Revert 101000, which is breaking self-host builds.
[oota-llvm.git] / lib / Transforms / Scalar / IndVarSimplify.cpp
1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into simpler forms suitable for subsequent
12 // analysis and transformation.
13 //
14 // This transformation makes the following changes to each loop with an
15 // identifiable induction variable:
16 //   1. All loops are transformed to have a SINGLE canonical induction variable
17 //      which starts at zero and steps by one.
18 //   2. The canonical induction variable is guaranteed to be the first PHI node
19 //      in the loop header block.
20 //   3. The canonical induction variable is guaranteed to be in a wide enough
21 //      type so that IV expressions need not be (directly) zero-extended or
22 //      sign-extended.
23 //   4. Any pointer arithmetic recurrences are raised to use array subscripts.
24 //
25 // If the trip count of a loop is computable, this pass also makes the following
26 // changes:
27 //   1. The exit condition for the loop is canonicalized to compare the
28 //      induction value against the exit value.  This turns loops like:
29 //        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
30 //   2. Any use outside of the loop of an expression derived from the indvar
31 //      is changed to compute the derived value outside of the loop, eliminating
32 //      the dependence on the exit value of the induction variable.  If the only
33 //      purpose of the loop is to compute the exit value of some derived
34 //      expression, this transformation will make the loop dead.
35 //
36 // This transformation should be followed by strength reduction after all of the
37 // desired loop transformations have been performed.
38 //
39 //===----------------------------------------------------------------------===//
40
41 #define DEBUG_TYPE "indvars"
42 #include "llvm/Transforms/Scalar.h"
43 #include "llvm/BasicBlock.h"
44 #include "llvm/Constants.h"
45 #include "llvm/Instructions.h"
46 #include "llvm/IntrinsicInst.h"
47 #include "llvm/LLVMContext.h"
48 #include "llvm/Type.h"
49 #include "llvm/Analysis/Dominators.h"
50 #include "llvm/Analysis/IVUsers.h"
51 #include "llvm/Analysis/ScalarEvolutionExpander.h"
52 #include "llvm/Analysis/LoopInfo.h"
53 #include "llvm/Analysis/LoopPass.h"
54 #include "llvm/Support/CFG.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Transforms/Utils/Local.h"
59 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
60 #include "llvm/ADT/SmallVector.h"
61 #include "llvm/ADT/Statistic.h"
62 #include "llvm/ADT/STLExtras.h"
63 using namespace llvm;
64
65 STATISTIC(NumRemoved , "Number of aux indvars removed");
66 STATISTIC(NumInserted, "Number of canonical indvars added");
67 STATISTIC(NumReplaced, "Number of exit values replaced");
68 STATISTIC(NumLFTR    , "Number of loop exit tests replaced");
69
70 namespace {
71   class IndVarSimplify : public LoopPass {
72     IVUsers         *IU;
73     LoopInfo        *LI;
74     ScalarEvolution *SE;
75     DominatorTree   *DT;
76     bool Changed;
77   public:
78
79     static char ID; // Pass identification, replacement for typeid
80     IndVarSimplify() : LoopPass(&ID) {}
81
82     virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
83
84     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
85       AU.addRequired<DominatorTree>();
86       AU.addRequired<LoopInfo>();
87       AU.addRequired<ScalarEvolution>();
88       AU.addRequiredID(LoopSimplifyID);
89       AU.addRequiredID(LCSSAID);
90       AU.addRequired<IVUsers>();
91       AU.addPreserved<ScalarEvolution>();
92       AU.addPreservedID(LoopSimplifyID);
93       AU.addPreservedID(LCSSAID);
94       AU.addPreserved<IVUsers>();
95       AU.setPreservesCFG();
96     }
97
98   private:
99
100     void RewriteNonIntegerIVs(Loop *L);
101
102     ICmpInst *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
103                                    Value *IndVar,
104                                    BasicBlock *ExitingBlock,
105                                    BranchInst *BI,
106                                    SCEVExpander &Rewriter);
107     void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
108
109     void RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter);
110
111     void SinkUnusedInvariants(Loop *L);
112
113     void HandleFloatingPointIV(Loop *L, PHINode *PH);
114   };
115 }
116
117 char IndVarSimplify::ID = 0;
118 static RegisterPass<IndVarSimplify>
119 X("indvars", "Canonicalize Induction Variables");
120
121 Pass *llvm::createIndVarSimplifyPass() {
122   return new IndVarSimplify();
123 }
124
125 /// LinearFunctionTestReplace - This method rewrites the exit condition of the
126 /// loop to be a canonical != comparison against the incremented loop induction
127 /// variable.  This pass is able to rewrite the exit tests of any loop where the
128 /// SCEV analysis can determine a loop-invariant trip count of the loop, which
129 /// is actually a much broader range than just linear tests.
130 ICmpInst *IndVarSimplify::LinearFunctionTestReplace(Loop *L,
131                                    const SCEV *BackedgeTakenCount,
132                                    Value *IndVar,
133                                    BasicBlock *ExitingBlock,
134                                    BranchInst *BI,
135                                    SCEVExpander &Rewriter) {
136   // If the exiting block is not the same as the backedge block, we must compare
137   // against the preincremented value, otherwise we prefer to compare against
138   // the post-incremented value.
139   Value *CmpIndVar;
140   const SCEV *RHS = BackedgeTakenCount;
141   if (ExitingBlock == L->getLoopLatch()) {
142     // Add one to the "backedge-taken" count to get the trip count.
143     // If this addition may overflow, we have to be more pessimistic and
144     // cast the induction variable before doing the add.
145     const SCEV *Zero = SE->getIntegerSCEV(0, BackedgeTakenCount->getType());
146     const SCEV *N =
147       SE->getAddExpr(BackedgeTakenCount,
148                      SE->getIntegerSCEV(1, BackedgeTakenCount->getType()));
149     if ((isa<SCEVConstant>(N) && !N->isZero()) ||
150         SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
151       // No overflow. Cast the sum.
152       RHS = SE->getTruncateOrZeroExtend(N, IndVar->getType());
153     } else {
154       // Potential overflow. Cast before doing the add.
155       RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
156                                         IndVar->getType());
157       RHS = SE->getAddExpr(RHS,
158                            SE->getIntegerSCEV(1, IndVar->getType()));
159     }
160
161     // The BackedgeTaken expression contains the number of times that the
162     // backedge branches to the loop header.  This is one less than the
163     // number of times the loop executes, so use the incremented indvar.
164     CmpIndVar = L->getCanonicalInductionVariableIncrement();
165   } else {
166     // We have to use the preincremented value...
167     RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
168                                       IndVar->getType());
169     CmpIndVar = IndVar;
170   }
171
172   // Expand the code for the iteration count.
173   assert(RHS->isLoopInvariant(L) &&
174          "Computed iteration count is not loop invariant!");
175   Value *ExitCnt = Rewriter.expandCodeFor(RHS, IndVar->getType(), BI);
176
177   // Insert a new icmp_ne or icmp_eq instruction before the branch.
178   ICmpInst::Predicate Opcode;
179   if (L->contains(BI->getSuccessor(0)))
180     Opcode = ICmpInst::ICMP_NE;
181   else
182     Opcode = ICmpInst::ICMP_EQ;
183
184   DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
185                << "      LHS:" << *CmpIndVar << '\n'
186                << "       op:\t"
187                << (Opcode == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
188                << "      RHS:\t" << *RHS << "\n");
189
190   ICmpInst *Cond = new ICmpInst(BI, Opcode, CmpIndVar, ExitCnt, "exitcond");
191
192   Value *OrigCond = BI->getCondition();
193   // It's tempting to use replaceAllUsesWith here to fully replace the old
194   // comparison, but that's not immediately safe, since users of the old
195   // comparison may not be dominated by the new comparison. Instead, just
196   // update the branch to use the new comparison; in the common case this
197   // will make old comparison dead.
198   BI->setCondition(Cond);
199   RecursivelyDeleteTriviallyDeadInstructions(OrigCond);
200
201   ++NumLFTR;
202   Changed = true;
203   return Cond;
204 }
205
206 /// RewriteLoopExitValues - Check to see if this loop has a computable
207 /// loop-invariant execution count.  If so, this means that we can compute the
208 /// final value of any expressions that are recurrent in the loop, and
209 /// substitute the exit values from the loop into any instructions outside of
210 /// the loop that use the final values of the current expressions.
211 ///
212 /// This is mostly redundant with the regular IndVarSimplify activities that
213 /// happen later, except that it's more powerful in some cases, because it's
214 /// able to brute-force evaluate arbitrary instructions as long as they have
215 /// constant operands at the beginning of the loop.
216 void IndVarSimplify::RewriteLoopExitValues(Loop *L,
217                                            SCEVExpander &Rewriter) {
218   // Verify the input to the pass in already in LCSSA form.
219   assert(L->isLCSSAForm(*DT));
220
221   SmallVector<BasicBlock*, 8> ExitBlocks;
222   L->getUniqueExitBlocks(ExitBlocks);
223
224   // Find all values that are computed inside the loop, but used outside of it.
225   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
226   // the exit blocks of the loop to find them.
227   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
228     BasicBlock *ExitBB = ExitBlocks[i];
229
230     // If there are no PHI nodes in this exit block, then no values defined
231     // inside the loop are used on this path, skip it.
232     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
233     if (!PN) continue;
234
235     unsigned NumPreds = PN->getNumIncomingValues();
236
237     // Iterate over all of the PHI nodes.
238     BasicBlock::iterator BBI = ExitBB->begin();
239     while ((PN = dyn_cast<PHINode>(BBI++))) {
240       if (PN->use_empty())
241         continue; // dead use, don't replace it
242
243       // SCEV only supports integer expressions for now.
244       if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
245         continue;
246
247       // It's necessary to tell ScalarEvolution about this explicitly so that
248       // it can walk the def-use list and forget all SCEVs, as it may not be
249       // watching the PHI itself. Once the new exit value is in place, there
250       // may not be a def-use connection between the loop and every instruction
251       // which got a SCEVAddRecExpr for that loop.
252       SE->forgetValue(PN);
253
254       // Iterate over all of the values in all the PHI nodes.
255       for (unsigned i = 0; i != NumPreds; ++i) {
256         // If the value being merged in is not integer or is not defined
257         // in the loop, skip it.
258         Value *InVal = PN->getIncomingValue(i);
259         if (!isa<Instruction>(InVal))
260           continue;
261
262         // If this pred is for a subloop, not L itself, skip it.
263         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
264           continue; // The Block is in a subloop, skip it.
265
266         // Check that InVal is defined in the loop.
267         Instruction *Inst = cast<Instruction>(InVal);
268         if (!L->contains(Inst))
269           continue;
270
271         // Okay, this instruction has a user outside of the current loop
272         // and varies predictably *inside* the loop.  Evaluate the value it
273         // contains when the loop exits, if possible.
274         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
275         if (!ExitValue->isLoopInvariant(L))
276           continue;
277
278         Changed = true;
279         ++NumReplaced;
280
281         Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
282
283         DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
284                      << "  LoopVal = " << *Inst << "\n");
285
286         PN->setIncomingValue(i, ExitVal);
287
288         // If this instruction is dead now, delete it.
289         RecursivelyDeleteTriviallyDeadInstructions(Inst);
290
291         if (NumPreds == 1) {
292           // Completely replace a single-pred PHI. This is safe, because the
293           // NewVal won't be variant in the loop, so we don't need an LCSSA phi
294           // node anymore.
295           PN->replaceAllUsesWith(ExitVal);
296           RecursivelyDeleteTriviallyDeadInstructions(PN);
297         }
298       }
299       if (NumPreds != 1) {
300         // Clone the PHI and delete the original one. This lets IVUsers and
301         // any other maps purge the original user from their records.
302         PHINode *NewPN = cast<PHINode>(PN->clone());
303         NewPN->takeName(PN);
304         NewPN->insertBefore(PN);
305         PN->replaceAllUsesWith(NewPN);
306         PN->eraseFromParent();
307       }
308     }
309   }
310
311   // The insertion point instruction may have been deleted; clear it out
312   // so that the rewriter doesn't trip over it later.
313   Rewriter.clearInsertPoint();
314 }
315
316 void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
317   // First step.  Check to see if there are any floating-point recurrences.
318   // If there are, change them into integer recurrences, permitting analysis by
319   // the SCEV routines.
320   //
321   BasicBlock *Header    = L->getHeader();
322
323   SmallVector<WeakVH, 8> PHIs;
324   for (BasicBlock::iterator I = Header->begin();
325        PHINode *PN = dyn_cast<PHINode>(I); ++I)
326     PHIs.push_back(PN);
327
328   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
329     if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i]))
330       HandleFloatingPointIV(L, PN);
331
332   // If the loop previously had floating-point IV, ScalarEvolution
333   // may not have been able to compute a trip count. Now that we've done some
334   // re-writing, the trip count may be computable.
335   if (Changed)
336     SE->forgetLoop(L);
337 }
338
339 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
340   IU = &getAnalysis<IVUsers>();
341   LI = &getAnalysis<LoopInfo>();
342   SE = &getAnalysis<ScalarEvolution>();
343   DT = &getAnalysis<DominatorTree>();
344   Changed = false;
345
346   // If there are any floating-point recurrences, attempt to
347   // transform them to use integer recurrences.
348   RewriteNonIntegerIVs(L);
349
350   BasicBlock *ExitingBlock = L->getExitingBlock(); // may be null
351   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
352
353   // Create a rewriter object which we'll use to transform the code with.
354   SCEVExpander Rewriter(*SE);
355
356   // Check to see if this loop has a computable loop-invariant execution count.
357   // If so, this means that we can compute the final value of any expressions
358   // that are recurrent in the loop, and substitute the exit values from the
359   // loop into any instructions outside of the loop that use the final values of
360   // the current expressions.
361   //
362   if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
363     RewriteLoopExitValues(L, Rewriter);
364
365   // Compute the type of the largest recurrence expression, and decide whether
366   // a canonical induction variable should be inserted.
367   const Type *LargestType = 0;
368   bool NeedCannIV = false;
369   if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
370     LargestType = BackedgeTakenCount->getType();
371     LargestType = SE->getEffectiveSCEVType(LargestType);
372     // If we have a known trip count and a single exit block, we'll be
373     // rewriting the loop exit test condition below, which requires a
374     // canonical induction variable.
375     if (ExitingBlock)
376       NeedCannIV = true;
377   }
378   for (IVUsers::const_iterator I = IU->begin(), E = IU->end(); I != E; ++I) {
379     const Type *Ty =
380       SE->getEffectiveSCEVType(I->getOperandValToReplace()->getType());
381     if (!LargestType ||
382         SE->getTypeSizeInBits(Ty) >
383           SE->getTypeSizeInBits(LargestType))
384       LargestType = Ty;
385     NeedCannIV = true;
386   }
387
388   // Now that we know the largest of the induction variable expressions
389   // in this loop, insert a canonical induction variable of the largest size.
390   Value *IndVar = 0;
391   if (NeedCannIV) {
392     // Check to see if the loop already has any canonical-looking induction
393     // variables. If any are present and wider than the planned canonical
394     // induction variable, temporarily remove them, so that the Rewriter
395     // doesn't attempt to reuse them.
396     SmallVector<PHINode *, 2> OldCannIVs;
397     while (PHINode *OldCannIV = L->getCanonicalInductionVariable()) {
398       if (SE->getTypeSizeInBits(OldCannIV->getType()) >
399           SE->getTypeSizeInBits(LargestType))
400         OldCannIV->removeFromParent();
401       else
402         break;
403       OldCannIVs.push_back(OldCannIV);
404     }
405
406     IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L, LargestType);
407
408     ++NumInserted;
409     Changed = true;
410     DEBUG(dbgs() << "INDVARS: New CanIV: " << *IndVar << '\n');
411
412     // Now that the official induction variable is established, reinsert
413     // any old canonical-looking variables after it so that the IR remains
414     // consistent. They will be deleted as part of the dead-PHI deletion at
415     // the end of the pass.
416     while (!OldCannIVs.empty()) {
417       PHINode *OldCannIV = OldCannIVs.pop_back_val();
418       OldCannIV->insertBefore(L->getHeader()->getFirstNonPHI());
419     }
420   }
421
422   // If we have a trip count expression, rewrite the loop's exit condition
423   // using it.  We can currently only handle loops with a single exit.
424   ICmpInst *NewICmp = 0;
425   if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
426       !BackedgeTakenCount->isZero() &&
427       ExitingBlock) {
428     assert(NeedCannIV &&
429            "LinearFunctionTestReplace requires a canonical induction variable");
430     // Can't rewrite non-branch yet.
431     if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()))
432       NewICmp = LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
433                                           ExitingBlock, BI, Rewriter);
434   }
435
436   // Rewrite IV-derived expressions. Clears the rewriter cache.
437   RewriteIVExpressions(L, Rewriter);
438
439   // The Rewriter may not be used from this point on.
440
441   // Loop-invariant instructions in the preheader that aren't used in the
442   // loop may be sunk below the loop to reduce register pressure.
443   SinkUnusedInvariants(L);
444
445   // For completeness, inform IVUsers of the IV use in the newly-created
446   // loop exit test instruction.
447   if (NewICmp)
448     IU->AddUsersIfInteresting(cast<Instruction>(NewICmp->getOperand(0)));
449
450   // Clean up dead instructions.
451   Changed |= DeleteDeadPHIs(L->getHeader());
452   // Check a post-condition.
453   assert(L->isLCSSAForm(*DT) && "Indvars did not leave the loop in lcssa form!");
454   return Changed;
455 }
456
457 // FIXME: It is an extremely bad idea to indvar substitute anything more
458 // complex than affine induction variables.  Doing so will put expensive
459 // polynomial evaluations inside of the loop, and the str reduction pass
460 // currently can only reduce affine polynomials.  For now just disable
461 // indvar subst on anything more complex than an affine addrec, unless
462 // it can be expanded to a trivial value.
463 static bool isSafe(const SCEV *S, const Loop *L) {
464   // Loop-invariant values are safe.
465   if (S->isLoopInvariant(L)) return true;
466
467   // Affine addrecs are safe. Non-affine are not, because LSR doesn't know how
468   // to transform them into efficient code.
469   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
470     return AR->isAffine();
471
472   // An add is safe it all its operands are safe.
473   if (const SCEVCommutativeExpr *Commutative = dyn_cast<SCEVCommutativeExpr>(S)) {
474     for (SCEVCommutativeExpr::op_iterator I = Commutative->op_begin(),
475          E = Commutative->op_end(); I != E; ++I)
476       if (!isSafe(*I, L)) return false;
477     return true;
478   }
479   
480   // A cast is safe if its operand is.
481   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
482     return isSafe(C->getOperand(), L);
483
484   // A udiv is safe if its operands are.
485   if (const SCEVUDivExpr *UD = dyn_cast<SCEVUDivExpr>(S))
486     return isSafe(UD->getLHS(), L) &&
487            isSafe(UD->getRHS(), L);
488
489   // SCEVUnknown is always safe.
490   if (isa<SCEVUnknown>(S))
491     return true;
492
493   // Nothing else is safe.
494   return false;
495 }
496
497 void IndVarSimplify::RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter) {
498   SmallVector<WeakVH, 16> DeadInsts;
499
500   // Rewrite all induction variable expressions in terms of the canonical
501   // induction variable.
502   //
503   // If there were induction variables of other sizes or offsets, manually
504   // add the offsets to the primary induction variable and cast, avoiding
505   // the need for the code evaluation methods to insert induction variables
506   // of different sizes.
507   for (IVUsers::iterator UI = IU->begin(), E = IU->end(); UI != E; ++UI) {
508     Value *Op = UI->getOperandValToReplace();
509     const Type *UseTy = Op->getType();
510     Instruction *User = UI->getUser();
511
512     // Compute the final addrec to expand into code.
513     const SCEV *AR = IU->getReplacementExpr(*UI);
514
515     // Evaluate the expression out of the loop, if possible.
516     if (!L->contains(UI->getUser())) {
517       const SCEV *ExitVal = SE->getSCEVAtScope(AR, L->getParentLoop());
518       if (ExitVal->isLoopInvariant(L))
519         AR = ExitVal;
520     }
521
522     // FIXME: It is an extremely bad idea to indvar substitute anything more
523     // complex than affine induction variables.  Doing so will put expensive
524     // polynomial evaluations inside of the loop, and the str reduction pass
525     // currently can only reduce affine polynomials.  For now just disable
526     // indvar subst on anything more complex than an affine addrec, unless
527     // it can be expanded to a trivial value.
528     if (!isSafe(AR, L))
529       continue;
530
531     // Determine the insertion point for this user. By default, insert
532     // immediately before the user. The SCEVExpander class will automatically
533     // hoist loop invariants out of the loop. For PHI nodes, there may be
534     // multiple uses, so compute the nearest common dominator for the
535     // incoming blocks.
536     Instruction *InsertPt = User;
537     if (PHINode *PHI = dyn_cast<PHINode>(InsertPt))
538       for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
539         if (PHI->getIncomingValue(i) == Op) {
540           if (InsertPt == User)
541             InsertPt = PHI->getIncomingBlock(i)->getTerminator();
542           else
543             InsertPt =
544               DT->findNearestCommonDominator(InsertPt->getParent(),
545                                              PHI->getIncomingBlock(i))
546                     ->getTerminator();
547         }
548
549     // Now expand it into actual Instructions and patch it into place.
550     Value *NewVal = Rewriter.expandCodeFor(AR, UseTy, InsertPt);
551
552     // Inform ScalarEvolution that this value is changing. The change doesn't
553     // affect its value, but it does potentially affect which use lists the
554     // value will be on after the replacement, which affects ScalarEvolution's
555     // ability to walk use lists and drop dangling pointers when a value is
556     // deleted.
557     SE->forgetValue(User);
558
559     // Patch the new value into place.
560     if (Op->hasName())
561       NewVal->takeName(Op);
562     User->replaceUsesOfWith(Op, NewVal);
563     UI->setOperandValToReplace(NewVal);
564     DEBUG(dbgs() << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << '\n'
565                  << "   into = " << *NewVal << "\n");
566     ++NumRemoved;
567     Changed = true;
568
569     // The old value may be dead now.
570     DeadInsts.push_back(Op);
571   }
572
573   // Clear the rewriter cache, because values that are in the rewriter's cache
574   // can be deleted in the loop below, causing the AssertingVH in the cache to
575   // trigger.
576   Rewriter.clear();
577   // Now that we're done iterating through lists, clean up any instructions
578   // which are now dead.
579   while (!DeadInsts.empty())
580     if (Instruction *Inst =
581           dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()))
582       RecursivelyDeleteTriviallyDeadInstructions(Inst);
583 }
584
585 /// If there's a single exit block, sink any loop-invariant values that
586 /// were defined in the preheader but not used inside the loop into the
587 /// exit block to reduce register pressure in the loop.
588 void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
589   BasicBlock *ExitBlock = L->getExitBlock();
590   if (!ExitBlock) return;
591
592   BasicBlock *Preheader = L->getLoopPreheader();
593   if (!Preheader) return;
594
595   Instruction *InsertPt = ExitBlock->getFirstNonPHI();
596   BasicBlock::iterator I = Preheader->getTerminator();
597   while (I != Preheader->begin()) {
598     --I;
599     // New instructions were inserted at the end of the preheader.
600     if (isa<PHINode>(I))
601       break;
602
603     // Don't move instructions which might have side effects, since the side
604     // effects need to complete before instructions inside the loop.  Also don't
605     // move instructions which might read memory, since the loop may modify
606     // memory. Note that it's okay if the instruction might have undefined
607     // behavior: LoopSimplify guarantees that the preheader dominates the exit
608     // block.
609     if (I->mayHaveSideEffects() || I->mayReadFromMemory())
610       continue;
611
612     // Skip debug info intrinsics.
613     if (isa<DbgInfoIntrinsic>(I))
614       continue;
615
616     // Don't sink static AllocaInsts out of the entry block, which would
617     // turn them into dynamic allocas!
618     if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
619       if (AI->isStaticAlloca())
620         continue;
621
622     // Determine if there is a use in or before the loop (direct or
623     // otherwise).
624     bool UsedInLoop = false;
625     for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
626          UI != UE; ++UI) {
627       BasicBlock *UseBB = cast<Instruction>(UI)->getParent();
628       if (PHINode *P = dyn_cast<PHINode>(UI)) {
629         unsigned i =
630           PHINode::getIncomingValueNumForOperand(UI.getOperandNo());
631         UseBB = P->getIncomingBlock(i);
632       }
633       if (UseBB == Preheader || L->contains(UseBB)) {
634         UsedInLoop = true;
635         break;
636       }
637     }
638
639     // If there is, the def must remain in the preheader.
640     if (UsedInLoop)
641       continue;
642
643     // Otherwise, sink it to the exit block.
644     Instruction *ToMove = I;
645     bool Done = false;
646
647     if (I != Preheader->begin()) {
648       // Skip debug info intrinsics.
649       do {
650         --I;
651       } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
652
653       if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
654         Done = true;
655     } else {
656       Done = true;
657     }
658
659     ToMove->moveBefore(InsertPt);
660     if (Done) break;
661     InsertPt = ToMove;
662   }
663 }
664
665 /// ConvertToSInt - Convert APF to an integer, if possible.
666 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
667   bool isExact = false;
668   if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
669     return false;
670   // See if we can convert this to an int64_t
671   uint64_t UIntVal;
672   if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
673                            &isExact) != APFloat::opOK || !isExact)
674     return false;
675   IntVal = UIntVal;
676   return true;
677 }
678
679 /// HandleFloatingPointIV - If the loop has floating induction variable
680 /// then insert corresponding integer induction variable if possible.
681 /// For example,
682 /// for(double i = 0; i < 10000; ++i)
683 ///   bar(i)
684 /// is converted into
685 /// for(int i = 0; i < 10000; ++i)
686 ///   bar((double)i);
687 ///
688 void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
689   unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
690   unsigned BackEdge     = IncomingEdge^1;
691
692   // Check incoming value.
693   ConstantFP *InitValueVal =
694     dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
695
696   int64_t InitValue;
697   if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
698     return;
699
700   // Check IV increment. Reject this PN if increment operation is not
701   // an add or increment value can not be represented by an integer.
702   BinaryOperator *Incr =
703     dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
704   if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return;
705   
706   // If this is not an add of the PHI with a constantfp, or if the constant fp
707   // is not an integer, bail out.
708   ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
709   int64_t IncValue;
710   if (IncValueVal == 0 || Incr->getOperand(0) != PN ||
711       !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
712     return;
713
714   // Check Incr uses. One user is PN and the other user is an exit condition
715   // used by the conditional terminator.
716   Value::use_iterator IncrUse = Incr->use_begin();
717   Instruction *U1 = cast<Instruction>(IncrUse++);
718   if (IncrUse == Incr->use_end()) return;
719   Instruction *U2 = cast<Instruction>(IncrUse++);
720   if (IncrUse != Incr->use_end()) return;
721
722   // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
723   // only used by a branch, we can't transform it.
724   FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
725   if (!Compare)
726     Compare = dyn_cast<FCmpInst>(U2);
727   if (Compare == 0 || !Compare->hasOneUse() ||
728       !isa<BranchInst>(Compare->use_back()))
729     return;
730   
731   BranchInst *TheBr = cast<BranchInst>(Compare->use_back());
732
733   // We need to verify that the branch actually controls the iteration count
734   // of the loop.  If not, the new IV can overflow and no one will notice.
735   // The branch block must be in the loop and one of the successors must be out
736   // of the loop.
737   assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
738   if (!L->contains(TheBr->getParent()) ||
739       (L->contains(TheBr->getSuccessor(0)) &&
740        L->contains(TheBr->getSuccessor(1))))
741     return;
742   
743   
744   // If it isn't a comparison with an integer-as-fp (the exit value), we can't
745   // transform it.
746   ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
747   int64_t ExitValue;
748   if (ExitValueVal == 0 ||
749       !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
750     return;
751   
752   // Find new predicate for integer comparison.
753   CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
754   switch (Compare->getPredicate()) {
755   default: return;  // Unknown comparison.
756   case CmpInst::FCMP_OEQ:
757   case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
758   case CmpInst::FCMP_ONE:
759   case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
760   case CmpInst::FCMP_OGT:
761   case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
762   case CmpInst::FCMP_OGE:
763   case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
764   case CmpInst::FCMP_OLT:
765   case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
766   case CmpInst::FCMP_OLE:
767   case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
768   }
769   
770   // We convert the floating point induction variable to a signed i32 value if
771   // we can.  This is only safe if the comparison will not overflow in a way
772   // that won't be trapped by the integer equivalent operations.  Check for this
773   // now.
774   // TODO: We could use i64 if it is native and the range requires it.
775   
776   // The start/stride/exit values must all fit in signed i32.
777   if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
778     return;
779
780   // If not actually striding (add x, 0.0), avoid touching the code.
781   if (IncValue == 0)
782     return;
783
784   // Positive and negative strides have different safety conditions.
785   if (IncValue > 0) {
786     // If we have a positive stride, we require the init to be less than the
787     // exit value and an equality or less than comparison.
788     if (InitValue >= ExitValue ||
789         NewPred == CmpInst::ICMP_SGT || NewPred == CmpInst::ICMP_SGE)
790       return;
791     
792     uint32_t Range = uint32_t(ExitValue-InitValue);
793     if (NewPred == CmpInst::ICMP_SLE) {
794       // Normalize SLE -> SLT, check for infinite loop.
795       if (++Range == 0) return;  // Range overflows.
796     }
797     
798     unsigned Leftover = Range % uint32_t(IncValue);
799     
800     // If this is an equality comparison, we require that the strided value
801     // exactly land on the exit value, otherwise the IV condition will wrap
802     // around and do things the fp IV wouldn't.
803     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
804         Leftover != 0)
805       return;
806     
807     // If the stride would wrap around the i32 before exiting, we can't
808     // transform the IV.
809     if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
810       return;
811     
812   } else {
813     // If we have a negative stride, we require the init to be greater than the
814     // exit value and an equality or greater than comparison.
815     if (InitValue >= ExitValue ||
816         NewPred == CmpInst::ICMP_SLT || NewPred == CmpInst::ICMP_SLE)
817       return;
818     
819     uint32_t Range = uint32_t(InitValue-ExitValue);
820     if (NewPred == CmpInst::ICMP_SGE) {
821       // Normalize SGE -> SGT, check for infinite loop.
822       if (++Range == 0) return;  // Range overflows.
823     }
824     
825     unsigned Leftover = Range % uint32_t(-IncValue);
826     
827     // If this is an equality comparison, we require that the strided value
828     // exactly land on the exit value, otherwise the IV condition will wrap
829     // around and do things the fp IV wouldn't.
830     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
831         Leftover != 0)
832       return;
833     
834     // If the stride would wrap around the i32 before exiting, we can't
835     // transform the IV.
836     if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
837       return;
838   }
839   
840   const IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
841
842   // Insert new integer induction variable.
843   PHINode *NewPHI = PHINode::Create(Int32Ty, PN->getName()+".int", PN);
844   NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
845                       PN->getIncomingBlock(IncomingEdge));
846
847   Value *NewAdd =
848     BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
849                               Incr->getName()+".int", Incr);
850   NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
851
852   ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
853                                       ConstantInt::get(Int32Ty, ExitValue),
854                                       Compare->getName());
855
856   // In the following deletions, PN may become dead and may be deleted.
857   // Use a WeakVH to observe whether this happens.
858   WeakVH WeakPH = PN;
859
860   // Delete the old floating point exit comparison.  The branch starts using the
861   // new comparison.
862   NewCompare->takeName(Compare);
863   Compare->replaceAllUsesWith(NewCompare);
864   RecursivelyDeleteTriviallyDeadInstructions(Compare);
865
866   // Delete the old floating point increment.
867   Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
868   RecursivelyDeleteTriviallyDeadInstructions(Incr);
869
870   // If the FP induction variable still has uses, this is because something else
871   // in the loop uses its value.  In order to canonicalize the induction
872   // variable, we chose to eliminate the IV and rewrite it in terms of an
873   // int->fp cast.
874   //
875   // We give preference to sitofp over uitofp because it is faster on most
876   // platforms.
877   if (WeakPH) {
878     Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
879                                  PN->getParent()->getFirstNonPHI());
880     PN->replaceAllUsesWith(Conv);
881     RecursivelyDeleteTriviallyDeadInstructions(PN);
882   }
883
884   // Add a new IVUsers entry for the newly-created integer PHI.
885   IU->AddUsersIfInteresting(NewPHI);
886 }