Don't copy information from aliasee to alias.
[oota-llvm.git] / lib / Transforms / Scalar / LoopUnswitch.cpp
1 //===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass transforms loops that contain branches on loop-invariant conditions
11 // to have multiple loops.  For example, it turns the left into the right code:
12 //
13 //  for (...)                  if (lic)
14 //    A                          for (...)
15 //    if (lic)                     A; B; C
16 //      B                      else
17 //    C                          for (...)
18 //                                 A; C
19 //
20 // This can increase the size of the code exponentially (doubling it every time
21 // a loop is unswitched) so we only unswitch if the resultant code will be
22 // smaller than a threshold.
23 //
24 // This pass expects LICM to be run before it to hoist invariant conditions out
25 // of the loop, to make the unswitching opportunity obvious.
26 //
27 //===----------------------------------------------------------------------===//
28
29 #include "llvm/Transforms/Scalar.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/Analysis/GlobalsModRef.h"
34 #include "llvm/Analysis/AssumptionCache.h"
35 #include "llvm/Analysis/CodeMetrics.h"
36 #include "llvm/Analysis/InstructionSimplify.h"
37 #include "llvm/Analysis/LoopInfo.h"
38 #include "llvm/Analysis/LoopPass.h"
39 #include "llvm/Analysis/ScalarEvolution.h"
40 #include "llvm/Analysis/TargetTransformInfo.h"
41 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
42 #include "llvm/Analysis/BlockFrequencyInfo.h"
43 #include "llvm/Analysis/BranchProbabilityInfo.h"
44 #include "llvm/Support/BranchProbability.h"
45 #include "llvm/IR/Constants.h"
46 #include "llvm/IR/DerivedTypes.h"
47 #include "llvm/IR/Dominators.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/Instructions.h"
50 #include "llvm/IR/Module.h"
51 #include "llvm/IR/MDBuilder.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
56 #include "llvm/Transforms/Utils/Cloning.h"
57 #include "llvm/Transforms/Utils/Local.h"
58 #include <algorithm>
59 #include <map>
60 #include <set>
61 using namespace llvm;
62
63 #define DEBUG_TYPE "loop-unswitch"
64
65 STATISTIC(NumBranches, "Number of branches unswitched");
66 STATISTIC(NumSwitches, "Number of switches unswitched");
67 STATISTIC(NumSelects , "Number of selects unswitched");
68 STATISTIC(NumTrivial , "Number of unswitches that are trivial");
69 STATISTIC(NumSimplify, "Number of simplifications of unswitched code");
70 STATISTIC(TotalInsts,  "Total number of instructions analyzed");
71
72 // The specific value of 100 here was chosen based only on intuition and a
73 // few specific examples.
74 static cl::opt<unsigned>
75 Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
76           cl::init(100), cl::Hidden);
77
78 static cl::opt<bool>
79 LoopUnswitchWithBlockFrequency("loop-unswitch-with-block-frequency",
80     cl::init(false), cl::Hidden,
81     cl::desc("Enable the use of the block frequency analysis to access PGO "
82              "heuristics to minimize code growth in cold regions."));
83
84 static cl::opt<unsigned>
85 ColdnessThreshold("loop-unswitch-coldness-threshold", cl::init(1), cl::Hidden,
86     cl::desc("Coldness threshold in percentage. The loop header frequency "
87              "(relative to the entry frequency) is compared with this "
88              "threshold to determine if non-trivial unswitching should be "
89              "enabled."));
90
91 namespace {
92
93   class LUAnalysisCache {
94
95     typedef DenseMap<const SwitchInst*, SmallPtrSet<const Value *, 8> >
96       UnswitchedValsMap;
97
98     typedef UnswitchedValsMap::iterator UnswitchedValsIt;
99
100     struct LoopProperties {
101       unsigned CanBeUnswitchedCount;
102       unsigned WasUnswitchedCount;
103       unsigned SizeEstimation;
104       UnswitchedValsMap UnswitchedVals;
105     };
106
107     // Here we use std::map instead of DenseMap, since we need to keep valid
108     // LoopProperties pointer for current loop for better performance.
109     typedef std::map<const Loop*, LoopProperties> LoopPropsMap;
110     typedef LoopPropsMap::iterator LoopPropsMapIt;
111
112     LoopPropsMap LoopsProperties;
113     UnswitchedValsMap *CurLoopInstructions;
114     LoopProperties *CurrentLoopProperties;
115
116     // A loop unswitching with an estimated cost above this threshold
117     // is not performed. MaxSize is turned into unswitching quota for
118     // the current loop, and reduced correspondingly, though note that
119     // the quota is returned by releaseMemory() when the loop has been
120     // processed, so that MaxSize will return to its previous
121     // value. So in most cases MaxSize will equal the Threshold flag
122     // when a new loop is processed. An exception to that is that
123     // MaxSize will have a smaller value while processing nested loops
124     // that were introduced due to loop unswitching of an outer loop.
125     //
126     // FIXME: The way that MaxSize works is subtle and depends on the
127     // pass manager processing loops and calling releaseMemory() in a
128     // specific order. It would be good to find a more straightforward
129     // way of doing what MaxSize does.
130     unsigned MaxSize;
131
132   public:
133     LUAnalysisCache()
134         : CurLoopInstructions(nullptr), CurrentLoopProperties(nullptr),
135           MaxSize(Threshold) {}
136
137     // Analyze loop. Check its size, calculate is it possible to unswitch
138     // it. Returns true if we can unswitch this loop.
139     bool countLoop(const Loop *L, const TargetTransformInfo &TTI,
140                    AssumptionCache *AC);
141
142     // Clean all data related to given loop.
143     void forgetLoop(const Loop *L);
144
145     // Mark case value as unswitched.
146     // Since SI instruction can be partly unswitched, in order to avoid
147     // extra unswitching in cloned loops keep track all unswitched values.
148     void setUnswitched(const SwitchInst *SI, const Value *V);
149
150     // Check was this case value unswitched before or not.
151     bool isUnswitched(const SwitchInst *SI, const Value *V);
152
153     // Returns true if another unswitching could be done within the cost
154     // threshold.
155     bool CostAllowsUnswitching();
156
157     // Clone all loop-unswitch related loop properties.
158     // Redistribute unswitching quotas.
159     // Note, that new loop data is stored inside the VMap.
160     void cloneData(const Loop *NewLoop, const Loop *OldLoop,
161                    const ValueToValueMapTy &VMap);
162   };
163
164   class LoopUnswitch : public LoopPass {
165     LoopInfo *LI;  // Loop information
166     LPPassManager *LPM;
167     AssumptionCache *AC;
168
169     // Used to check if second loop needs processing after
170     // RewriteLoopBodyWithConditionConstant rewrites first loop.
171     std::vector<Loop*> LoopProcessWorklist;
172
173     LUAnalysisCache BranchesInfo;
174
175     bool EnabledPGO;
176
177     // BFI and ColdEntryFreq are only used when PGO and
178     // LoopUnswitchWithBlockFrequency are enabled.
179     BlockFrequencyInfo BFI;
180     BlockFrequency ColdEntryFreq;
181
182     bool OptimizeForSize;
183     bool redoLoop;
184
185     Loop *currentLoop;
186     DominatorTree *DT;
187     BasicBlock *loopHeader;
188     BasicBlock *loopPreheader;
189
190     // LoopBlocks contains all of the basic blocks of the loop, including the
191     // preheader of the loop, the body of the loop, and the exit blocks of the
192     // loop, in that order.
193     std::vector<BasicBlock*> LoopBlocks;
194     // NewBlocks contained cloned copy of basic blocks from LoopBlocks.
195     std::vector<BasicBlock*> NewBlocks;
196
197   public:
198     static char ID; // Pass ID, replacement for typeid
199     explicit LoopUnswitch(bool Os = false) :
200       LoopPass(ID), OptimizeForSize(Os), redoLoop(false),
201       currentLoop(nullptr), DT(nullptr), loopHeader(nullptr),
202       loopPreheader(nullptr) {
203         initializeLoopUnswitchPass(*PassRegistry::getPassRegistry());
204       }
205
206     bool runOnLoop(Loop *L, LPPassManager &LPM) override;
207     bool processCurrentLoop();
208
209     /// This transformation requires natural loop information & requires that
210     /// loop preheaders be inserted into the CFG.
211     ///
212     void getAnalysisUsage(AnalysisUsage &AU) const override {
213       AU.addRequired<AssumptionCacheTracker>();
214       AU.addRequiredID(LoopSimplifyID);
215       AU.addPreservedID(LoopSimplifyID);
216       AU.addRequired<LoopInfoWrapperPass>();
217       AU.addPreserved<LoopInfoWrapperPass>();
218       AU.addRequiredID(LCSSAID);
219       AU.addPreservedID(LCSSAID);
220       AU.addRequired<DominatorTreeWrapperPass>();
221       AU.addPreserved<DominatorTreeWrapperPass>();
222       AU.addPreserved<ScalarEvolutionWrapperPass>();
223       AU.addRequired<TargetTransformInfoWrapperPass>();
224       AU.addPreserved<GlobalsAAWrapperPass>();
225     }
226
227   private:
228
229     void releaseMemory() override {
230       BranchesInfo.forgetLoop(currentLoop);
231     }
232
233     void initLoopData() {
234       loopHeader = currentLoop->getHeader();
235       loopPreheader = currentLoop->getLoopPreheader();
236     }
237
238     /// Split all of the edges from inside the loop to their exit blocks.
239     /// Update the appropriate Phi nodes as we do so.
240     void SplitExitEdges(Loop *L,
241                         const SmallVectorImpl<BasicBlock *> &ExitBlocks);
242
243     bool TryTrivialLoopUnswitch(bool &Changed);
244
245     bool UnswitchIfProfitable(Value *LoopCond, Constant *Val,
246                               TerminatorInst *TI = nullptr);
247     void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
248                                   BasicBlock *ExitBlock, TerminatorInst *TI);
249     void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L,
250                                      TerminatorInst *TI);
251
252     void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
253                                               Constant *Val, bool isEqual);
254
255     void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
256                                         BasicBlock *TrueDest,
257                                         BasicBlock *FalseDest,
258                                         Instruction *InsertPt,
259                                         TerminatorInst *TI);
260
261     void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L);
262   };
263 }
264
265 // Analyze loop. Check its size, calculate is it possible to unswitch
266 // it. Returns true if we can unswitch this loop.
267 bool LUAnalysisCache::countLoop(const Loop *L, const TargetTransformInfo &TTI,
268                                 AssumptionCache *AC) {
269
270   LoopPropsMapIt PropsIt;
271   bool Inserted;
272   std::tie(PropsIt, Inserted) =
273       LoopsProperties.insert(std::make_pair(L, LoopProperties()));
274
275   LoopProperties &Props = PropsIt->second;
276
277   if (Inserted) {
278     // New loop.
279
280     // Limit the number of instructions to avoid causing significant code
281     // expansion, and the number of basic blocks, to avoid loops with
282     // large numbers of branches which cause loop unswitching to go crazy.
283     // This is a very ad-hoc heuristic.
284
285     SmallPtrSet<const Value *, 32> EphValues;
286     CodeMetrics::collectEphemeralValues(L, AC, EphValues);
287
288     // FIXME: This is overly conservative because it does not take into
289     // consideration code simplification opportunities and code that can
290     // be shared by the resultant unswitched loops.
291     CodeMetrics Metrics;
292     for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E;
293          ++I)
294       Metrics.analyzeBasicBlock(*I, TTI, EphValues);
295
296     Props.SizeEstimation = Metrics.NumInsts;
297     Props.CanBeUnswitchedCount = MaxSize / (Props.SizeEstimation);
298     Props.WasUnswitchedCount = 0;
299     MaxSize -= Props.SizeEstimation * Props.CanBeUnswitchedCount;
300
301     if (Metrics.notDuplicatable) {
302       DEBUG(dbgs() << "NOT unswitching loop %"
303                    << L->getHeader()->getName() << ", contents cannot be "
304                    << "duplicated!\n");
305       return false;
306     }
307   }
308
309   // Be careful. This links are good only before new loop addition.
310   CurrentLoopProperties = &Props;
311   CurLoopInstructions = &Props.UnswitchedVals;
312
313   return true;
314 }
315
316 // Clean all data related to given loop.
317 void LUAnalysisCache::forgetLoop(const Loop *L) {
318
319   LoopPropsMapIt LIt = LoopsProperties.find(L);
320
321   if (LIt != LoopsProperties.end()) {
322     LoopProperties &Props = LIt->second;
323     MaxSize += (Props.CanBeUnswitchedCount + Props.WasUnswitchedCount) *
324                Props.SizeEstimation;
325     LoopsProperties.erase(LIt);
326   }
327
328   CurrentLoopProperties = nullptr;
329   CurLoopInstructions = nullptr;
330 }
331
332 // Mark case value as unswitched.
333 // Since SI instruction can be partly unswitched, in order to avoid
334 // extra unswitching in cloned loops keep track all unswitched values.
335 void LUAnalysisCache::setUnswitched(const SwitchInst *SI, const Value *V) {
336   (*CurLoopInstructions)[SI].insert(V);
337 }
338
339 // Check was this case value unswitched before or not.
340 bool LUAnalysisCache::isUnswitched(const SwitchInst *SI, const Value *V) {
341   return (*CurLoopInstructions)[SI].count(V);
342 }
343
344 bool LUAnalysisCache::CostAllowsUnswitching() {
345   return CurrentLoopProperties->CanBeUnswitchedCount > 0;
346 }
347
348 // Clone all loop-unswitch related loop properties.
349 // Redistribute unswitching quotas.
350 // Note, that new loop data is stored inside the VMap.
351 void LUAnalysisCache::cloneData(const Loop *NewLoop, const Loop *OldLoop,
352                                 const ValueToValueMapTy &VMap) {
353
354   LoopProperties &NewLoopProps = LoopsProperties[NewLoop];
355   LoopProperties &OldLoopProps = *CurrentLoopProperties;
356   UnswitchedValsMap &Insts = OldLoopProps.UnswitchedVals;
357
358   // Reallocate "can-be-unswitched quota"
359
360   --OldLoopProps.CanBeUnswitchedCount;
361   ++OldLoopProps.WasUnswitchedCount;
362   NewLoopProps.WasUnswitchedCount = 0;
363   unsigned Quota = OldLoopProps.CanBeUnswitchedCount;
364   NewLoopProps.CanBeUnswitchedCount = Quota / 2;
365   OldLoopProps.CanBeUnswitchedCount = Quota - Quota / 2;
366
367   NewLoopProps.SizeEstimation = OldLoopProps.SizeEstimation;
368
369   // Clone unswitched values info:
370   // for new loop switches we clone info about values that was
371   // already unswitched and has redundant successors.
372   for (UnswitchedValsIt I = Insts.begin(); I != Insts.end(); ++I) {
373     const SwitchInst *OldInst = I->first;
374     Value *NewI = VMap.lookup(OldInst);
375     const SwitchInst *NewInst = cast_or_null<SwitchInst>(NewI);
376     assert(NewInst && "All instructions that are in SrcBB must be in VMap.");
377
378     NewLoopProps.UnswitchedVals[NewInst] = OldLoopProps.UnswitchedVals[OldInst];
379   }
380 }
381
382 char LoopUnswitch::ID = 0;
383 INITIALIZE_PASS_BEGIN(LoopUnswitch, "loop-unswitch", "Unswitch loops",
384                       false, false)
385 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
386 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
387 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
388 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
389 INITIALIZE_PASS_DEPENDENCY(LCSSA)
390 INITIALIZE_PASS_END(LoopUnswitch, "loop-unswitch", "Unswitch loops",
391                       false, false)
392
393 Pass *llvm::createLoopUnswitchPass(bool Os) {
394   return new LoopUnswitch(Os);
395 }
396
397 /// Cond is a condition that occurs in L. If it is invariant in the loop, or has
398 /// an invariant piece, return the invariant. Otherwise, return null.
399 static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) {
400
401   // We started analyze new instruction, increment scanned instructions counter.
402   ++TotalInsts;
403
404   // We can never unswitch on vector conditions.
405   if (Cond->getType()->isVectorTy())
406     return nullptr;
407
408   // Constants should be folded, not unswitched on!
409   if (isa<Constant>(Cond)) return nullptr;
410
411   // TODO: Handle: br (VARIANT|INVARIANT).
412
413   // Hoist simple values out.
414   if (L->makeLoopInvariant(Cond, Changed))
415     return Cond;
416
417   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
418     if (BO->getOpcode() == Instruction::And ||
419         BO->getOpcode() == Instruction::Or) {
420       // If either the left or right side is invariant, we can unswitch on this,
421       // which will cause the branch to go away in one loop and the condition to
422       // simplify in the other one.
423       if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed))
424         return LHS;
425       if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed))
426         return RHS;
427     }
428
429   return nullptr;
430 }
431
432 bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) {
433   if (skipOptnoneFunction(L))
434     return false;
435
436   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
437       *L->getHeader()->getParent());
438   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
439   LPM = &LPM_Ref;
440   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
441   currentLoop = L;
442   Function *F = currentLoop->getHeader()->getParent();
443
444   EnabledPGO = F->getEntryCount().hasValue();
445
446   if (LoopUnswitchWithBlockFrequency && EnabledPGO) {
447     BranchProbabilityInfo BPI(*F, *LI);
448     BFI.calculate(*L->getHeader()->getParent(), BPI, *LI);
449
450     // Use BranchProbability to compute a minimum frequency based on
451     // function entry baseline frequency. Loops with headers below this
452     // frequency are considered as cold.
453     const BranchProbability ColdProb(ColdnessThreshold, 100);
454     ColdEntryFreq = BlockFrequency(BFI.getEntryFreq()) * ColdProb;
455   }
456
457   bool Changed = false;
458   do {
459     assert(currentLoop->isLCSSAForm(*DT));
460     redoLoop = false;
461     Changed |= processCurrentLoop();
462   } while(redoLoop);
463
464   // FIXME: Reconstruct dom info, because it is not preserved properly.
465   if (Changed)
466     DT->recalculate(*F);
467   return Changed;
468 }
469
470 /// Do actual work and unswitch loop if possible and profitable.
471 bool LoopUnswitch::processCurrentLoop() {
472   bool Changed = false;
473
474   initLoopData();
475
476   // If LoopSimplify was unable to form a preheader, don't do any unswitching.
477   if (!loopPreheader)
478     return false;
479
480   // Loops with indirectbr cannot be cloned.
481   if (!currentLoop->isSafeToClone())
482     return false;
483
484   // Without dedicated exits, splitting the exit edge may fail.
485   if (!currentLoop->hasDedicatedExits())
486     return false;
487
488   LLVMContext &Context = loopHeader->getContext();
489
490   // Analyze loop cost, and stop unswitching if loop content can not be duplicated.
491   if (!BranchesInfo.countLoop(
492           currentLoop, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
493                            *currentLoop->getHeader()->getParent()),
494           AC))
495     return false;
496
497   // Try trivial unswitch first before loop over other basic blocks in the loop.
498   if (TryTrivialLoopUnswitch(Changed)) {
499     return true;
500   }
501
502   // Do not unswitch loops containing convergent operations, as we might be
503   // making them control dependent on the unswitch value when they were not
504   // before.
505   // FIXME: This could be refined to only bail if the convergent operation is
506   // not already control-dependent on the unswitch value.
507   for (const auto BB : currentLoop->blocks()) {
508     for (auto &I : *BB) {
509       auto CS = CallSite(&I);
510       if (!CS) continue;
511       if (CS.hasFnAttr(Attribute::Convergent))
512         return false;
513     }
514   }
515
516   // Do not do non-trivial unswitch while optimizing for size.
517   // FIXME: Use Function::optForSize().
518   if (OptimizeForSize ||
519       loopHeader->getParent()->hasFnAttribute(Attribute::OptimizeForSize))
520     return false;
521
522   if (LoopUnswitchWithBlockFrequency && EnabledPGO) {
523     // Compute the weighted frequency of the hottest block in the
524     // loop (loopHeader in this case since inner loops should be
525     // processed before outer loop). If it is less than ColdFrequency,
526     // we should not unswitch.
527     BlockFrequency LoopEntryFreq = BFI.getBlockFreq(loopHeader);
528     if (LoopEntryFreq < ColdEntryFreq)
529       return false;
530   }
531
532   // Loop over all of the basic blocks in the loop.  If we find an interior
533   // block that is branching on a loop-invariant condition, we can unswitch this
534   // loop.
535   for (Loop::block_iterator I = currentLoop->block_begin(),
536          E = currentLoop->block_end(); I != E; ++I) {
537     TerminatorInst *TI = (*I)->getTerminator();
538     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
539       // If this isn't branching on an invariant condition, we can't unswitch
540       // it.
541       if (BI->isConditional()) {
542         // See if this, or some part of it, is loop invariant.  If so, we can
543         // unswitch on it if we desire.
544         Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
545                                                currentLoop, Changed);
546         if (LoopCond &&
547             UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context), TI)) {
548           ++NumBranches;
549           return true;
550         }
551       }
552     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
553       Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
554                                              currentLoop, Changed);
555       unsigned NumCases = SI->getNumCases();
556       if (LoopCond && NumCases) {
557         // Find a value to unswitch on:
558         // FIXME: this should chose the most expensive case!
559         // FIXME: scan for a case with a non-critical edge?
560         Constant *UnswitchVal = nullptr;
561
562         // Do not process same value again and again.
563         // At this point we have some cases already unswitched and
564         // some not yet unswitched. Let's find the first not yet unswitched one.
565         for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
566              i != e; ++i) {
567           Constant *UnswitchValCandidate = i.getCaseValue();
568           if (!BranchesInfo.isUnswitched(SI, UnswitchValCandidate)) {
569             UnswitchVal = UnswitchValCandidate;
570             break;
571           }
572         }
573
574         if (!UnswitchVal)
575           continue;
576
577         if (UnswitchIfProfitable(LoopCond, UnswitchVal)) {
578           ++NumSwitches;
579           return true;
580         }
581       }
582     }
583
584     // Scan the instructions to check for unswitchable values.
585     for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
586          BBI != E; ++BBI)
587       if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
588         Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
589                                                currentLoop, Changed);
590         if (LoopCond && UnswitchIfProfitable(LoopCond,
591                                              ConstantInt::getTrue(Context))) {
592           ++NumSelects;
593           return true;
594         }
595       }
596   }
597   return Changed;
598 }
599
600 /// Check to see if all paths from BB exit the loop with no side effects
601 /// (including infinite loops).
602 ///
603 /// If true, we return true and set ExitBB to the block we
604 /// exit through.
605 ///
606 static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
607                                          BasicBlock *&ExitBB,
608                                          std::set<BasicBlock*> &Visited) {
609   if (!Visited.insert(BB).second) {
610     // Already visited. Without more analysis, this could indicate an infinite
611     // loop.
612     return false;
613   }
614   if (!L->contains(BB)) {
615     // Otherwise, this is a loop exit, this is fine so long as this is the
616     // first exit.
617     if (ExitBB) return false;
618     ExitBB = BB;
619     return true;
620   }
621
622   // Otherwise, this is an unvisited intra-loop node.  Check all successors.
623   for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
624     // Check to see if the successor is a trivial loop exit.
625     if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
626       return false;
627   }
628
629   // Okay, everything after this looks good, check to make sure that this block
630   // doesn't include any side effects.
631   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
632     if (I->mayHaveSideEffects())
633       return false;
634
635   return true;
636 }
637
638 /// Return true if the specified block unconditionally leads to an exit from
639 /// the specified loop, and has no side-effects in the process. If so, return
640 /// the block that is exited to, otherwise return null.
641 static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
642   std::set<BasicBlock*> Visited;
643   Visited.insert(L->getHeader());  // Branches to header make infinite loops.
644   BasicBlock *ExitBB = nullptr;
645   if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
646     return ExitBB;
647   return nullptr;
648 }
649
650 /// We have found that we can unswitch currentLoop when LoopCond == Val to
651 /// simplify the loop.  If we decide that this is profitable,
652 /// unswitch the loop, reprocess the pieces, then return true.
653 bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val,
654                                         TerminatorInst *TI) {
655   // Check to see if it would be profitable to unswitch current loop.
656   if (!BranchesInfo.CostAllowsUnswitching()) {
657     DEBUG(dbgs() << "NOT unswitching loop %"
658                  << currentLoop->getHeader()->getName()
659                  << " at non-trivial condition '" << *Val
660                  << "' == " << *LoopCond << "\n"
661                  << ". Cost too high.\n");
662     return false;
663   }
664
665   UnswitchNontrivialCondition(LoopCond, Val, currentLoop, TI);
666   return true;
667 }
668
669 /// Recursively clone the specified loop and all of its children,
670 /// mapping the blocks with the specified map.
671 static Loop *CloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
672                        LoopInfo *LI, LPPassManager *LPM) {
673   Loop &New = LPM->addLoop(PL);
674
675   // Add all of the blocks in L to the new loop.
676   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
677        I != E; ++I)
678     if (LI->getLoopFor(*I) == L)
679       New.addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);
680
681   // Add all of the subloops to the new loop.
682   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
683     CloneLoop(*I, &New, VM, LI, LPM);
684
685   return &New;
686 }
687
688 static void copyMetadata(Instruction *DstInst, const Instruction *SrcInst,
689                          bool Swapped) {
690   if (!SrcInst || !SrcInst->hasMetadata())
691     return;
692
693   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
694   SrcInst->getAllMetadata(MDs);
695   for (auto &MD : MDs) {
696     switch (MD.first) {
697     default:
698       break;
699     case LLVMContext::MD_prof:
700       if (Swapped && MD.second->getNumOperands() == 3 &&
701           isa<MDString>(MD.second->getOperand(0))) {
702         MDString *MDName = cast<MDString>(MD.second->getOperand(0));
703         if (MDName->getString() == "branch_weights") {
704           auto *ValT = cast_or_null<ConstantAsMetadata>(
705                            MD.second->getOperand(1))->getValue();
706           auto *ValF = cast_or_null<ConstantAsMetadata>(
707                            MD.second->getOperand(2))->getValue();
708           assert(ValT && ValF && "Invalid Operands of branch_weights");
709           auto NewMD =
710               MDBuilder(DstInst->getParent()->getContext())
711                   .createBranchWeights(cast<ConstantInt>(ValF)->getZExtValue(),
712                                        cast<ConstantInt>(ValT)->getZExtValue());
713           MD.second = NewMD;
714         }
715       }
716       // fallthrough.
717     case LLVMContext::MD_make_implicit:
718     case LLVMContext::MD_dbg:
719       DstInst->setMetadata(MD.first, MD.second);
720     }
721   }
722 }
723
724 /// Emit a conditional branch on two values if LIC == Val, branch to TrueDst,
725 /// otherwise branch to FalseDest. Insert the code immediately before InsertPt.
726 void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
727                                                   BasicBlock *TrueDest,
728                                                   BasicBlock *FalseDest,
729                                                   Instruction *InsertPt,
730                                                   TerminatorInst *TI) {
731   // Insert a conditional branch on LIC to the two preheaders.  The original
732   // code is the true version and the new code is the false version.
733   Value *BranchVal = LIC;
734   bool Swapped = false;
735   if (!isa<ConstantInt>(Val) ||
736       Val->getType() != Type::getInt1Ty(LIC->getContext()))
737     BranchVal = new ICmpInst(InsertPt, ICmpInst::ICMP_EQ, LIC, Val);
738   else if (Val != ConstantInt::getTrue(Val->getContext())) {
739     // We want to enter the new loop when the condition is true.
740     std::swap(TrueDest, FalseDest);
741     Swapped = true;
742   }
743
744   // Insert the new branch.
745   BranchInst *BI = BranchInst::Create(TrueDest, FalseDest, BranchVal, InsertPt);
746   copyMetadata(BI, TI, Swapped);
747
748   // If either edge is critical, split it. This helps preserve LoopSimplify
749   // form for enclosing loops.
750   auto Options = CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA();
751   SplitCriticalEdge(BI, 0, Options);
752   SplitCriticalEdge(BI, 1, Options);
753 }
754
755 /// Given a loop that has a trivial unswitchable condition in it (a cond branch
756 /// from its header block to its latch block, where the path through the loop
757 /// that doesn't execute its body has no side-effects), unswitch it. This
758 /// doesn't involve any code duplication, just moving the conditional branch
759 /// outside of the loop and updating loop info.
760 void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
761                                             BasicBlock *ExitBlock,
762                                             TerminatorInst *TI) {
763   DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %"
764                << loopHeader->getName() << " [" << L->getBlocks().size()
765                << " blocks] in Function "
766                << L->getHeader()->getParent()->getName() << " on cond: " << *Val
767                << " == " << *Cond << "\n");
768
769   // First step, split the preheader, so that we know that there is a safe place
770   // to insert the conditional branch.  We will change loopPreheader to have a
771   // conditional branch on Cond.
772   BasicBlock *NewPH = SplitEdge(loopPreheader, loopHeader, DT, LI);
773
774   // Now that we have a place to insert the conditional branch, create a place
775   // to branch to: this is the exit block out of the loop that we should
776   // short-circuit to.
777
778   // Split this block now, so that the loop maintains its exit block, and so
779   // that the jump from the preheader can execute the contents of the exit block
780   // without actually branching to it (the exit block should be dominated by the
781   // loop header, not the preheader).
782   assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
783   BasicBlock *NewExit = SplitBlock(ExitBlock, &ExitBlock->front(), DT, LI);
784
785   // Okay, now we have a position to branch from and a position to branch to,
786   // insert the new conditional branch.
787   EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH,
788                                  loopPreheader->getTerminator(), TI);
789   LPM->deleteSimpleAnalysisValue(loopPreheader->getTerminator(), L);
790   loopPreheader->getTerminator()->eraseFromParent();
791
792   // We need to reprocess this loop, it could be unswitched again.
793   redoLoop = true;
794
795   // Now that we know that the loop is never entered when this condition is a
796   // particular value, rewrite the loop with this info.  We know that this will
797   // at least eliminate the old branch.
798   RewriteLoopBodyWithConditionConstant(L, Cond, Val, false);
799   ++NumTrivial;
800 }
801
802 /// Check if the first non-constant condition starting from the loop header is
803 /// a trivial unswitch condition: that is, a condition controls whether or not
804 /// the loop does anything at all. If it is a trivial condition, unswitching
805 /// produces no code duplications (equivalently, it produces a simpler loop and
806 /// a new empty loop, which gets deleted). Therefore always unswitch trivial
807 /// condition.
808 bool LoopUnswitch::TryTrivialLoopUnswitch(bool &Changed) {
809   BasicBlock *CurrentBB = currentLoop->getHeader();
810   TerminatorInst *CurrentTerm = CurrentBB->getTerminator();
811   LLVMContext &Context = CurrentBB->getContext();
812
813   // If loop header has only one reachable successor (currently via an
814   // unconditional branch or constant foldable conditional branch, but
815   // should also consider adding constant foldable switch instruction in
816   // future), we should keep looking for trivial condition candidates in
817   // the successor as well. An alternative is to constant fold conditions
818   // and merge successors into loop header (then we only need to check header's
819   // terminator). The reason for not doing this in LoopUnswitch pass is that
820   // it could potentially break LoopPassManager's invariants. Folding dead
821   // branches could either eliminate the current loop or make other loops
822   // unreachable. LCSSA form might also not be preserved after deleting
823   // branches. The following code keeps traversing loop header's successors
824   // until it finds the trivial condition candidate (condition that is not a
825   // constant). Since unswitching generates branches with constant conditions,
826   // this scenario could be very common in practice.
827   SmallSet<BasicBlock*, 8> Visited;
828
829   while (true) {
830     // If we exit loop or reach a previous visited block, then
831     // we can not reach any trivial condition candidates (unfoldable
832     // branch instructions or switch instructions) and no unswitch
833     // can happen. Exit and return false.
834     if (!currentLoop->contains(CurrentBB) || !Visited.insert(CurrentBB).second)
835       return false;
836
837     // Check if this loop will execute any side-effecting instructions (e.g.
838     // stores, calls, volatile loads) in the part of the loop that the code
839     // *would* execute. Check the header first.
840     for (Instruction &I : *CurrentBB)
841       if (I.mayHaveSideEffects())
842         return false;
843
844     // FIXME: add check for constant foldable switch instructions.
845     if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) {
846       if (BI->isUnconditional()) {
847         CurrentBB = BI->getSuccessor(0);
848       } else if (BI->getCondition() == ConstantInt::getTrue(Context)) {
849         CurrentBB = BI->getSuccessor(0);
850       } else if (BI->getCondition() == ConstantInt::getFalse(Context)) {
851         CurrentBB = BI->getSuccessor(1);
852       } else {
853         // Found a trivial condition candidate: non-foldable conditional branch.
854         break;
855       }
856     } else {
857       break;
858     }
859
860     CurrentTerm = CurrentBB->getTerminator();
861   }
862
863   // CondVal is the condition that controls the trivial condition.
864   // LoopExitBB is the BasicBlock that loop exits when meets trivial condition.
865   Constant *CondVal = nullptr;
866   BasicBlock *LoopExitBB = nullptr;
867
868   if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) {
869     // If this isn't branching on an invariant condition, we can't unswitch it.
870     if (!BI->isConditional())
871       return false;
872
873     Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
874                                            currentLoop, Changed);
875
876     // Unswitch only if the trivial condition itself is an LIV (not
877     // partial LIV which could occur in and/or)
878     if (!LoopCond || LoopCond != BI->getCondition())
879       return false;
880
881     // Check to see if a successor of the branch is guaranteed to
882     // exit through a unique exit block without having any
883     // side-effects.  If so, determine the value of Cond that causes
884     // it to do this.
885     if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
886                                              BI->getSuccessor(0)))) {
887       CondVal = ConstantInt::getTrue(Context);
888     } else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
889                                                     BI->getSuccessor(1)))) {
890       CondVal = ConstantInt::getFalse(Context);
891     }
892
893     // If we didn't find a single unique LoopExit block, or if the loop exit
894     // block contains phi nodes, this isn't trivial.
895     if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
896       return false;   // Can't handle this.
897
898     UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, LoopExitBB,
899                              CurrentTerm);
900     ++NumBranches;
901     return true;
902   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
903     // If this isn't switching on an invariant condition, we can't unswitch it.
904     Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
905                                            currentLoop, Changed);
906
907     // Unswitch only if the trivial condition itself is an LIV (not
908     // partial LIV which could occur in and/or)
909     if (!LoopCond || LoopCond != SI->getCondition())
910       return false;
911
912     // Check to see if a successor of the switch is guaranteed to go to the
913     // latch block or exit through a one exit block without having any
914     // side-effects.  If so, determine the value of Cond that causes it to do
915     // this.
916     // Note that we can't trivially unswitch on the default case or
917     // on already unswitched cases.
918     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
919          i != e; ++i) {
920       BasicBlock *LoopExitCandidate;
921       if ((LoopExitCandidate = isTrivialLoopExitBlock(currentLoop,
922                                                i.getCaseSuccessor()))) {
923         // Okay, we found a trivial case, remember the value that is trivial.
924         ConstantInt *CaseVal = i.getCaseValue();
925
926         // Check that it was not unswitched before, since already unswitched
927         // trivial vals are looks trivial too.
928         if (BranchesInfo.isUnswitched(SI, CaseVal))
929           continue;
930         LoopExitBB = LoopExitCandidate;
931         CondVal = CaseVal;
932         break;
933       }
934     }
935
936     // If we didn't find a single unique LoopExit block, or if the loop exit
937     // block contains phi nodes, this isn't trivial.
938     if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
939       return false;   // Can't handle this.
940
941     UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, LoopExitBB,
942                              nullptr);
943     ++NumSwitches;
944     return true;
945   }
946   return false;
947 }
948
949 /// Split all of the edges from inside the loop to their exit blocks.
950 /// Update the appropriate Phi nodes as we do so.
951 void LoopUnswitch::SplitExitEdges(Loop *L,
952                                const SmallVectorImpl<BasicBlock *> &ExitBlocks){
953
954   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
955     BasicBlock *ExitBlock = ExitBlocks[i];
956     SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBlock),
957                                        pred_end(ExitBlock));
958
959     // Although SplitBlockPredecessors doesn't preserve loop-simplify in
960     // general, if we call it on all predecessors of all exits then it does.
961     SplitBlockPredecessors(ExitBlock, Preds, ".us-lcssa", DT, LI,
962                            /*PreserveLCSSA*/ true);
963   }
964 }
965
966 /// We determined that the loop is profitable to unswitch when LIC equal Val.
967 /// Split it into loop versions and test the condition outside of either loop.
968 /// Return the loops created as Out1/Out2.
969 void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
970                                                Loop *L, TerminatorInst *TI) {
971   Function *F = loopHeader->getParent();
972   DEBUG(dbgs() << "loop-unswitch: Unswitching loop %"
973         << loopHeader->getName() << " [" << L->getBlocks().size()
974         << " blocks] in Function " << F->getName()
975         << " when '" << *Val << "' == " << *LIC << "\n");
976
977   if (auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>())
978     SEWP->getSE().forgetLoop(L);
979
980   LoopBlocks.clear();
981   NewBlocks.clear();
982
983   // First step, split the preheader and exit blocks, and add these blocks to
984   // the LoopBlocks list.
985   BasicBlock *NewPreheader = SplitEdge(loopPreheader, loopHeader, DT, LI);
986   LoopBlocks.push_back(NewPreheader);
987
988   // We want the loop to come after the preheader, but before the exit blocks.
989   LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
990
991   SmallVector<BasicBlock*, 8> ExitBlocks;
992   L->getUniqueExitBlocks(ExitBlocks);
993
994   // Split all of the edges from inside the loop to their exit blocks.  Update
995   // the appropriate Phi nodes as we do so.
996   SplitExitEdges(L, ExitBlocks);
997
998   // The exit blocks may have been changed due to edge splitting, recompute.
999   ExitBlocks.clear();
1000   L->getUniqueExitBlocks(ExitBlocks);
1001
1002   // Add exit blocks to the loop blocks.
1003   LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
1004
1005   // Next step, clone all of the basic blocks that make up the loop (including
1006   // the loop preheader and exit blocks), keeping track of the mapping between
1007   // the instructions and blocks.
1008   NewBlocks.reserve(LoopBlocks.size());
1009   ValueToValueMapTy VMap;
1010   for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
1011     BasicBlock *NewBB = CloneBasicBlock(LoopBlocks[i], VMap, ".us", F);
1012
1013     NewBlocks.push_back(NewBB);
1014     VMap[LoopBlocks[i]] = NewBB;  // Keep the BB mapping.
1015     LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], NewBB, L);
1016   }
1017
1018   // Splice the newly inserted blocks into the function right before the
1019   // original preheader.
1020   F->getBasicBlockList().splice(NewPreheader->getIterator(),
1021                                 F->getBasicBlockList(),
1022                                 NewBlocks[0]->getIterator(), F->end());
1023
1024   // FIXME: We could register any cloned assumptions instead of clearing the
1025   // whole function's cache.
1026   AC->clear();
1027
1028   // Now we create the new Loop object for the versioned loop.
1029   Loop *NewLoop = CloneLoop(L, L->getParentLoop(), VMap, LI, LPM);
1030
1031   // Recalculate unswitching quota, inherit simplified switches info for NewBB,
1032   // Probably clone more loop-unswitch related loop properties.
1033   BranchesInfo.cloneData(NewLoop, L, VMap);
1034
1035   Loop *ParentLoop = L->getParentLoop();
1036   if (ParentLoop) {
1037     // Make sure to add the cloned preheader and exit blocks to the parent loop
1038     // as well.
1039     ParentLoop->addBasicBlockToLoop(NewBlocks[0], *LI);
1040   }
1041
1042   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
1043     BasicBlock *NewExit = cast<BasicBlock>(VMap[ExitBlocks[i]]);
1044     // The new exit block should be in the same loop as the old one.
1045     if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i]))
1046       ExitBBLoop->addBasicBlockToLoop(NewExit, *LI);
1047
1048     assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
1049            "Exit block should have been split to have one successor!");
1050     BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
1051
1052     // If the successor of the exit block had PHI nodes, add an entry for
1053     // NewExit.
1054     for (BasicBlock::iterator I = ExitSucc->begin();
1055          PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1056       Value *V = PN->getIncomingValueForBlock(ExitBlocks[i]);
1057       ValueToValueMapTy::iterator It = VMap.find(V);
1058       if (It != VMap.end()) V = It->second;
1059       PN->addIncoming(V, NewExit);
1060     }
1061
1062     if (LandingPadInst *LPad = NewExit->getLandingPadInst()) {
1063       PHINode *PN = PHINode::Create(LPad->getType(), 0, "",
1064                                     &*ExitSucc->getFirstInsertionPt());
1065
1066       for (pred_iterator I = pred_begin(ExitSucc), E = pred_end(ExitSucc);
1067            I != E; ++I) {
1068         BasicBlock *BB = *I;
1069         LandingPadInst *LPI = BB->getLandingPadInst();
1070         LPI->replaceAllUsesWith(PN);
1071         PN->addIncoming(LPI, BB);
1072       }
1073     }
1074   }
1075
1076   // Rewrite the code to refer to itself.
1077   for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i)
1078     for (BasicBlock::iterator I = NewBlocks[i]->begin(),
1079            E = NewBlocks[i]->end(); I != E; ++I)
1080       RemapInstruction(&*I, VMap,
1081                        RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
1082
1083   // Rewrite the original preheader to select between versions of the loop.
1084   BranchInst *OldBR = cast<BranchInst>(loopPreheader->getTerminator());
1085   assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
1086          "Preheader splitting did not work correctly!");
1087
1088   // Emit the new branch that selects between the two versions of this loop.
1089   EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR,
1090                                  TI);
1091   LPM->deleteSimpleAnalysisValue(OldBR, L);
1092   OldBR->eraseFromParent();
1093
1094   LoopProcessWorklist.push_back(NewLoop);
1095   redoLoop = true;
1096
1097   // Keep a WeakVH holding onto LIC.  If the first call to RewriteLoopBody
1098   // deletes the instruction (for example by simplifying a PHI that feeds into
1099   // the condition that we're unswitching on), we don't rewrite the second
1100   // iteration.
1101   WeakVH LICHandle(LIC);
1102
1103   // Now we rewrite the original code to know that the condition is true and the
1104   // new code to know that the condition is false.
1105   RewriteLoopBodyWithConditionConstant(L, LIC, Val, false);
1106
1107   // It's possible that simplifying one loop could cause the other to be
1108   // changed to another value or a constant.  If its a constant, don't simplify
1109   // it.
1110   if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop &&
1111       LICHandle && !isa<Constant>(LICHandle))
1112     RewriteLoopBodyWithConditionConstant(NewLoop, LICHandle, Val, true);
1113 }
1114
1115 /// Remove all instances of I from the worklist vector specified.
1116 static void RemoveFromWorklist(Instruction *I,
1117                                std::vector<Instruction*> &Worklist) {
1118
1119   Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), I),
1120                  Worklist.end());
1121 }
1122
1123 /// When we find that I really equals V, remove I from the
1124 /// program, replacing all uses with V and update the worklist.
1125 static void ReplaceUsesOfWith(Instruction *I, Value *V,
1126                               std::vector<Instruction*> &Worklist,
1127                               Loop *L, LPPassManager *LPM) {
1128   DEBUG(dbgs() << "Replace with '" << *V << "': " << *I);
1129
1130   // Add uses to the worklist, which may be dead now.
1131   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1132     if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
1133       Worklist.push_back(Use);
1134
1135   // Add users to the worklist which may be simplified now.
1136   for (User *U : I->users())
1137     Worklist.push_back(cast<Instruction>(U));
1138   LPM->deleteSimpleAnalysisValue(I, L);
1139   RemoveFromWorklist(I, Worklist);
1140   I->replaceAllUsesWith(V);
1141   I->eraseFromParent();
1142   ++NumSimplify;
1143 }
1144
1145 /// We know either that the value LIC has the value specified by Val in the
1146 /// specified loop, or we know it does NOT have that value.
1147 /// Rewrite any uses of LIC or of properties correlated to it.
1148 void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
1149                                                         Constant *Val,
1150                                                         bool IsEqual) {
1151   assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
1152
1153   // FIXME: Support correlated properties, like:
1154   //  for (...)
1155   //    if (li1 < li2)
1156   //      ...
1157   //    if (li1 > li2)
1158   //      ...
1159
1160   // FOLD boolean conditions (X|LIC), (X&LIC).  Fold conditional branches,
1161   // selects, switches.
1162   std::vector<Instruction*> Worklist;
1163   LLVMContext &Context = Val->getContext();
1164
1165   // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
1166   // in the loop with the appropriate one directly.
1167   if (IsEqual || (isa<ConstantInt>(Val) &&
1168       Val->getType()->isIntegerTy(1))) {
1169     Value *Replacement;
1170     if (IsEqual)
1171       Replacement = Val;
1172     else
1173       Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()),
1174                                      !cast<ConstantInt>(Val)->getZExtValue());
1175
1176     for (User *U : LIC->users()) {
1177       Instruction *UI = dyn_cast<Instruction>(U);
1178       if (!UI || !L->contains(UI))
1179         continue;
1180       Worklist.push_back(UI);
1181     }
1182
1183     for (std::vector<Instruction*>::iterator UI = Worklist.begin(),
1184          UE = Worklist.end(); UI != UE; ++UI)
1185       (*UI)->replaceUsesOfWith(LIC, Replacement);
1186
1187     SimplifyCode(Worklist, L);
1188     return;
1189   }
1190
1191   // Otherwise, we don't know the precise value of LIC, but we do know that it
1192   // is certainly NOT "Val".  As such, simplify any uses in the loop that we
1193   // can.  This case occurs when we unswitch switch statements.
1194   for (User *U : LIC->users()) {
1195     Instruction *UI = dyn_cast<Instruction>(U);
1196     if (!UI || !L->contains(UI))
1197       continue;
1198
1199     Worklist.push_back(UI);
1200
1201     // TODO: We could do other simplifications, for example, turning
1202     // 'icmp eq LIC, Val' -> false.
1203
1204     // If we know that LIC is not Val, use this info to simplify code.
1205     SwitchInst *SI = dyn_cast<SwitchInst>(UI);
1206     if (!SI || !isa<ConstantInt>(Val)) continue;
1207
1208     SwitchInst::CaseIt DeadCase = SI->findCaseValue(cast<ConstantInt>(Val));
1209     // Default case is live for multiple values.
1210     if (DeadCase == SI->case_default()) continue;
1211
1212     // Found a dead case value.  Don't remove PHI nodes in the
1213     // successor if they become single-entry, those PHI nodes may
1214     // be in the Users list.
1215
1216     BasicBlock *Switch = SI->getParent();
1217     BasicBlock *SISucc = DeadCase.getCaseSuccessor();
1218     BasicBlock *Latch = L->getLoopLatch();
1219
1220     BranchesInfo.setUnswitched(SI, Val);
1221
1222     if (!SI->findCaseDest(SISucc)) continue;  // Edge is critical.
1223     // If the DeadCase successor dominates the loop latch, then the
1224     // transformation isn't safe since it will delete the sole predecessor edge
1225     // to the latch.
1226     if (Latch && DT->dominates(SISucc, Latch))
1227       continue;
1228
1229     // FIXME: This is a hack.  We need to keep the successor around
1230     // and hooked up so as to preserve the loop structure, because
1231     // trying to update it is complicated.  So instead we preserve the
1232     // loop structure and put the block on a dead code path.
1233     SplitEdge(Switch, SISucc, DT, LI);
1234     // Compute the successors instead of relying on the return value
1235     // of SplitEdge, since it may have split the switch successor
1236     // after PHI nodes.
1237     BasicBlock *NewSISucc = DeadCase.getCaseSuccessor();
1238     BasicBlock *OldSISucc = *succ_begin(NewSISucc);
1239     // Create an "unreachable" destination.
1240     BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable",
1241                                            Switch->getParent(),
1242                                            OldSISucc);
1243     new UnreachableInst(Context, Abort);
1244     // Force the new case destination to branch to the "unreachable"
1245     // block while maintaining a (dead) CFG edge to the old block.
1246     NewSISucc->getTerminator()->eraseFromParent();
1247     BranchInst::Create(Abort, OldSISucc,
1248                        ConstantInt::getTrue(Context), NewSISucc);
1249     // Release the PHI operands for this edge.
1250     for (BasicBlock::iterator II = NewSISucc->begin();
1251          PHINode *PN = dyn_cast<PHINode>(II); ++II)
1252       PN->setIncomingValue(PN->getBasicBlockIndex(Switch),
1253                            UndefValue::get(PN->getType()));
1254     // Tell the domtree about the new block. We don't fully update the
1255     // domtree here -- instead we force it to do a full recomputation
1256     // after the pass is complete -- but we do need to inform it of
1257     // new blocks.
1258     DT->addNewBlock(Abort, NewSISucc);
1259   }
1260
1261   SimplifyCode(Worklist, L);
1262 }
1263
1264 /// Now that we have simplified some instructions in the loop, walk over it and
1265 /// constant prop, dce, and fold control flow where possible. Note that this is
1266 /// effectively a very simple loop-structure-aware optimizer. During processing
1267 /// of this loop, L could very well be deleted, so it must not be used.
1268 ///
1269 /// FIXME: When the loop optimizer is more mature, separate this out to a new
1270 /// pass.
1271 ///
1272 void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
1273   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
1274   while (!Worklist.empty()) {
1275     Instruction *I = Worklist.back();
1276     Worklist.pop_back();
1277
1278     // Simple DCE.
1279     if (isInstructionTriviallyDead(I)) {
1280       DEBUG(dbgs() << "Remove dead instruction '" << *I);
1281
1282       // Add uses to the worklist, which may be dead now.
1283       for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1284         if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
1285           Worklist.push_back(Use);
1286       LPM->deleteSimpleAnalysisValue(I, L);
1287       RemoveFromWorklist(I, Worklist);
1288       I->eraseFromParent();
1289       ++NumSimplify;
1290       continue;
1291     }
1292
1293     // See if instruction simplification can hack this up.  This is common for
1294     // things like "select false, X, Y" after unswitching made the condition be
1295     // 'false'.  TODO: update the domtree properly so we can pass it here.
1296     if (Value *V = SimplifyInstruction(I, DL))
1297       if (LI->replacementPreservesLCSSAForm(I, V)) {
1298         ReplaceUsesOfWith(I, V, Worklist, L, LPM);
1299         continue;
1300       }
1301
1302     // Special case hacks that appear commonly in unswitched code.
1303     if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1304       if (BI->isUnconditional()) {
1305         // If BI's parent is the only pred of the successor, fold the two blocks
1306         // together.
1307         BasicBlock *Pred = BI->getParent();
1308         BasicBlock *Succ = BI->getSuccessor(0);
1309         BasicBlock *SinglePred = Succ->getSinglePredecessor();
1310         if (!SinglePred) continue;  // Nothing to do.
1311         assert(SinglePred == Pred && "CFG broken");
1312
1313         DEBUG(dbgs() << "Merging blocks: " << Pred->getName() << " <- "
1314               << Succ->getName() << "\n");
1315
1316         // Resolve any single entry PHI nodes in Succ.
1317         while (PHINode *PN = dyn_cast<PHINode>(Succ->begin()))
1318           ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist, L, LPM);
1319
1320         // If Succ has any successors with PHI nodes, update them to have
1321         // entries coming from Pred instead of Succ.
1322         Succ->replaceAllUsesWith(Pred);
1323
1324         // Move all of the successor contents from Succ to Pred.
1325         Pred->getInstList().splice(BI->getIterator(), Succ->getInstList(),
1326                                    Succ->begin(), Succ->end());
1327         LPM->deleteSimpleAnalysisValue(BI, L);
1328         BI->eraseFromParent();
1329         RemoveFromWorklist(BI, Worklist);
1330
1331         // Remove Succ from the loop tree.
1332         LI->removeBlock(Succ);
1333         LPM->deleteSimpleAnalysisValue(Succ, L);
1334         Succ->eraseFromParent();
1335         ++NumSimplify;
1336         continue;
1337       }
1338
1339       continue;
1340     }
1341   }
1342 }