Fix a crash when threading a block that includes a MRV call result.
[oota-llvm.git] / lib / Transforms / Scalar / JumpThreading.cpp
1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Jump Threading pass.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #define DEBUG_TYPE "jump-threading"
15 #include "llvm/Transforms/Scalar.h"
16 #include "llvm/IntrinsicInst.h"
17 #include "llvm/Pass.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
21 #include "llvm/Transforms/Utils/Local.h"
22 #include "llvm/Support/CommandLine.h"
23 #include "llvm/Support/Compiler.h"
24 #include "llvm/Support/Debug.h"
25 using namespace llvm;
26
27 STATISTIC(NumThreads, "Number of jumps threaded");
28 STATISTIC(NumFolds,   "Number of terminators folded");
29
30 static cl::opt<unsigned>
31 Threshold("jump-threading-threshold", 
32           cl::desc("Max block size to duplicate for jump threading"),
33           cl::init(6), cl::Hidden);
34
35 namespace {
36   /// This pass performs 'jump threading', which looks at blocks that have
37   /// multiple predecessors and multiple successors.  If one or more of the
38   /// predecessors of the block can be proven to always jump to one of the
39   /// successors, we forward the edge from the predecessor to the successor by
40   /// duplicating the contents of this block.
41   ///
42   /// An example of when this can occur is code like this:
43   ///
44   ///   if () { ...
45   ///     X = 4;
46   ///   }
47   ///   if (X < 3) {
48   ///
49   /// In this case, the unconditional branch at the end of the first if can be
50   /// revectored to the false side of the second if.
51   ///
52   class VISIBILITY_HIDDEN JumpThreading : public FunctionPass {
53   public:
54     static char ID; // Pass identification
55     JumpThreading() : FunctionPass((intptr_t)&ID) {}
56
57     bool runOnFunction(Function &F);
58     bool ThreadBlock(BasicBlock *BB);
59     void ThreadEdge(BasicBlock *BB, BasicBlock *PredBB, BasicBlock *SuccBB);
60     BasicBlock *FactorCommonPHIPreds(PHINode *PN, Constant *CstVal);
61
62     bool ProcessJumpOnPHI(PHINode *PN);
63     bool ProcessBranchOnLogical(Value *V, BasicBlock *BB, bool isAnd);
64     bool ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB);
65   };
66   char JumpThreading::ID = 0;
67   RegisterPass<JumpThreading> X("jump-threading", "Jump Threading");
68 }
69
70 // Public interface to the Jump Threading pass
71 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
72
73 /// runOnFunction - Top level algorithm.
74 ///
75 bool JumpThreading::runOnFunction(Function &F) {
76   DOUT << "Jump threading on function '" << F.getNameStart() << "'\n";
77   
78   bool AnotherIteration = true, EverChanged = false;
79   while (AnotherIteration) {
80     AnotherIteration = false;
81     bool Changed = false;
82     for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
83       while (ThreadBlock(I))
84         Changed = true;
85     AnotherIteration = Changed;
86     EverChanged |= Changed;
87   }
88   return EverChanged;
89 }
90
91 /// FactorCommonPHIPreds - If there are multiple preds with the same incoming
92 /// value for the PHI, factor them together so we get one block to thread for
93 /// the whole group.
94 /// This is important for things like "phi i1 [true, true, false, true, x]"
95 /// where we only need to clone the block for the true blocks once.
96 ///
97 BasicBlock *JumpThreading::FactorCommonPHIPreds(PHINode *PN, Constant *CstVal) {
98   SmallVector<BasicBlock*, 16> CommonPreds;
99   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
100     if (PN->getIncomingValue(i) == CstVal)
101       CommonPreds.push_back(PN->getIncomingBlock(i));
102   
103   if (CommonPreds.size() == 1)
104     return CommonPreds[0];
105     
106   DOUT << "  Factoring out " << CommonPreds.size()
107        << " common predecessors.\n";
108   return SplitBlockPredecessors(PN->getParent(),
109                                 &CommonPreds[0], CommonPreds.size(),
110                                 ".thr_comm", this);
111 }
112   
113
114 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
115 /// thread across it.
116 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
117   BasicBlock::const_iterator I = BB->begin();
118   /// Ignore PHI nodes, these will be flattened when duplication happens.
119   while (isa<PHINode>(*I)) ++I;
120
121   // Sum up the cost of each instruction until we get to the terminator.  Don't
122   // include the terminator because the copy won't include it.
123   unsigned Size = 0;
124   for (; !isa<TerminatorInst>(I); ++I) {
125     // Debugger intrinsics don't incur code size.
126     if (isa<DbgInfoIntrinsic>(I)) continue;
127     
128     // If this is a pointer->pointer bitcast, it is free.
129     if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
130       continue;
131     
132     // All other instructions count for at least one unit.
133     ++Size;
134     
135     // Calls are more expensive.  If they are non-intrinsic calls, we model them
136     // as having cost of 4.  If they are a non-vector intrinsic, we model them
137     // as having cost of 2 total, and if they are a vector intrinsic, we model
138     // them as having cost 1.
139     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
140       if (!isa<IntrinsicInst>(CI))
141         Size += 3;
142       else if (isa<VectorType>(CI->getType()))
143         Size += 1;
144     }
145   }
146   
147   // Threading through a switch statement is particularly profitable.  If this
148   // block ends in a switch, decrease its cost to make it more likely to happen.
149   if (isa<SwitchInst>(I))
150     Size = Size > 6 ? Size-6 : 0;
151   
152   return Size;
153 }
154
155
156 /// ThreadBlock - If there are any predecessors whose control can be threaded
157 /// through to a successor, transform them now.
158 bool JumpThreading::ThreadBlock(BasicBlock *BB) {
159   // See if this block ends with a branch of switch.  If so, see if the
160   // condition is a phi node.  If so, and if an entry of the phi node is a
161   // constant, we can thread the block.
162   Value *Condition;
163   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
164     // Can't thread an unconditional jump.
165     if (BI->isUnconditional()) return false;
166     Condition = BI->getCondition();
167   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
168     Condition = SI->getCondition();
169   else
170     return false; // Must be an invoke.
171   
172   // If the terminator of this block is branching on a constant, simplify the
173   // terminator to an unconditional branch.  This can occur due to threading in
174   // other blocks.
175   if (isa<ConstantInt>(Condition)) {
176     DOUT << "  In block '" << BB->getNameStart()
177          << "' folding terminator: " << *BB->getTerminator();
178     ++NumFolds;
179     ConstantFoldTerminator(BB);
180     return true;
181   }
182   
183   // If there is only a single predecessor of this block, nothing to fold.
184   if (BB->getSinglePredecessor())
185     return false;
186
187   // See if this is a phi node in the current block.
188   PHINode *PN = dyn_cast<PHINode>(Condition);
189   if (PN && PN->getParent() == BB)
190     return ProcessJumpOnPHI(PN);
191   
192   // If this is a conditional branch whose condition is and/or of a phi, try to
193   // simplify it.
194   if (BinaryOperator *CondI = dyn_cast<BinaryOperator>(Condition)) {
195     if ((CondI->getOpcode() == Instruction::And || 
196          CondI->getOpcode() == Instruction::Or) &&
197         isa<BranchInst>(BB->getTerminator()) &&
198         ProcessBranchOnLogical(CondI, BB,
199                                CondI->getOpcode() == Instruction::And))
200       return true;
201   }
202   
203   // If we have "br (phi != 42)" and the phi node has any constant values as 
204   // operands, we can thread through this block.
205   if (CmpInst *CondCmp = dyn_cast<CmpInst>(Condition))
206     if (isa<PHINode>(CondCmp->getOperand(0)) &&
207         isa<Constant>(CondCmp->getOperand(1)) &&
208         ProcessBranchOnCompare(CondCmp, BB))
209       return true;
210   
211   return false;
212 }
213
214 /// ProcessJumpOnPHI - We have a conditional branch of switch on a PHI node in
215 /// the current block.  See if there are any simplifications we can do based on
216 /// inputs to the phi node.
217 /// 
218 bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
219   // See if the phi node has any constant values.  If so, we can determine where
220   // the corresponding predecessor will branch.
221   ConstantInt *PredCst = 0;
222   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
223     if ((PredCst = dyn_cast<ConstantInt>(PN->getIncomingValue(i))))
224       break;
225   
226   // If no incoming value has a constant, we don't know the destination of any
227   // predecessors.
228   if (PredCst == 0)
229     return false;
230   
231   // See if the cost of duplicating this block is low enough.
232   BasicBlock *BB = PN->getParent();
233   unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
234   if (JumpThreadCost > Threshold) {
235     DOUT << "  Not threading BB '" << BB->getNameStart()
236          << "' - Cost is too high: " << JumpThreadCost << "\n";
237     return false;
238   }
239   
240   // If so, we can actually do this threading.  Merge any common predecessors
241   // that will act the same.
242   BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredCst);
243   
244   // Next, figure out which successor we are threading to.
245   BasicBlock *SuccBB;
246   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
247     SuccBB = BI->getSuccessor(PredCst == ConstantInt::getFalse());
248   else {
249     SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
250     SuccBB = SI->getSuccessor(SI->findCaseValue(PredCst));
251   }
252   
253   // If threading to the same block as we come from, we would infinite loop.
254   if (SuccBB == BB) {
255     DOUT << "  Not threading BB '" << BB->getNameStart()
256          << "' - would thread to self!\n";
257     return false;
258   }
259   
260   // And finally, do it!
261   DOUT << "  Threading edge from '" << PredBB->getNameStart() << "' to '"
262        << SuccBB->getNameStart() << "' with cost: " << JumpThreadCost
263        << ", across block:\n    "
264        << *BB << "\n";
265        
266   ThreadEdge(BB, PredBB, SuccBB);
267   ++NumThreads;
268   return true;
269 }
270
271 /// ProcessJumpOnLogicalPHI - PN's basic block contains a conditional branch
272 /// whose condition is an AND/OR where one side is PN.  If PN has constant
273 /// operands that permit us to evaluate the condition for some operand, thread
274 /// through the block.  For example with:
275 ///   br (and X, phi(Y, Z, false))
276 /// the predecessor corresponding to the 'false' will always jump to the false
277 /// destination of the branch.
278 ///
279 bool JumpThreading::ProcessBranchOnLogical(Value *V, BasicBlock *BB,
280                                            bool isAnd) {
281   // If this is a binary operator tree of the same AND/OR opcode, check the
282   // LHS/RHS.
283   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V))
284     if (isAnd && BO->getOpcode() == Instruction::And ||
285         !isAnd && BO->getOpcode() == Instruction::Or) {
286       if (ProcessBranchOnLogical(BO->getOperand(0), BB, isAnd))
287         return true;
288       if (ProcessBranchOnLogical(BO->getOperand(1), BB, isAnd))
289         return true;
290     }
291       
292   // If this isn't a PHI node, we can't handle it.
293   PHINode *PN = dyn_cast<PHINode>(V);
294   if (!PN || PN->getParent() != BB) return false;
295                                              
296   // We can only do the simplification for phi nodes of 'false' with AND or
297   // 'true' with OR.  See if we have any entries in the phi for this.
298   unsigned PredNo = ~0U;
299   ConstantInt *PredCst = ConstantInt::get(Type::Int1Ty, !isAnd);
300   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
301     if (PN->getIncomingValue(i) == PredCst) {
302       PredNo = i;
303       break;
304     }
305   }
306   
307   // If no match, bail out.
308   if (PredNo == ~0U)
309     return false;
310   
311   // See if the cost of duplicating this block is low enough.
312   unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
313   if (JumpThreadCost > Threshold) {
314     DOUT << "  Not threading BB '" << BB->getNameStart()
315          << "' - Cost is too high: " << JumpThreadCost << "\n";
316     return false;
317   }
318
319   // If so, we can actually do this threading.  Merge any common predecessors
320   // that will act the same.
321   BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredCst);
322   
323   // Next, figure out which successor we are threading to.  If this was an AND,
324   // the constant must be FALSE, and we must be targeting the 'false' block.
325   // If this is an OR, the constant must be TRUE, and we must be targeting the
326   // 'true' block.
327   BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(isAnd);
328   
329   // If threading to the same block as we come from, we would infinite loop.
330   if (SuccBB == BB) {
331     DOUT << "  Not threading BB '" << BB->getNameStart()
332     << "' - would thread to self!\n";
333     return false;
334   }
335   
336   // And finally, do it!
337   DOUT << "  Threading edge through bool from '" << PredBB->getNameStart()
338        << "' to '" << SuccBB->getNameStart() << "' with cost: "
339        << JumpThreadCost << ", across block:\n    "
340        << *BB << "\n";
341   
342   ThreadEdge(BB, PredBB, SuccBB);
343   ++NumThreads;
344   return true;
345 }
346
347 /// ProcessBranchOnCompare - We found a branch on a comparison between a phi
348 /// node and a constant.  If the PHI node contains any constants as inputs, we
349 /// can fold the compare for that edge and thread through it.
350 bool JumpThreading::ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB) {
351   PHINode *PN = cast<PHINode>(Cmp->getOperand(0));
352   Constant *RHS = cast<Constant>(Cmp->getOperand(1));
353   
354   // If the phi isn't in the current block, an incoming edge to this block
355   // doesn't control the destination.
356   if (PN->getParent() != BB)
357     return false;
358   
359   // We can do this simplification if any comparisons fold to true or false.
360   // See if any do.
361   Constant *PredCst = 0;
362   bool TrueDirection = false;
363   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
364     PredCst = dyn_cast<Constant>(PN->getIncomingValue(i));
365     if (PredCst == 0) continue;
366     
367     Constant *Res;
368     if (ICmpInst *ICI = dyn_cast<ICmpInst>(Cmp))
369       Res = ConstantExpr::getICmp(ICI->getPredicate(), PredCst, RHS);
370     else
371       Res = ConstantExpr::getFCmp(cast<FCmpInst>(Cmp)->getPredicate(),
372                                   PredCst, RHS);
373     // If this folded to a constant expr, we can't do anything.
374     if (ConstantInt *ResC = dyn_cast<ConstantInt>(Res)) {
375       TrueDirection = ResC->getZExtValue();
376       break;
377     }
378     // If this folded to undef, just go the false way.
379     if (isa<UndefValue>(Res)) {
380       TrueDirection = false;
381       break;
382     }
383     
384     // Otherwise, we can't fold this input.
385     PredCst = 0;
386   }
387   
388   // If no match, bail out.
389   if (PredCst == 0)
390     return false;
391   
392   // See if the cost of duplicating this block is low enough.
393   unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
394   if (JumpThreadCost > Threshold) {
395     DOUT << "  Not threading BB '" << BB->getNameStart()
396          << "' - Cost is too high: " << JumpThreadCost << "\n";
397     return false;
398   }
399   
400   // If so, we can actually do this threading.  Merge any common predecessors
401   // that will act the same.
402   BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredCst);
403   
404   // Next, get our successor.
405   BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(!TrueDirection);
406   
407   // If threading to the same block as we come from, we would infinite loop.
408   if (SuccBB == BB) {
409     DOUT << "  Not threading BB '" << BB->getNameStart()
410     << "' - would thread to self!\n";
411     return false;
412   }
413   
414   
415   // And finally, do it!
416   DOUT << "  Threading edge through bool from '" << PredBB->getNameStart()
417        << "' to '" << SuccBB->getNameStart() << "' with cost: "
418        << JumpThreadCost << ", across block:\n    "
419        << *BB << "\n";
420   
421   ThreadEdge(BB, PredBB, SuccBB);
422   ++NumThreads;
423   return true;
424 }
425
426
427 /// ThreadEdge - We have decided that it is safe and profitable to thread an
428 /// edge from PredBB to SuccBB across BB.  Transform the IR to reflect this
429 /// change.
430 void JumpThreading::ThreadEdge(BasicBlock *BB, BasicBlock *PredBB, 
431                                BasicBlock *SuccBB) {
432
433   // Jump Threading can not update SSA properties correctly if the values
434   // defined in the duplicated block are used outside of the block itself.  For
435   // this reason, we spill all values that are used outside of BB to the stack.
436   for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
437     if (!I->isUsedOutsideOfBlock(BB))
438       continue;
439     
440     // We found a use of I outside of BB.  Create a new stack slot to
441     // break this inter-block usage pattern.
442     if (!isa<StructType>(I->getType())) {
443       DemoteRegToStack(*I);
444       continue;
445     }
446     
447     // Alternatively, I must be a call or invoke that returns multiple retvals.
448     // We can't use 'DemoteRegToStack' because the at will create loads and
449     // stores of aggregates which is not valid yet.  If I is a call, we can just
450     // pull all the getresult instructions up to this block.  If I is an invoke,
451     // we are out of luck.
452     BasicBlock::iterator IP = I; ++IP;
453     for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
454          UI != E; ++UI)
455       cast<GetResultInst>(UI)->moveBefore(IP);
456   }
457  
458   // We are going to have to map operands from the original BB block to the new
459   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
460   // account for entry from PredBB.
461   DenseMap<Instruction*, Value*> ValueMapping;
462   
463   BasicBlock *NewBB =
464     BasicBlock::Create(BB->getName()+".thread", BB->getParent(), BB);
465   NewBB->moveAfter(PredBB);
466   
467   BasicBlock::iterator BI = BB->begin();
468   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
469     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
470   
471   // Clone the non-phi instructions of BB into NewBB, keeping track of the
472   // mapping and using it to remap operands in the cloned instructions.
473   for (; !isa<TerminatorInst>(BI); ++BI) {
474     Instruction *New = BI->clone();
475     New->setName(BI->getNameStart());
476     NewBB->getInstList().push_back(New);
477     ValueMapping[BI] = New;
478    
479     // Remap operands to patch up intra-block references.
480     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
481       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i)))
482         if (Value *Remapped = ValueMapping[Inst])
483           New->setOperand(i, Remapped);
484   }
485   
486   // We didn't copy the terminator from BB over to NewBB, because there is now
487   // an unconditional jump to SuccBB.  Insert the unconditional jump.
488   BranchInst::Create(SuccBB, NewBB);
489   
490   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
491   // PHI nodes for NewBB now.
492   for (BasicBlock::iterator PNI = SuccBB->begin(); isa<PHINode>(PNI); ++PNI) {
493     PHINode *PN = cast<PHINode>(PNI);
494     // Ok, we have a PHI node.  Figure out what the incoming value was for the
495     // DestBlock.
496     Value *IV = PN->getIncomingValueForBlock(BB);
497     
498     // Remap the value if necessary.
499     if (Instruction *Inst = dyn_cast<Instruction>(IV))
500       if (Value *MappedIV = ValueMapping[Inst])
501         IV = MappedIV;
502     PN->addIncoming(IV, NewBB);
503   }
504   
505   // Finally, NewBB is good to go.  Update the terminator of PredBB to jump to
506   // NewBB instead of BB.  This eliminates predecessors from BB, which requires
507   // us to simplify any PHI nodes in BB.
508   TerminatorInst *PredTerm = PredBB->getTerminator();
509   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
510     if (PredTerm->getSuccessor(i) == BB) {
511       BB->removePredecessor(PredBB);
512       PredTerm->setSuccessor(i, NewBB);
513     }
514 }