHS;
419     return;
420   }
421
422   assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
423          "Unknown associative operation!");
424   unsigned Bitwidth = LHS.getBitWidth();
425   // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
426   // can be replaced with W-CM.  That's because x^W=x^(W-CM) for every Bitwidth
427   // bit number x, since either x is odd in which case x^CM = 1, or x is even in
428   // which case both x^W and x^(W - CM) are zero.  By subtracting off multiples
429   // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
430   // which by a happy accident means that they can always be represented using
431   // Bitwidth bits.
432   // TODO: Reduce the weight by exploiting nsw/nuw?  (Could do much better than
433   // the Carmichael number).
434   if (Bitwidth > 3) {
435     /// CM - The value of Carmichael's lambda function.
436     APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
437     // Any weight W >= Threshold can be replaced with W - CM.
438     APInt Threshold = CM + Bitwidth;
439     assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
440     // For Bitwidth 4 or more the following sum does not overflow.
441     LHS += RHS;
442     while (LHS.uge(Threshold))
443       LHS -= CM;
444   } else {
445     // To avoid problems with overflow do everything the same as above but using
446     // a larger type.
447     unsigned CM = 1U << CarmichaelShift(Bitwidth);
448     unsigned Threshold = CM + Bitwidth;
449     assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
450            "Weights not reduced!");
451     unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
452     while (Total >= Threshold)
453       Total -= CM;
454     LHS = Total;
455   }
456 }
457
458 typedef std::pair<Value*, APInt> RepeatedValue;
459
460 /// Given an associative binary expression, return the leaf
461 /// nodes in Ops along with their weights (how many times the leaf occurs).  The
462 /// original expression is the same as
463 ///   (Ops[0].first op Ops[0].first op ... Ops[0].first)  <- Ops[0].second times
464 /// op
465 ///   (Ops[1].first op Ops[1].first op ... Ops[1].first)  <- Ops[1].second times
466 /// op
467 ///   ...
468 /// op
469 ///   (Ops[N].first op Ops[N].first op ... Ops[N].first)  <- Ops[N].second times
470 ///
471 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
472 ///
473 /// This routine may modify the function, in which case it returns 'true'.  The
474 /// changes it makes may well be destructive, changing the value computed by 'I'
475 /// to something completely different.  Thus if the routine returns 'true' then
476 /// you MUST either replace I with a new expression computed from the Ops array,
477 /// or use RewriteExprTree to put the values back in.
478 ///
479 /// A leaf node is either not a binary operation of the same kind as the root
480 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different
481 /// opcode), or is the same kind of binary operator but has a use which either
482 /// does not belong to the expression, or does belong to the expression but is
483 /// a leaf node.  Every leaf node has at least one use that is a non-leaf node
484 /// of the expression, while for non-leaf nodes (except for the root 'I') every
485 /// use is a non-leaf node of the expression.
486 ///
487 /// For example:
488 ///           expression graph        node names
489 ///
490 ///                     +        |        I
491 ///                    / \       |
492 ///                   +   +      |      A,  B
493 ///                  / \ / \     |
494 ///                 *   +   *    |    C,  D,  E
495 ///                / \ / \ / \   |
496 ///                   +   *      |      F,  G
497 ///
498 /// The leaf nodes are C, E, F and G.  The Ops array will contain (maybe not in
499 /// that order) (C, 1), (E, 1), (F, 2), (G, 2).
500 ///
501 /// The expression is maximal: if some instruction is a binary operator of the
502 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
503 /// then the instruction also belongs to the expression, is not a leaf node of
504 /// it, and its operands also belong to the expression (but may be leaf nodes).
505 ///
506 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
507 /// order to ensure that every non-root node in the expression has *exactly one*
508 /// use by a non-leaf node of the expression.  This destruction means that the
509 /// caller MUST either replace 'I' with a new expression or use something like
510 /// RewriteExprTree to put the values back in if the routine indicates that it
511 /// made a change by returning 'true'.
512 ///
513 /// In the above example either the right operand of A or the left operand of B
514 /// will be replaced by undef.  If it is B's operand then this gives:
515 ///
516 ///                     +        |        I
517 ///                    / \       |
518 ///                   +   +      |      A,  B - operand of B replaced with undef
519 ///                  / \   \     |
520 ///                 *   +   *    |    C,  D,  E
521 ///                / \ / \ / \   |
522 ///                   +   *      |      F,  G
523 ///
524 /// Note that such undef operands can only be reached by passing through 'I'.
525 /// For example, if you visit operands recursively starting from a leaf node
526 /// then you will never see such an undef operand unless you get back to 'I',
527 /// which requires passing through a phi node.
528 ///
529 /// Note that this routine may also mutate binary operators of the wrong type
530 /// that have all uses inside the expression (i.e. only used by non-leaf nodes
531 /// of the expression) if it can turn them into binary operators of the right
532 /// type and thus make the expression bigger.
533
534 static bool LinearizeExprTree(BinaryOperator *I,
535                               SmallVectorImpl<RepeatedValue> &Ops) {
536   DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
537   unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
538   unsigned Opcode = I->getOpcode();
539   assert(I->isAssociative() && I->isCommutative() &&
540          "Expected an associative and commutative operation!");
541
542   // Visit all operands of the expression, keeping track of their weight (the
543   // number of paths from the expression root to the operand, or if you like
544   // the number of times that operand occurs in the linearized expression).
545   // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
546   // while A has weight two.
547
548   // Worklist of non-leaf nodes (their operands are in the expression too) along
549   // with their weights, representing a certain number of paths to the operator.
550   // If an operator occurs in the worklist multiple times then we found multiple
551   // ways to get to it.
552   SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
553   Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
554   bool Changed = false;
555
556   // Leaves of the expression are values that either aren't the right kind of
557   // operation (eg: a constant, or a multiply in an add tree), or are, but have
558   // some uses that are not inside the expression.  For example, in I = X + X,
559   // X = A + B, the value X has two uses (by I) that are in the expression.  If
560   // X has any other uses, for example in a return instruction, then we consider
561   // X to be a leaf, and won't analyze it further.  When we first visit a value,
562   // if it has more than one use then at first we conservatively consider it to
563   // be a leaf.  Later, as the expression is explored, we may discover some more
564   // uses of the value from inside the expression.  If all uses turn out to be
565   // from within the expression (and the value is a binary operator of the right
566   // kind) then the value is no longer considered to be a leaf, and its operands
567   // are explored.
568
569   // Leaves - Keeps track of the set of putative leaves as well as the number of
570   // paths to each leaf seen so far.
571   typedef DenseMap<Value*, APInt> LeafMap;
572   LeafMap Leaves; // Leaf -> Total weight so far.
573   SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.
574
575 #ifndef NDEBUG
576   SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
577 #endif
578   while (!Worklist.empty()) {
579     std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
580     I = P.first; // We examine the operands of this binary operator.
581
582     for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
583       Value *Op = I->getOperand(OpIdx);
584       APInt Weight = P.second; // Number of paths to this operand.
585       DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
586       assert(!Op->use_empty() && "No uses, so how did we get to it?!");
587
588       // If this is a binary operation of the right kind with only one use then
589       // add its operands to the expression.
590       if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
591         assert(Visited.insert(Op).second && "Not first visit!");
592         DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
593         Worklist.push_back(std::make_pair(BO, Weight));
594         continue;
595       }
596
597       // Appears to be a leaf.  Is the operand already in the set of leaves?
598       LeafMap::iterator It = Leaves.find(Op);
599       if (It == Leaves.end()) {
600         // Not in the leaf map.  Must be the first time we saw this operand.
601         assert(Visited.insert(Op).second && "Not first visit!");
602         if (!Op->hasOneUse()) {
603           // This value has uses not accounted for by the expression, so it is
604           // not safe to modify.  Mark it as being a leaf.
605           DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
606           LeafOrder.push_back(Op);
607           Leaves[Op] = Weight;
608           continue;
609         }
610         // No uses outside the expression, try morphing it.
611       } else if (It != Leaves.end()) {
612         // Already in the leaf map.
613         assert(Visited.count(Op) && "In leaf map but not visited!");
614
615         // Update the number of paths to the leaf.
616         IncorporateWeight(It->second, Weight, Opcode);
617
618 #if 0   // TODO: Re-enable once PR13021 is fixed.
619         // The leaf already has one use from inside the expression.  As we want
620         // exactly one such use, drop this new use of the leaf.
621         assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
622         I->setOperand(OpIdx, UndefValue::get(I->getType()));
623         Changed = true;
624
625         // If the leaf is a binary operation of the right kind and we now see
626         // that its multiple original uses were in fact all by nodes belonging
627         // to the expression, then no longer consider it to be a leaf and add
628         // its operands to the expression.
629         if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
630           DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
631           Worklist.push_back(std::make_pair(BO, It->second));
632           Leaves.erase(It);
633           continue;
634         }
635 #endif
636
637         // If we still have uses that are not accounted for by the expression
638         // then it is not safe to modify the value.
639         if (!Op->hasOneUse())
640           continue;
641
642         // No uses outside the expression, try morphing it.
643         Weight = It->second;
644         Leaves.erase(It); // Since the value may be morphed below.
645       }
646
647       // At this point we have a value which, first of all, is not a binary
648       // expression of the right kind, and secondly, is only used inside the
649       // expression.  This means that it can safely be modified.  See if we
650       // can usefully morph it into an expression of the right kind.
651       assert((!isa<Instruction>(Op) ||
652               cast<Instruction>(Op)->getOpcode() != Opcode
653               || (isa<FPMathOperator>(Op) &&
654                   !cast<Instruction>(Op)->hasUnsafeAlgebra())) &&
655              "Should have been handled above!");
656       assert(Op->hasOneUse() && "Has uses outside the expression tree!");
657
658       // If this is a multiply expression, turn any internal negations into
659       // multiplies by -1 so they can be reassociated.
660       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op))
661         if ((Opcode == Instruction::Mul && BinaryOperator::isNeg(BO)) ||
662             (Opcode == Instruction::FMul && BinaryOperator::isFNeg(BO))) {
663           DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
664           BO = LowerNegateToMultiply(BO);
665           DEBUG(dbgs() << *BO << '\n');
666           Worklist.push_back(std::make_pair(BO, Weight));
667           Changed = true;
668           continue;
669         }
670
671       // Failed to morph into an expression of the right type.  This really is
672       // a leaf.
673       DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
674       assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
675       LeafOrder.push_back(Op);
676       Leaves[Op] = Weight;
677     }
678   }
679
680   // The leaves, repeated according to their weights, represent the linearized
681   // form of the expression.
682   for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
683     Value *V = LeafOrder[i];
684     LeafMap::iterator It = Leaves.find(V);
685     if (It == Leaves.end())
686       // Node initially thought to be a leaf wasn't.
687       continue;
688     assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
689     APInt Weight = It->second;
690     if (Weight.isMinValue())
691       // Leaf already output or weight reduction eliminated it.
692       continue;
693     // Ensure the leaf is only output once.
694     It->second = 0;
695     Ops.push_back(std::make_pair(V, Weight));
696   }
697
698   // For nilpotent operations or addition there may be no operands, for example
699   // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
700   // in both cases the weight reduces to 0 causing the value to be skipped.
701   if (Ops.empty()) {
702     Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
703     assert(Identity && "Associative operation without identity!");
704     Ops.emplace_back(Identity, APInt(Bitwidth, 1));
705   }
706
707   return Changed;
708 }
709
710 /// Now that the operands for this expression tree are
711 /// linearized and optimized, emit them in-order.
712 void Reassociate::RewriteExprTree(BinaryOperator *I,
713                                   SmallVectorImpl<ValueEntry> &Ops) {
714   assert(Ops.size() > 1 && "Single values should be used directly!");
715
716   // Since our optimizations should never increase the number of operations, the
717   // new expression can usually be written reusing the existing binary operators
718   // from the original expression tree, without creating any new instructions,
719   // though the rewritten expression may have a completely different topology.
720   // We take care to not change anything if the new expression will be the same
721   // as the original.  If more than trivial changes (like commuting operands)
722   // were made then we are obliged to clear out any optional subclass data like
723   // nsw flags.
724
725   /// NodesToRewrite - Nodes from the original expression available for writing
726   /// the new expression into.
727   SmallVector<BinaryOperator*, 8> NodesToRewrite;
728   unsigned Opcode = I->getOpcode();
729   BinaryOperator *Op = I;
730
731   /// NotRewritable - The operands being written will be the leaves of the new
732   /// expression and must not be used as inner nodes (via NodesToRewrite) by
733   /// mistake.  Inner nodes are always reassociable, and usually leaves are not
734   /// (if they were they would have been incorporated into the expression and so
735   /// would not be leaves), so most of the time there is no danger of this.  But
736   /// in rare cases a leaf may become reassociable if an optimization kills uses
737   /// of it, or it may momentarily become reassociable during rewriting (below)
738   /// due it being removed as an operand of one of its uses.  Ensure that misuse
739   /// of leaf nodes as inner nodes cannot occur by remembering all of the future
740   /// leaves and refusing to reuse any of them as inner nodes.
741   SmallPtrSet<Value*, 8> NotRewritable;
742   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
743     NotRewritable.insert(Ops[i].Op);
744
745   // ExpressionChanged - Non-null if the rewritten expression differs from the
746   // original in some non-trivial way, requiring the clearing of optional flags.
747   // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
748   BinaryOperator *ExpressionChanged = nullptr;
749   for (unsigned i = 0; ; ++i) {
750     // The last operation (which comes earliest in the IR) is special as both
751     // operands will come from Ops, rather than just one with the other being
752     // a subexpression.
753     if (i+2 == Ops.size()) {
754       Value *NewLHS = Ops[i].Op;
755       Value *NewRHS = Ops[i+1].Op;
756       Value *OldLHS = Op->getOperand(0);
757       Value *OldRHS = Op->getOperand(1);
758
759       if (NewLHS == OldLHS && NewRHS == OldRHS)
760         // Nothing changed, leave it alone.
761         break;
762
763       if (NewLHS == OldRHS && NewRHS == OldLHS) {
764         // The order of the operands was reversed.  Swap them.
765         DEBUG(dbgs() << "RA: " << *Op << '\n');
766         Op->swapOperands();
767         DEBUG(dbgs() << "TO: " << *Op << '\n');
768         MadeChange = true;
769         ++NumChanged;
770         break;
771       }
772
773       // The new operation differs non-trivially from the original. Overwrite
774       // the old operands with the new ones.
775       DEBUG(dbgs() << "RA: " << *Op << '\n');
776       if (NewLHS != OldLHS) {
777         BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
778         if (BO && !NotRewritable.count(BO))
779           NodesToRewrite.push_back(BO);
780         Op->setOperand(0, NewLHS);
781       }
782       if (NewRHS != OldRHS) {
783         BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
784         if (BO && !NotRewritable.count(BO))
785           NodesToRewrite.push_back(BO);
786         Op->setOperand(1, NewRHS);
787       }
788       DEBUG(dbgs() << "TO: " << *Op << '\n');
789
790       ExpressionChanged = Op;
791       MadeChange = true;
792       ++NumChanged;
793
794       break;
795     }
796
797     // Not the last operation.  The left-hand side will be a sub-expression
798     // while the right-hand side will be the current element of Ops.
799     Value *NewRHS = Ops[i].Op;
800     if (NewRHS != Op->getOperand(1)) {
801       DEBUG(dbgs() << "RA: " << *Op << '\n');
802       if (NewRHS == Op->getOperand(0)) {
803         // The new right-hand side was already present as the left operand.  If
804         // we are lucky then swapping the operands will sort out both of them.
805         Op->swapOperands();
806       } else {
807         // Overwrite with the new right-hand side.
808         BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
809         if (BO && !NotRewritable.count(BO))
810           NodesToRewrite.push_back(BO);
811         Op->setOperand(1, NewRHS);
812         ExpressionChanged = Op;
813       }
814       DEBUG(dbgs() << "TO: " << *Op << '\n');
815       MadeChange = true;
816       ++NumChanged;
817     }
818
819     // Now deal with the left-hand side.  If this is already an operation node
820     // from the original expression then just rewrite the rest of the expression
821     // into it.
822     BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
823     if (BO && !NotRewritable.count(BO)) {
824       Op = BO;
825       continue;
826     }
827
828     // Otherwise, grab a spare node from the original expression and use that as
829     // the left-hand side.  If there are no nodes left then the optimizers made
830     // an expression with more nodes than the original!  This usually means that
831     // they did something stupid but it might mean that the problem was just too
832     // hard (finding the mimimal number of multiplications needed to realize a
833     // multiplication expression is NP-complete).  Whatever the reason, smart or
834     // stupid, create a new node if there are none left.
835     BinaryOperator *NewOp;
836     if (NodesToRewrite.empty()) {
837       Constant *Undef = UndefValue::get(I->getType());
838       NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
839                                      Undef, Undef, "", I);
840       if (NewOp->getType()->isFPOrFPVectorTy())
841         NewOp->setFastMathFlags(I->getFastMathFlags());
842     } else {
843       NewOp = NodesToRewrite.pop_back_val();
844     }
845
846     DEBUG(dbgs() << "RA: " << *Op << '\n');
847     Op->setOperand(0, NewOp);
848     DEBUG(dbgs() << "TO: " << *Op << '\n');
849     ExpressionChanged = Op;
850     MadeChange = true;
851     ++NumChanged;
852     Op = NewOp;
853   }
854
855   // If the expression changed non-trivially then clear out all subclass data
856   // starting from the operator specified in ExpressionChanged, and compactify
857   // the operators to just before the expression root to guarantee that the
858   // expression tree is dominated by all of Ops.
859   if (ExpressionChanged)
860     do {
861       // Preserve FastMathFlags.
862       if (isa<FPMathOperator>(I)) {
863         FastMathFlags Flags = I->getFastMathFlags();
864         ExpressionChanged->clearSubclassOptionalData();
865         ExpressionChanged->setFastMathFlags(Flags);
866       } else
867         ExpressionChanged->clearSubclassOptionalData();
868
869       if (ExpressionChanged == I)
870         break;
871       ExpressionChanged->moveBefore(I);
872       ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
873     } while (1);
874
875   // Throw away any left over nodes from the original expression.
876   for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
877     RedoInsts.insert(NodesToRewrite[i]);
878 }
879
880 /// Insert instructions before the instruction pointed to by BI,
881 /// that computes the negative version of the value specified.  The negative
882 /// version of the value is returned, and BI is left pointing at the instruction
883 /// that should be processed next by the reassociation pass.
884 /// Also add intermediate instructions to the redo list that are modified while
885 /// pushing the negates through adds.  These will be revisited to see if
886 /// additional opportunities have been exposed.
887 static Value *NegateValue(Value *V, Instruction *BI,
888                           SetVector<AssertingVH<Instruction>> &ToRedo) {
889   if (Constant *C = dyn_cast<Constant>(V)) {
890     if (C->getType()->isFPOrFPVectorTy()) {
891       return ConstantExpr::getFNeg(C);
892     }
893     return ConstantExpr::getNeg(C);
894   }
895
896
897   // We are trying to expose opportunity for reassociation.  One of the things
898   // that we want to do to achieve this is to push a negation as deep into an
899   // expression chain as possible, to expose the add instructions.  In practice,
900   // this means that we turn this:
901   //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
902   // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
903   // the constants.  We assume that instcombine will clean up the mess later if
904   // we introduce tons of unnecessary negation instructions.
905   //
906   if (BinaryOperator *I =
907           isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
908     // Push the negates through the add.
909     I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo));
910     I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo));
911     if (I->getOpcode() == Instruction::Add) {
912       I->setHasNoUnsignedWrap(false);
913       I->setHasNoSignedWrap(false);
914     }
915
916     // We must move the add instruction here, because the neg instructions do
917     // not dominate the old add instruction in general.  By moving it, we are
918     // assured that the neg instructions we just inserted dominate the
919     // instruction we are about to insert after them.
920     //
921     I->moveBefore(BI);
922     I->setName(I->getName()+".neg");
923
924     // Add the intermediate negates to the redo list as processing them later
925     // could expose more reassociating opportunities.
926     ToRedo.insert(I);
927     return I;
928   }
929
930   // Okay, we need to materialize a negated version of V with an instruction.
931   // Scan the use lists of V to see if we have one already.
932   for (User *U : V->users()) {
933     if (!BinaryOperator::isNeg(U) && !BinaryOperator::isFNeg(U))
934       continue;
935
936     // We found one!  Now we have to make sure that the definition dominates
937     // this use.  We do this by moving it to the entry block (if it is a
938     // non-instruction value) or right after the definition.  These negates will
939     // be zapped by reassociate later, so we don't need much finesse here.
940     BinaryOperator *TheNeg = cast<BinaryOperator>(U);
941
942     // Verify that the negate is in this function, V might be a constant expr.
943     if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
944       continue;
945
946     BasicBlock::iterator InsertPt;
947     if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
948       if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
949         InsertPt = II->getNormalDest()->begin();
950       } else {
951         InsertPt = ++InstInput->getIterator();
952       }
953       while (isa<PHINode>(InsertPt)) ++InsertPt;
954     } else {
955       InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
956     }
957     TheNeg->moveBefore(&*InsertPt);
958     if (TheNeg->getOpcode() == Instruction::Sub) {
959       TheNeg->setHasNoUnsignedWrap(false);
960       TheNeg->setHasNoSignedWrap(false);
961     } else {
962       TheNeg->andIRFlags(BI);
963     }
964     ToRedo.insert(TheNeg);
965     return TheNeg;
966   }
967
968   // Insert a 'neg' instruction that subtracts the value from zero to get the
969   // negation.
970   BinaryOperator *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI);
971   ToRedo.insert(NewNeg);
972   return NewNeg;
973 }
974
975 /// Return true if we should break up this subtract of X-Y into (X + -Y).
976 static bool ShouldBreakUpSubtract(Instruction *Sub) {
977   // If this is a negation, we can't split it up!
978   if (BinaryOperator::isNeg(Sub) || BinaryOperator::isFNeg(Sub))
979     return false;
980
981   // Don't breakup X - undef.
982   if (isa<UndefValue>(Sub->getOperand(1)))
983     return false;
984
985   // Don't bother to break this up unless either the LHS is an associable add or
986   // subtract or if this is only used by one.
987   Value *V0 = Sub->getOperand(0);
988   if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
989       isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
990     return true;
991   Value *V1 = Sub->getOperand(1);
992   if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
993       isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
994     return true;
995   Value *VB = Sub->user_back();
996   if (Sub->hasOneUse() &&
997       (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
998        isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
999     return true;
1000
1001   return false;
1002 }
1003
1004 /// If we have (X-Y), and if either X is an add, or if this is only used by an
1005 /// add, transform this into (X+(0-Y)) to promote better reassociation.
1006 static BinaryOperator *
1007 BreakUpSubtract(Instruction *Sub, SetVector<AssertingVH<Instruction>> &ToRedo) {
1008   // Convert a subtract into an add and a neg instruction. This allows sub
1009   // instructions to be commuted with other add instructions.
1010   //
1011   // Calculate the negative value of Operand 1 of the sub instruction,
1012   // and set it as the RHS of the add instruction we just made.
1013   //
1014   Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo);
1015   BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
1016   Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
1017   Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
1018   New->takeName(Sub);
1019
1020   // Everyone now refers to the add instruction.
1021   Sub->replaceAllUsesWith(New);
1022   New->setDebugLoc(Sub->getDebugLoc());
1023
1024   DEBUG(dbgs() << "Negated: " << *New << '\n');
1025   return New;
1026 }
1027
1028 /// If this is a shift of a reassociable multiply or is used by one, change
1029 /// this into a multiply by a constant to assist with further reassociation.
1030 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
1031   Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
1032   MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
1033
1034   BinaryOperator *Mul =
1035     BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
1036   Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
1037   Mul->takeName(Shl);
1038
1039   // Everyone now refers to the mul instruction.
1040   Shl->replaceAllUsesWith(Mul);
1041   Mul->setDebugLoc(Shl->getDebugLoc());
1042
1043   // We can safely preserve the nuw flag in all cases.  It's also safe to turn a
1044   // nuw nsw shl into a nuw nsw mul.  However, nsw in isolation requires special
1045   // handling.
1046   bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
1047   bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
1048   if (NSW && NUW)
1049     Mul->setHasNoSignedWrap(true);
1050   Mul->setHasNoUnsignedWrap(NUW);
1051   return Mul;
1052 }
1053
1054 /// Scan backwards and forwards among values with the same rank as element i
1055 /// to see if X exists.  If X does not exist, return i.  This is useful when
1056 /// scanning for 'x' when we see '-x' because they both get the same rank.
1057 static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
1058                                   Value *X) {
1059   unsigned XRank = Ops[i].Rank;
1060   unsigned e = Ops.size();
1061   for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
1062     if (Ops[j].Op == X)
1063       return j;
1064     if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1065       if (Instruction *I2 = dyn_cast<Instruction>(X))
1066         if (I1->isIdenticalTo(I2))
1067           return j;
1068   }
1069   // Scan backwards.
1070   for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
1071     if (Ops[j].Op == X)
1072       return j;
1073     if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1074       if (Instruction *I2 = dyn_cast<Instruction>(X))
1075         if (I1->isIdenticalTo(I2))
1076           return j;
1077   }
1078   return i;
1079 }
1080
1081 /// Emit a tree of add instructions, summing Ops together
1082 /// and returning the result.  Insert the tree before I.
1083 static Value *EmitAddTreeOfValues(Instruction *I,
1084                                   SmallVectorImpl<WeakVH> &Ops){
1085   if (Ops.size() == 1) return Ops.back();
1086
1087   Value *V1 = Ops.back();
1088   Ops.pop_back();
1089   Value *V2 = EmitAddTreeOfValues(I, Ops);
1090   return CreateAdd(V2, V1, "tmp", I, I);
1091 }
1092
1093 /// If V is an expression tree that is a multiplication sequence,
1094 /// and if this sequence contains a multiply by Factor,
1095 /// remove Factor from the tree and return the new tree.
1096 Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
1097   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1098   if (!BO)
1099     return nullptr;
1100
1101   SmallVector<RepeatedValue, 8> Tree;
1102   MadeChange |= LinearizeExprTree(BO, Tree);
1103   SmallVector<ValueEntry, 8> Factors;
1104   Factors.reserve(Tree.size());
1105   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1106     RepeatedValue E = Tree[i];
1107     Factors.append(E.second.getZExtValue(),
1108                    ValueEntry(getRank(E.first), E.first));
1109   }
1110
1111   bool FoundFactor = false;
1112   bool NeedsNegate = false;
1113   for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1114     if (Factors[i].Op == Factor) {
1115       FoundFactor = true;
1116       Factors.erase(Factors.begin()+i);
1117       break;
1118     }
1119
1120     // If this is a negative version of this factor, remove it.
1121     if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
1122       if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1123         if (FC1->getValue() == -FC2->getValue()) {
1124           FoundFactor = NeedsNegate = true;
1125           Factors.erase(Factors.begin()+i);
1126           break;
1127         }
1128     } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
1129       if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
1130         APFloat F1(FC1->getValueAPF());
1131         APFloat F2(FC2->getValueAPF());
1132         F2.changeSign();
1133         if (F1.compare(F2) == APFloat::cmpEqual) {
1134           FoundFactor = NeedsNegate = true;
1135           Factors.erase(Factors.begin() + i);
1136           break;
1137         }
1138       }
1139     }
1140   }
1141
1142   if (!FoundFactor) {
1143     // Make sure to restore the operands to the expression tree.
1144     RewriteExprTree(BO, Factors);
1145     return nullptr;
1146   }
1147
1148   BasicBlock::iterator InsertPt = ++BO->getIterator();
1149
1150   // If this was just a single multiply, remove the multiply and return the only
1151   // remaining operand.
1152   if (Factors.size() == 1) {
1153     RedoInsts.insert(BO);
1154     V = Factors[0].Op;
1155   } else {
1156     RewriteExprTree(BO, Factors);
1157     V = BO;
1158   }
1159
1160   if (NeedsNegate)
1161     V = CreateNeg(V, "neg", &*InsertPt, BO);
1162
1163   return V;
1164 }
1165
1166 /// If V is a single-use multiply, recursively add its operands as factors,
1167 /// otherwise add V to the list of factors.
1168 ///
1169 /// Ops is the top-level list of add operands we're trying to factor.
1170 static void FindSingleUseMultiplyFactors(Value *V,
1171                                          SmallVectorImpl<Value*> &Factors,
1172                                        const SmallVectorImpl<ValueEntry> &Ops) {
1173   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1174   if (!BO) {
1175     Factors.push_back(V);
1176     return;
1177   }
1178
1179   // Otherwise, add the LHS and RHS to the list of factors.
1180   FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops);
1181   FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops);
1182 }
1183
1184 /// Optimize a series of operands to an 'and', 'or', or 'xor' instruction.
1185 /// This optimizes based on identities.  If it can be reduced to a single Value,
1186 /// it is returned, otherwise the Ops list is mutated as necessary.
1187 static Value *OptimizeAndOrXor(unsigned Opcode,
1188                                SmallVectorImpl<ValueEntry> &Ops) {
1189   // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1190   // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1191   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1192     // First, check for X and ~X in the operand list.
1193     assert(i < Ops.size());
1194     if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
1195       Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
1196       unsigned FoundX = FindInOperandList(Ops, i, X);
1197       if (FoundX != i) {
1198         if (Opcode == Instruction::And)   // ...&X&~X = 0
1199           return Constant::getNullValue(X->getType());
1200
1201         if (Opcode == Instruction::Or)    // ...|X|~X = -1
1202           return Constant::getAllOnesValue(X->getType());
1203       }
1204     }
1205
1206     // Next, check for duplicate pairs of values, which we assume are next to
1207     // each other, due to our sorting criteria.
1208     assert(i < Ops.size());
1209     if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1210       if (Opcode == Instruction::And || Opcode == Instruction::Or) {
1211         // Drop duplicate values for And and Or.
1212         Ops.erase(Ops.begin()+i);
1213         --i; --e;
1214         ++NumAnnihil;
1215         continue;
1216       }
1217
1218       // Drop pairs of values for Xor.
1219       assert(Opcode == Instruction::Xor);
1220       if (e == 2)
1221         return Constant::getNullValue(Ops[0].Op->getType());
1222
1223       // Y ^ X^X -> Y
1224       Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1225       i -= 1; e -= 2;
1226       ++NumAnnihil;
1227     }
1228   }
1229   return nullptr;
1230 }
1231
1232 /// Helper funciton of CombineXorOpnd(). It creates a bitwise-and
1233 /// instruction with the given two operands, and return the resulting
1234 /// instruction. There are two special cases: 1) if the constant operand is 0,
1235 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1236 /// be returned.
1237 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd, 
1238                              const APInt &ConstOpnd) {
1239   if (ConstOpnd != 0) {
1240     if (!ConstOpnd.isAllOnesValue()) {
1241       LLVMContext &Ctx = Opnd->getType()->getContext();
1242       Instruction *I;
1243       I = BinaryOperator::CreateAnd(Opnd, ConstantInt::get(Ctx, ConstOpnd),
1244                                     "and.ra", InsertBefore);
1245       I->setDebugLoc(InsertBefore->getDebugLoc());
1246       return I;
1247     }
1248     return Opnd;
1249   }
1250   return nullptr;
1251 }
1252
1253 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1254 // into "R ^ C", where C would be 0, and R is a symbolic value.
1255 //
1256 // If it was successful, true is returned, and the "R" and "C" is returned
1257 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1258 // and both "Res" and "ConstOpnd" remain unchanged.
1259 //  
1260 bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1261                                  APInt &ConstOpnd, Value *&Res) {
1262   // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2 
1263   //                       = ((x | c1) ^ c1) ^ (c1 ^ c2)
1264   //                       = (x & ~c1) ^ (c1 ^ c2)
1265   // It is useful only when c1 == c2.
1266   if (Opnd1->isOrExpr() && Opnd1->getConstPart() != 0) {
1267     if (!Opnd1->getValue()->hasOneUse())
1268       return false;
1269
1270     const APInt &C1 = Opnd1->getConstPart();
1271     if (C1 != ConstOpnd)
1272       return false;
1273
1274     Value *X = Opnd1->getSymbolicPart();
1275     Res = createAndInstr(I, X, ~C1);
1276     // ConstOpnd was C2, now C1 ^ C2.
1277     ConstOpnd ^= C1;
1278
1279     if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1280       RedoInsts.insert(T);
1281     return true;
1282   }
1283   return false;
1284 }
1285
1286                            
1287 // Helper function of OptimizeXor(). It tries to simplify
1288 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1289 // symbolic value. 
1290 // 
1291 // If it was successful, true is returned, and the "R" and "C" is returned 
1292 // via "Res" and "ConstOpnd", respectively (If the entire expression is
1293 // evaluated to a constant, the Res is set to NULL); otherwise, false is
1294 // returned, and both "Res" and "ConstOpnd" remain unchanged.
1295 bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
1296                                  APInt &ConstOpnd, Value *&Res) {
1297   Value *X = Opnd1->getSymbolicPart();
1298   if (X != Opnd2->getSymbolicPart())
1299     return false;
1300
1301   // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1302   int DeadInstNum = 1;
1303   if (Opnd1->getValue()->hasOneUse())
1304     DeadInstNum++;
1305   if (Opnd2->getValue()->hasOneUse())
1306     DeadInstNum++;
1307
1308   // Xor-Rule 2:
1309   //  (x | c1) ^ (x & c2)
1310   //   = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1311   //   = (x & ~c1) ^ (x & c2) ^ c1               // Xor-Rule 1
1312   //   = (x & c3) ^ c1, where c3 = ~c1 ^ c2      // Xor-rule 3
1313   //
1314   if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1315     if (Opnd2->isOrExpr())
1316       std::swap(Opnd1, Opnd2);
1317
1318     const APInt &C1 = Opnd1->getConstPart();
1319     const APInt &C2 = Opnd2->getConstPart();
1320     APInt C3((~C1) ^ C2);
1321
1322     // Do not increase code size!
1323     if (C3 != 0 && !C3.isAllOnesValue()) {
1324       int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1325       if (NewInstNum > DeadInstNum)
1326         return false;
1327     }
1328
1329     Res = createAndInstr(I, X, C3);
1330     ConstOpnd ^= C1;
1331
1332   } else if (Opnd1->isOrExpr()) {
1333     // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1334     //
1335     const APInt &C1 = Opnd1->getConstPart();
1336     const APInt &C2 = Opnd2->getConstPart();
1337     APInt C3 = C1 ^ C2;
1338     
1339     // Do not increase code size
1340     if (C3 != 0 && !C3.isAllOnesValue()) {
1341       int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1342       if (NewInstNum > DeadInstNum)
1343         return false;
1344     }
1345
1346     Res = createAndInstr(I, X, C3);
1347     ConstOpnd ^= C3;
1348   } else {
1349     // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1350     //
1351     const APInt &C1 = Opnd1->getConstPart();
1352     const APInt &C2 = Opnd2->getConstPart();
1353     APInt C3 = C1 ^ C2;
1354     Res = createAndInstr(I, X, C3);
1355   }
1356
1357   // Put the original operands in the Redo list; hope they will be deleted
1358   // as dead code.
1359   if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1360     RedoInsts.insert(T);
1361   if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1362     RedoInsts.insert(T);
1363
1364   return true;
1365 }
1366
1367 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1368 /// to a single Value, it is returned, otherwise the Ops list is mutated as
1369 /// necessary.
1370 Value *Reassociate::OptimizeXor(Instruction *I,
1371                                 SmallVectorImpl<ValueEntry> &Ops) {
1372   if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1373     return V;
1374       
1375   if (Ops.size() == 1)
1376     return nullptr;
1377
1378   SmallVector<XorOpnd, 8> Opnds;
1379   SmallVector<XorOpnd*, 8> OpndPtrs;
1380   Type *Ty = Ops[0].Op->getType();
1381   APInt ConstOpnd(Ty->getIntegerBitWidth(), 0);
1382
1383   // Step 1: Convert ValueEntry to XorOpnd
1384   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1385     Value *V = Ops[i].Op;
1386     if (!isa<ConstantInt>(V)) {
1387       XorOpnd O(V);
1388       O.setSymbolicRank(getRank(O.getSymbolicPart()));
1389       Opnds.push_back(O);
1390     } else
1391       ConstOpnd ^= cast<ConstantInt>(V)->getValue();
1392   }
1393
1394   // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1395   //  It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1396   //  the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1397   //  with the previous loop --- the iterator of the "Opnds" may be invalidated
1398   //  when new elements are added to the vector.
1399   for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1400     OpndPtrs.push_back(&Opnds[i]);
1401
1402   // Step 2: Sort the Xor-Operands in a way such that the operands containing
1403   //  the same symbolic value cluster together. For instance, the input operand
1404   //  sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1405   //  ("x | 123", "x & 789", "y & 456").
1406   std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(), XorOpnd::PtrSortFunctor());
1407
1408   // Step 3: Combine adjacent operands
1409   XorOpnd *PrevOpnd = nullptr;
1410   bool Changed = false;
1411   for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
1412     XorOpnd *CurrOpnd = OpndPtrs[i];
1413     // The combined value
1414     Value *CV;
1415
1416     // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
1417     if (ConstOpnd != 0 && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
1418       Changed = true;
1419       if (CV)
1420         *CurrOpnd = XorOpnd(CV);
1421       else {
1422         CurrOpnd->Invalidate();
1423         continue;
1424       }
1425     }
1426
1427     if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1428       PrevOpnd = CurrOpnd;
1429       continue;
1430     }
1431
1432     // step 3.2: When previous and current operands share the same symbolic
1433     //  value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd" 
1434     //    
1435     if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1436       // Remove previous operand
1437       PrevOpnd->Invalidate();
1438       if (CV) {
1439         *CurrOpnd = XorOpnd(CV);
1440         PrevOpnd = CurrOpnd;
1441       } else {
1442         CurrOpnd->Invalidate();
1443         PrevOpnd = nullptr;
1444       }
1445       Changed = true;
1446     }
1447   }
1448
1449   // Step 4: Reassemble the Ops
1450   if (Changed) {
1451     Ops.clear();
1452     for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
1453       XorOpnd &O = Opnds[i];
1454       if (O.isInvalid())
1455         continue;
1456       ValueEntry VE(getRank(O.getValue()), O.getValue());
1457       Ops.push_back(VE);
1458     }
1459     if (ConstOpnd != 0) {
1460       Value *C = ConstantInt::get(Ty->getContext(), ConstOpnd);
1461       ValueEntry VE(getRank(C), C);
1462       Ops.push_back(VE);
1463     }
1464     int Sz = Ops.size();
1465     if (Sz == 1)
1466       return Ops.back().Op;
1467     else if (Sz == 0) {
1468       assert(ConstOpnd == 0);
1469       return ConstantInt::get(Ty->getContext(), ConstOpnd);
1470     }
1471   }
1472
1473   return nullptr;
1474 }
1475
1476 /// Optimize a series of operands to an 'add' instruction.  This
1477 /// optimizes based on identities.  If it can be reduced to a single Value, it
1478 /// is returned, otherwise the Ops list is mutated as necessary.
1479 Value *Reassociate::OptimizeAdd(Instruction *I,
1480                                 SmallVectorImpl<ValueEntry> &Ops) {
1481   // Scan the operand lists looking for X and -X pairs.  If we find any, we
1482   // can simplify expressions like X+-X == 0 and X+~X ==-1.  While we're at it,
1483   // scan for any
1484   // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
1485
1486   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1487     Value *TheOp = Ops[i].Op;
1488     // Check to see if we've seen this operand before.  If so, we factor all
1489     // instances of the operand together.  Due to our sorting criteria, we know
1490     // that these need to be next to each other in the vector.
1491     if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1492       // Rescan the list, remove all instances of this operand from the expr.
1493       unsigned NumFound = 0;
1494       do {
1495         Ops.erase(Ops.begin()+i);
1496         ++NumFound;
1497       } while (i != Ops.size() && Ops[i].Op == TheOp);
1498
1499       DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
1500       ++NumFactor;
1501
1502       // Insert a new multiply.
1503       Type *Ty = TheOp->getType();
1504       Constant *C = Ty->isIntOrIntVectorTy() ?
1505         ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound);
1506       Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
1507
1508       // Now that we have inserted a multiply, optimize it. This allows us to
1509       // handle cases that require multiple factoring steps, such as this:
1510       // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
1511       RedoInsts.insert(Mul);
1512
1513       // If every add operand was a duplicate, return the multiply.
1514       if (Ops.empty())
1515         return Mul;
1516
1517       // Otherwise, we had some input that didn't have the dupe, such as
1518       // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
1519       // things being added by this operation.
1520       Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
1521
1522       --i;
1523       e = Ops.size();
1524       continue;
1525     }
1526
1527     // Check for X and -X or X and ~X in the operand list.
1528     if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isFNeg(TheOp) &&
1529         !BinaryOperator::isNot(TheOp))
1530       continue;
1531
1532     Value *X = nullptr;
1533     if (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp))
1534       X = BinaryOperator::getNegArgument(TheOp);
1535     else if (BinaryOperator::isNot(TheOp))
1536       X = BinaryOperator::getNotArgument(TheOp);
1537
1538     unsigned FoundX = FindInOperandList(Ops, i, X);
1539     if (FoundX == i)
1540       continue;
1541
1542     // Remove X and -X from the operand list.
1543     if (Ops.size() == 2 &&
1544         (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp)))
1545       return Constant::getNullValue(X->getType());
1546
1547     // Remove X and ~X from the operand list.
1548     if (Ops.size() == 2 && BinaryOperator::isNot(TheOp))
1549       return Constant::getAllOnesValue(X->getType());
1550
1551     Ops.erase(Ops.begin()+i);
1552     if (i < FoundX)
1553       --FoundX;
1554     else
1555       --i;   // Need to back up an extra one.
1556     Ops.erase(Ops.begin()+FoundX);
1557     ++NumAnnihil;
1558     --i;     // Revisit element.
1559     e -= 2;  // Removed two elements.
1560
1561     // if X and ~X we append -1 to the operand list.
1562     if (BinaryOperator::isNot(TheOp)) {
1563       Value *V = Constant::getAllOnesValue(X->getType());
1564       Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
1565       e += 1;
1566     }
1567   }
1568
1569   // Scan the operand list, checking to see if there are any common factors
1570   // between operands.  Consider something like A*A+A*B*C+D.  We would like to
1571   // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1572   // To efficiently find this, we count the number of times a factor occurs
1573   // for any ADD operands that are MULs.
1574   DenseMap<Value*, unsigned> FactorOccurrences;
1575
1576   // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1577   // where they are actually the same multiply.
1578   unsigned MaxOcc = 0;
1579   Value *MaxOccVal = nullptr;
1580   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1581     BinaryOperator *BOp =
1582         isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1583     if (!BOp)
1584       continue;
1585
1586     // Compute all of the factors of this added value.
1587     SmallVector<Value*, 8> Factors;
1588     FindSingleUseMultiplyFactors(BOp, Factors, Ops);
1589     assert(Factors.size() > 1 && "Bad linearize!");
1590
1591     // Add one to FactorOccurrences for each unique factor in this op.
1592     SmallPtrSet<Value*, 8> Duplicates;
1593     for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1594       Value *Factor = Factors[i];
1595       if (!Duplicates.insert(Factor).second)
1596         continue;
1597
1598       unsigned Occ = ++FactorOccurrences[Factor];
1599       if (Occ > MaxOcc) {
1600         MaxOcc = Occ;
1601         MaxOccVal = Factor;
1602       }
1603
1604       // If Factor is a negative constant, add the negated value as a factor
1605       // because we can percolate the negate out.  Watch for minint, which
1606       // cannot be positivified.
1607       if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
1608         if (CI->isNegative() && !CI->isMinValue(true)) {
1609           Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1610           assert(!Duplicates.count(Factor) &&
1611                  "Shouldn't have two constant factors, missed a canonicalize");
1612           unsigned Occ = ++FactorOccurrences[Factor];
1613           if (Occ > MaxOcc) {
1614             MaxOcc = Occ;
1615             MaxOccVal = Factor;
1616           }
1617         }
1618       } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
1619         if (CF->isNegative()) {
1620           APFloat F(CF->getValueAPF());
1621           F.changeSign();
1622           Factor = ConstantFP::get(CF->getContext(), F);
1623           assert(!Duplicates.count(Factor) &&
1624                  "Shouldn't have two constant factors, missed a canonicalize");
1625           unsigned Occ = ++FactorOccurrences[Factor];
1626           if (Occ > MaxOcc) {
1627             MaxOcc = Occ;
1628             MaxOccVal = Factor;
1629           }
1630         }
1631       }
1632     }
1633   }
1634
1635   // If any factor occurred more than one time, we can pull it out.
1636   if (MaxOcc > 1) {
1637     DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
1638     ++NumFactor;
1639
1640     // Create a new instruction that uses the MaxOccVal twice.  If we don't do
1641     // this, we could otherwise run into situations where removing a factor
1642     // from an expression will drop a use of maxocc, and this can cause
1643     // RemoveFactorFromExpression on successive values to behave differently.
1644     Instruction *DummyInst =
1645         I->getType()->isIntOrIntVectorTy()
1646             ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
1647             : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
1648
1649     SmallVector<WeakVH, 4> NewMulOps;
1650     for (unsigned i = 0; i != Ops.size(); ++i) {
1651       // Only try to remove factors from expressions we're allowed to.
1652       BinaryOperator *BOp =
1653           isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1654       if (!BOp)
1655         continue;
1656
1657       if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
1658         // The factorized operand may occur several times.  Convert them all in
1659         // one fell swoop.
1660         for (unsigned j = Ops.size(); j != i;) {
1661           --j;
1662           if (Ops[j].Op == Ops[i].Op) {
1663             NewMulOps.push_back(V);
1664             Ops.erase(Ops.begin()+j);
1665           }
1666         }
1667         --i;
1668       }
1669     }
1670
1671     // No need for extra uses anymore.
1672     delete DummyInst;
1673
1674     unsigned NumAddedValues = NewMulOps.size();
1675     Value *V = EmitAddTreeOfValues(I, NewMulOps);
1676
1677     // Now that we have inserted the add tree, optimize it. This allows us to
1678     // handle cases that require multiple factoring steps, such as this:
1679     // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
1680     assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
1681     (void)NumAddedValues;
1682     if (Instruction *VI = dyn_cast<Instruction>(V))
1683       RedoInsts.insert(VI);
1684
1685     // Create the multiply.
1686     Instruction *V2 = CreateMul(V, MaxOccVal, "tmp", I, I);
1687
1688     // Rerun associate on the multiply in case the inner expression turned into
1689     // a multiply.  We want to make sure that we keep things in canonical form.
1690     RedoInsts.insert(V2);
1691
1692     // If every add operand included the factor (e.g. "A*B + A*C"), then the
1693     // entire result expression is just the multiply "A*(B+C)".
1694     if (Ops.empty())
1695       return V2;
1696
1697     // Otherwise, we had some input that didn't have the factor, such as
1698     // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
1699     // things being added by this operation.
1700     Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1701   }
1702
1703   return nullptr;
1704 }
1705
1706 /// \brief Build up a vector of value/power pairs factoring a product.
1707 ///
1708 /// Given a series of multiplication operands, build a vector of factors and
1709 /// the powers each is raised to when forming the final product. Sort them in
1710 /// the order of descending power.
1711 ///
1712 ///      (x*x)          -> [(x, 2)]
1713 ///     ((x*x)*x)       -> [(x, 3)]
1714 ///   ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1715 ///
1716 /// \returns Whether any factors have a power greater than one.
1717 bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1718                                          SmallVectorImpl<Factor> &Factors) {
1719   // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1720   // Compute the sum of powers of simplifiable factors.
1721   unsigned FactorPowerSum = 0;
1722   for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1723     Value *Op = Ops[Idx-1].Op;
1724
1725     // Count the number of occurrences of this value.
1726     unsigned Count = 1;
1727     for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1728       ++Count;
1729     // Track for simplification all factors which occur 2 or more times.
1730     if (Count > 1)
1731       FactorPowerSum += Count;
1732   }
1733
1734   // We can only simplify factors if the sum of the powers of our simplifiable
1735   // factors is 4 or higher. When that is the case, we will *always* have
1736   // a simplification. This is an important invariant to prevent cyclicly
1737   // trying to simplify already minimal formations.
1738   if (FactorPowerSum < 4)
1739     return false;
1740
1741   // Now gather the simplifiable factors, removing them from Ops.
1742   FactorPowerSum = 0;
1743   for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1744     Value *Op = Ops[Idx-1].Op;
1745
1746     // Count the number of occurrences of this value.
1747     unsigned Count = 1;
1748     for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1749       ++Count;
1750     if (Count == 1)
1751       continue;
1752     // Move an even number of occurrences to Factors.
1753     Count &= ~1U;
1754     Idx -= Count;
1755     FactorPowerSum += Count;
1756     Factors.push_back(Factor(Op, Count));
1757     Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
1758   }
1759
1760   // None of the adjustments above should have reduced the sum of factor powers
1761   // below our mininum of '4'.
1762   assert(FactorPowerSum >= 4);
1763
1764   std::stable_sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter());
1765   return true;
1766 }
1767
1768 /// \brief Build a tree of multiplies, computing the product of Ops.
1769 static Value *buildMultiplyTree(IRBuilder<> &Builder,
1770                                 SmallVectorImpl<Value*> &Ops) {
1771   if (Ops.size() == 1)
1772     return Ops.back();
1773
1774   Value *LHS = Ops.pop_back_val();
1775   do {
1776     if (LHS->getType()->isIntOrIntVectorTy())
1777       LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1778     else
1779       LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
1780   } while (!Ops.empty());
1781
1782   return LHS;
1783 }
1784
1785 /// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1786 ///
1787 /// Given a vector of values raised to various powers, where no two values are
1788 /// equal and the powers are sorted in decreasing order, compute the minimal
1789 /// DAG of multiplies to compute the final product, and return that product
1790 /// value.
1791 Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1792                                             SmallVectorImpl<Factor> &Factors) {
1793   assert(Factors[0].Power);
1794   SmallVector<Value *, 4> OuterProduct;
1795   for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1796        Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1797     if (Factors[Idx].Power != Factors[LastIdx].Power) {
1798       LastIdx = Idx;
1799       continue;
1800     }
1801
1802     // We want to multiply across all the factors with the same power so that
1803     // we can raise them to that power as a single entity. Build a mini tree
1804     // for that.
1805     SmallVector<Value *, 4> InnerProduct;
1806     InnerProduct.push_back(Factors[LastIdx].Base);
1807     do {
1808       InnerProduct.push_back(Factors[Idx].Base);
1809       ++Idx;
1810     } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1811
1812     // Reset the base value of the first factor to the new expression tree.
1813     // We'll remove all the factors with the same power in a second pass.
1814     Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1815     if (Instruction *MI = dyn_cast<Instruction>(M))
1816       RedoInsts.insert(MI);
1817
1818     LastIdx = Idx;
1819   }
1820   // Unique factors with equal powers -- we've folded them into the first one's
1821   // base.
1822   Factors.erase(std::unique(Factors.begin(), Factors.end(),
1823                             Factor::PowerEqual()),
1824                 Factors.end());
1825
1826   // Iteratively collect the base of each factor with an add power into the
1827   // outer product, and halve each power in preparation for squaring the
1828   // expression.
1829   for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1830     if (Factors[Idx].Power & 1)
1831       OuterProduct.push_back(Factors[Idx].Base);
1832     Factors[Idx].Power >>= 1;
1833   }
1834   if (Factors[0].Power) {
1835     Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1836     OuterProduct.push_back(SquareRoot);
1837     OuterProduct.push_back(SquareRoot);
1838   }
1839   if (OuterProduct.size() == 1)
1840     return OuterProduct.front();
1841
1842   Value *V = buildMultiplyTree(Builder, OuterProduct);
1843   return V;
1844 }
1845
1846 Value *Reassociate::OptimizeMul(BinaryOperator *I,
1847                                 SmallVectorImpl<ValueEntry> &Ops) {
1848   // We can only optimize the multiplies when there is a chain of more than
1849   // three, such that a balanced tree might require fewer total multiplies.
1850   if (Ops.size() < 4)
1851     return nullptr;
1852
1853   // Try to turn linear trees of multiplies without other uses of the
1854   // intermediate stages into minimal multiply DAGs with perfect sub-expression
1855   // re-use.
1856   SmallVector<Factor, 4> Factors;
1857   if (!collectMultiplyFactors(Ops, Factors))
1858     return nullptr; // All distinct factors, so nothing left for us to do.
1859
1860   IRBuilder<> Builder(I);
1861   Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1862   if (Ops.empty())
1863     return V;
1864
1865   ValueEntry NewEntry = ValueEntry(getRank(V), V);
1866   Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
1867   return nullptr;
1868 }
1869
1870 Value *Reassociate::OptimizeExpression(BinaryOperator *I,
1871                                        SmallVectorImpl<ValueEntry> &Ops) {
1872   // Now that we have the linearized expression tree, try to optimize it.
1873   // Start by folding any constants that we found.
1874   Constant *Cst = nullptr;
1875   unsigned Opcode = I->getOpcode();
1876   while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
1877     Constant *C = cast<Constant>(Ops.pop_back_val().Op);
1878     Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
1879   }
1880   // If there was nothing but constants then we are done.
1881   if (Ops.empty())
1882     return Cst;
1883
1884   // Put the combined constant back at the end of the operand list, except if
1885   // there is no point.  For example, an add of 0 gets dropped here, while a
1886   // multiplication by zero turns the whole expression into zero.
1887   if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1888     if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1889       return Cst;
1890     Ops.push_back(ValueEntry(0, Cst));
1891   }
1892
1893   if (Ops.size() == 1) return Ops[0].Op;
1894
1895   // Handle destructive annihilation due to identities between elements in the
1896   // argument list here.
1897   unsigned NumOps = Ops.size();
1898   switch (Opcode) {
1899   default: break;
1900   case Instruction::And:
1901   case Instruction::Or:
1902     if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1903       return Result;
1904     break;
1905
1906   case Instruction::Xor:
1907     if (Value *Result = OptimizeXor(I, Ops))
1908       return Result;
1909     break;
1910
1911   case Instruction::Add:
1912   case Instruction::FAdd:
1913     if (Value *Result = OptimizeAdd(I, Ops))
1914       return Result;
1915     break;
1916
1917   case Instruction::Mul:
1918   case Instruction::FMul:
1919     if (Value *Result = OptimizeMul(I, Ops))
1920       return Result;
1921     break;
1922   }
1923
1924   if (Ops.size() != NumOps)
1925     return OptimizeExpression(I, Ops);
1926   return nullptr;
1927 }
1928
1929 /// Zap the given instruction, adding interesting operands to the work list.
1930 void Reassociate::EraseInst(Instruction *I) {
1931   assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1932   SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1933   // Erase the dead instruction.
1934   ValueRankMap.erase(I);
1935   RedoInsts.remove(I);
1936   I->eraseFromParent();
1937   // Optimize its operands.
1938   SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
1939   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1940     if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1941       // If this is a node in an expression tree, climb to the expression root
1942       // and add that since that's where optimization actually happens.
1943       unsigned Opcode = Op->getOpcode();
1944       while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
1945              Visited.insert(Op).second)
1946         Op = Op->user_back();
1947       RedoInsts.insert(Op);
1948     }
1949 }
1950
1951 // Canonicalize expressions of the following form:
1952 //  x + (-Constant * y) -> x - (Constant * y)
1953 //  x - (-Constant * y) -> x + (Constant * y)
1954 Instruction *Reassociate::canonicalizeNegConstExpr(Instruction *I) {
1955   if (!I->hasOneUse() || I->getType()->isVectorTy())
1956     return nullptr;
1957
1958   // Must be a fmul or fdiv instruction.
1959   unsigned Opcode = I->getOpcode();
1960   if (Opcode != Instruction::FMul && Opcode != Instruction::FDiv)
1961     return nullptr;
1962
1963   auto *C0 = dyn_cast<ConstantFP>(I->getOperand(0));
1964   auto *C1 = dyn_cast<ConstantFP>(I->getOperand(1));
1965
1966   // Both operands are constant, let it get constant folded away.
1967   if (C0 && C1)
1968     return nullptr;
1969
1970   ConstantFP *CF = C0 ? C0 : C1;
1971
1972   // Must have one constant operand.
1973   if (!CF)
1974     return nullptr;
1975
1976   // Must be a negative ConstantFP.
1977   if (!CF->isNegative())
1978     return nullptr;
1979
1980   // User must be a binary operator with one or more uses.
1981   Instruction *User = I->user_back();
1982   if (!isa<BinaryOperator>(User) || !User->hasNUsesOrMore(1))
1983     return nullptr;
1984
1985   unsigned UserOpcode = User->getOpcode();
1986   if (UserOpcode != Instruction::FAdd && UserOpcode != Instruction::FSub)
1987     return nullptr;
1988
1989   // Subtraction is not commutative. Explicitly, the following transform is
1990   // not valid: (-Constant * y) - x  -> x + (Constant * y)
1991   if (!User->isCommutative() && User->getOperand(1) != I)
1992     return nullptr;
1993
1994   // Change the sign of the constant.
1995   APFloat Val = CF->getValueAPF();
1996   Val.changeSign();
1997   I->setOperand(C0 ? 0 : 1, ConstantFP::get(CF->getContext(), Val));
1998
1999   // Canonicalize I to RHS to simplify the next bit of logic. E.g.,
2000   // ((-Const*y) + x) -> (x + (-Const*y)).
2001   if (User->getOperand(0) == I && User->isCommutative())
2002     cast<BinaryOperator>(User)->swapOperands();
2003
2004   Value *Op0 = User->getOperand(0);
2005   Value *Op1 = User->getOperand(1);
2006   BinaryOperator *NI;
2007   switch (UserOpcode) {
2008   default:
2009     llvm_unreachable("Unexpected Opcode!");
2010   case Instruction::FAdd:
2011     NI = BinaryOperator::CreateFSub(Op0, Op1);
2012     NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
2013     break;
2014   case Instruction::FSub:
2015     NI = BinaryOperator::CreateFAdd(Op0, Op1);
2016     NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
2017     break;
2018   }
2019
2020   NI->insertBefore(User);
2021   NI->setName(User->getName());
2022   User->replaceAllUsesWith(NI);
2023   NI->setDebugLoc(I->getDebugLoc());
2024   RedoInsts.insert(I);
2025   MadeChange = true;
2026   return NI;
2027 }
2028
2029 /// Inspect and optimize the given instruction. Note that erasing
2030 /// instructions is not allowed.
2031 void Reassociate::OptimizeInst(Instruction *I) {
2032   // Only consider operations that we understand.
2033   if (!isa<BinaryOperator>(I))
2034     return;
2035
2036   if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
2037     // If an operand of this shift is a reassociable multiply, or if the shift
2038     // is used by a reassociable multiply or add, turn into a multiply.
2039     if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
2040         (I->hasOneUse() &&
2041          (isReassociableOp(I->user_back(), Instruction::Mul) ||
2042           isReassociableOp(I->user_back(), Instruction::Add)))) {
2043       Instruction *NI = ConvertShiftToMul(I);
2044       RedoInsts.insert(I);
2045       MadeChange = true;
2046       I = NI;
2047     }
2048
2049   // Canonicalize negative constants out of expressions.
2050   if (Instruction *Res = canonicalizeNegConstExpr(I))
2051     I = Res;
2052
2053   // Commute binary operators, to canonicalize the order of their operands.
2054   // This can potentially expose more CSE opportunities, and makes writing other
2055   // transformations simpler.
2056   if (I->isCommutative())
2057     canonicalizeOperands(I);
2058
2059   // TODO: We should optimize vector Xor instructions, but they are
2060   // currently unsupported.
2061   if (I->getType()->isVectorTy() && I->getOpcode() == Instruction::Xor)
2062     return;
2063
2064   // Don't optimize floating point instructions that don't have unsafe algebra.
2065   if (I->getType()->isFPOrFPVectorTy() && !I->hasUnsafeAlgebra())
2066     return;
2067
2068   // Do not reassociate boolean (i1) expressions.  We want to preserve the
2069   // original order of evaluation for short-circuited comparisons that
2070   // SimplifyCFG has folded to AND/OR expressions.  If the expression
2071   // is not further optimized, it is likely to be transformed back to a
2072   // short-circuited form for code gen, and the source order may have been
2073   // optimized for the most likely conditions.
2074   if (I->getType()->isIntegerTy(1))
2075     return;
2076
2077   // If this is a subtract instruction which is not already in negate form,
2078   // see if we can convert it to X+-Y.
2079   if (I->getOpcode() == Instruction::Sub) {
2080     if (ShouldBreakUpSubtract(I)) {
2081       Instruction *NI = BreakUpSubtract(I, RedoInsts);
2082       RedoInsts.insert(I);
2083       MadeChange = true;
2084       I = NI;
2085     } else if (BinaryOperator::isNeg(I)) {
2086       // Otherwise, this is a negation.  See if the operand is a multiply tree
2087       // and if this is not an inner node of a multiply tree.
2088       if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
2089           (!I->hasOneUse() ||
2090            !isReassociableOp(I->user_back(), Instruction::Mul))) {
2091         Instruction *NI = LowerNegateToMultiply(I);
2092         // If the negate was simplified, revisit the users to see if we can
2093         // reassociate further.
2094         for (User *U : NI->users()) {
2095           if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2096             RedoInsts.insert(Tmp);
2097         }
2098         RedoInsts.insert(I);
2099         MadeChange = true;
2100         I = NI;
2101       }
2102     }
2103   } else if (I->getOpcode() == Instruction::FSub) {
2104     if (ShouldBreakUpSubtract(I)) {
2105       Instruction *NI = BreakUpSubtract(I, RedoInsts);
2106       RedoInsts.insert(I);
2107       MadeChange = true;
2108       I = NI;
2109     } else if (BinaryOperator::isFNeg(I)) {
2110       // Otherwise, this is a negation.  See if the operand is a multiply tree
2111       // and if this is not an inner node of a multiply tree.
2112       if (isReassociableOp(I->getOperand(1), Instruction::FMul) &&
2113           (!I->hasOneUse() ||
2114            !isReassociableOp(I->user_back(), Instruction::FMul))) {
2115         // If the negate was simplified, revisit the users to see if we can
2116         // reassociate further.
2117         Instruction *NI = LowerNegateToMultiply(I);
2118         for (User *U : NI->users()) {
2119           if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2120             RedoInsts.insert(Tmp);
2121         }
2122         RedoInsts.insert(I);
2123         MadeChange = true;
2124         I = NI;
2125       }
2126     }
2127   }
2128
2129   // If this instruction is an associative binary operator, process it.
2130   if (!I->isAssociative()) return;
2131   BinaryOperator *BO = cast<BinaryOperator>(I);
2132
2133   // If this is an interior node of a reassociable tree, ignore it until we
2134   // get to the root of the tree, to avoid N^2 analysis.
2135   unsigned Opcode = BO->getOpcode();
2136   if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) {
2137     // During the initial run we will get to the root of the tree.
2138     // But if we get here while we are redoing instructions, there is no
2139     // guarantee that the root will be visited. So Redo later
2140     if (BO->user_back() != BO)
2141       RedoInsts.insert(BO->user_back());
2142     return;
2143   }
2144
2145   // If this is an add tree that is used by a sub instruction, ignore it
2146   // until we process the subtract.
2147   if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
2148       cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
2149     return;
2150   if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
2151       cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
2152     return;
2153
2154   ReassociateExpression(BO);
2155 }
2156
2157 void Reassociate::ReassociateExpression(BinaryOperator *I) {
2158   // First, walk the expression tree, linearizing the tree, collecting the
2159   // operand information.
2160   SmallVector<RepeatedValue, 8> Tree;
2161   MadeChange |= LinearizeExprTree(I, Tree);
2162   SmallVector<ValueEntry, 8> Ops;
2163   Ops.reserve(Tree.size());
2164   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
2165     RepeatedValue E = Tree[i];
2166     Ops.append(E.second.getZExtValue(),
2167                ValueEntry(getRank(E.first), E.first));
2168   }
2169
2170   DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
2171
2172   // Now that we have linearized the tree to a list and have gathered all of
2173   // the operands and their ranks, sort the operands by their rank.  Use a
2174   // stable_sort so that values with equal ranks will have their relative
2175   // positions maintained (and so the compiler is deterministic).  Note that
2176   // this sorts so that the highest ranking values end up at the beginning of
2177   // the vector.
2178   std::stable_sort(Ops.begin(), Ops.end());
2179
2180   // Now that we have the expression tree in a convenient
2181   // sorted form, optimize it globally if possible.
2182   if (Value *V = OptimizeExpression(I, Ops)) {
2183     if (V == I)
2184       // Self-referential expression in unreachable code.
2185       return;
2186     // This expression tree simplified to something that isn't a tree,
2187     // eliminate it.
2188     DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
2189     I->replaceAllUsesWith(V);
2190     if (Instruction *VI = dyn_cast<Instruction>(V))
2191       VI->setDebugLoc(I->getDebugLoc());
2192     RedoInsts.insert(I);
2193     ++NumAnnihil;
2194     return;
2195   }
2196
2197   // We want to sink immediates as deeply as possible except in the case where
2198   // this is a multiply tree used only by an add, and the immediate is a -1.
2199   // In this case we reassociate to put the negation on the outside so that we
2200   // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
2201   if (I->hasOneUse()) {
2202     if (I->getOpcode() == Instruction::Mul &&
2203         cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
2204         isa<ConstantInt>(Ops.back().Op) &&
2205         cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
2206       ValueEntry Tmp = Ops.pop_back_val();
2207       Ops.insert(Ops.begin(), Tmp);
2208     } else if (I->getOpcode() == Instruction::FMul &&
2209                cast<Instruction>(I->user_back())->getOpcode() ==
2210                    Instruction::FAdd &&
2211                isa<ConstantFP>(Ops.back().Op) &&
2212                cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
2213       ValueEntry Tmp = Ops.pop_back_val();
2214       Ops.insert(Ops.begin(), Tmp);
2215     }
2216   }
2217
2218   DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
2219
2220   if (Ops.size() == 1) {
2221     if (Ops[0].Op == I)
2222       // Self-referential expression in unreachable code.
2223       return;
2224
2225     // This expression tree simplified to something that isn't a tree,
2226     // eliminate it.
2227     I->replaceAllUsesWith(Ops[0].Op);
2228     if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
2229       OI->setDebugLoc(I->getDebugLoc());
2230     RedoInsts.insert(I);
2231     return;
2232   }
2233
2234   // Now that we ordered and optimized the expressions, splat them back into
2235   // the expression tree, removing any unneeded nodes.
2236   RewriteExprTree(I, Ops);
2237 }
2238
2239 bool Reassociate::runOnFunction(Function &F) {
2240   if (skipOptnoneFunction(F))
2241     return false;
2242
2243   // Calculate the rank map for F
2244   BuildRankMap(F);
2245
2246   MadeChange = false;
2247   for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
2248     // Optimize every instruction in the basic block.
2249     for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; )
2250       if (isInstructionTriviallyDead(&*II)) {
2251         EraseInst(&*II++);
2252       } else {
2253         OptimizeInst(&*II);
2254         assert(II->getParent() == BI && "Moved to a different block!");
2255         ++II;
2256       }
2257
2258     // If this produced extra instructions to optimize, handle them now.
2259     while (!RedoInsts.empty()) {
2260       Instruction *I = RedoInsts.pop_back_val();
2261       if (isInstructionTriviallyDead(I))
2262         EraseInst(I);
2263       else
2264         OptimizeInst(I);
2265     }
2266   }
2267
2268   // We are done with the rank map.
2269   RankMap.clear();
2270   ValueRankMap.clear();
2271
2272   return MadeChange;
2273 }