1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into simpler forms suitable for subsequent
12 // analysis and transformation.
14 // If the trip count of a loop is computable, this pass also makes the following
16 // 1. The exit condition for the loop is canonicalized to compare the
17 // induction value against the exit value. This turns loops like:
18 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
19 // 2. Any use outside of the loop of an expression derived from the indvar
20 // is changed to compute the derived value outside of the loop, eliminating
21 // the dependence on the exit value of the induction variable. If the only
22 // purpose of the loop is to compute the exit value of some derived
23 // expression, this transformation will make the loop dead.
25 //===----------------------------------------------------------------------===//
27 #define DEBUG_TYPE "indvars"
28 #include "llvm/Transforms/Scalar.h"
29 #include "llvm/BasicBlock.h"
30 #include "llvm/Constants.h"
31 #include "llvm/Instructions.h"
32 #include "llvm/IntrinsicInst.h"
33 #include "llvm/LLVMContext.h"
34 #include "llvm/Type.h"
35 #include "llvm/Analysis/Dominators.h"
36 #include "llvm/Analysis/IVUsers.h"
37 #include "llvm/Analysis/ScalarEvolutionExpander.h"
38 #include "llvm/Analysis/LoopInfo.h"
39 #include "llvm/Analysis/LoopPass.h"
40 #include "llvm/Support/CFG.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include "llvm/Transforms/Utils/Local.h"
45 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
46 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
47 #include "llvm/Target/TargetData.h"
48 #include "llvm/ADT/DenseMap.h"
49 #include "llvm/ADT/SmallVector.h"
50 #include "llvm/ADT/Statistic.h"
53 STATISTIC(NumRemoved , "Number of aux indvars removed");
54 STATISTIC(NumWidened , "Number of indvars widened");
55 STATISTIC(NumInserted , "Number of canonical indvars added");
56 STATISTIC(NumReplaced , "Number of exit values replaced");
57 STATISTIC(NumLFTR , "Number of loop exit tests replaced");
58 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated");
59 STATISTIC(NumElimIV , "Number of congruent IVs eliminated");
62 cl::opt<bool> EnableIVRewrite(
63 "enable-iv-rewrite", cl::Hidden,
64 cl::desc("Enable canonical induction variable rewriting"));
66 // Trip count verification can be enabled by default under NDEBUG if we
67 // implement a strong expression equivalence checker in SCEV. Until then, we
68 // use the verify-indvars flag, which may assert in some cases.
69 cl::opt<bool> VerifyIndvars(
70 "verify-indvars", cl::Hidden,
71 cl::desc("Verify the ScalarEvolution result after running indvars"));
75 class IndVarSimplify : public LoopPass {
82 SmallVector<WeakVH, 16> DeadInsts;
86 static char ID; // Pass identification, replacement for typeid
87 IndVarSimplify() : LoopPass(ID), IU(0), LI(0), SE(0), DT(0), TD(0),
89 initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
92 virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
94 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
95 AU.addRequired<DominatorTree>();
96 AU.addRequired<LoopInfo>();
97 AU.addRequired<ScalarEvolution>();
98 AU.addRequiredID(LoopSimplifyID);
99 AU.addRequiredID(LCSSAID);
101 AU.addRequired<IVUsers>();
102 AU.addPreserved<ScalarEvolution>();
103 AU.addPreservedID(LoopSimplifyID);
104 AU.addPreservedID(LCSSAID);
106 AU.addPreserved<IVUsers>();
107 AU.setPreservesCFG();
111 virtual void releaseMemory() {
115 bool isValidRewrite(Value *FromVal, Value *ToVal);
117 void HandleFloatingPointIV(Loop *L, PHINode *PH);
118 void RewriteNonIntegerIVs(Loop *L);
120 void SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM);
122 void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
124 void RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter);
126 Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
127 PHINode *IndVar, SCEVExpander &Rewriter);
129 void SinkUnusedInvariants(Loop *L);
133 char IndVarSimplify::ID = 0;
134 INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars",
135 "Induction Variable Simplification", false, false)
136 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
137 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
138 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
139 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
140 INITIALIZE_PASS_DEPENDENCY(LCSSA)
141 INITIALIZE_PASS_DEPENDENCY(IVUsers)
142 INITIALIZE_PASS_END(IndVarSimplify, "indvars",
143 "Induction Variable Simplification", false, false)
145 Pass *llvm::createIndVarSimplifyPass() {
146 return new IndVarSimplify();
149 /// isValidRewrite - Return true if the SCEV expansion generated by the
150 /// rewriter can replace the original value. SCEV guarantees that it
151 /// produces the same value, but the way it is produced may be illegal IR.
152 /// Ideally, this function will only be called for verification.
153 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
154 // If an SCEV expression subsumed multiple pointers, its expansion could
155 // reassociate the GEP changing the base pointer. This is illegal because the
156 // final address produced by a GEP chain must be inbounds relative to its
157 // underlying object. Otherwise basic alias analysis, among other things,
158 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
159 // producing an expression involving multiple pointers. Until then, we must
162 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
163 // because it understands lcssa phis while SCEV does not.
164 Value *FromPtr = FromVal;
165 Value *ToPtr = ToVal;
166 if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) {
167 FromPtr = GEP->getPointerOperand();
169 if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) {
170 ToPtr = GEP->getPointerOperand();
172 if (FromPtr != FromVal || ToPtr != ToVal) {
173 // Quickly check the common case
174 if (FromPtr == ToPtr)
177 // SCEV may have rewritten an expression that produces the GEP's pointer
178 // operand. That's ok as long as the pointer operand has the same base
179 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
180 // base of a recurrence. This handles the case in which SCEV expansion
181 // converts a pointer type recurrence into a nonrecurrent pointer base
182 // indexed by an integer recurrence.
183 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
184 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
185 if (FromBase == ToBase)
188 DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
189 << *FromBase << " != " << *ToBase << "\n");
196 /// Determine the insertion point for this user. By default, insert immediately
197 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
198 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
199 /// common dominator for the incoming blocks.
200 static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
202 PHINode *PHI = dyn_cast<PHINode>(User);
206 Instruction *InsertPt = 0;
207 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
208 if (PHI->getIncomingValue(i) != Def)
211 BasicBlock *InsertBB = PHI->getIncomingBlock(i);
213 InsertPt = InsertBB->getTerminator();
216 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
217 InsertPt = InsertBB->getTerminator();
219 assert(InsertPt && "Missing phi operand");
220 assert((!isa<Instruction>(Def) ||
221 DT->dominates(cast<Instruction>(Def), InsertPt)) &&
222 "def does not dominate all uses");
226 //===----------------------------------------------------------------------===//
227 // RewriteNonIntegerIVs and helpers. Prefer integer IVs.
228 //===----------------------------------------------------------------------===//
230 /// ConvertToSInt - Convert APF to an integer, if possible.
231 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
232 bool isExact = false;
233 if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
235 // See if we can convert this to an int64_t
237 if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
238 &isExact) != APFloat::opOK || !isExact)
244 /// HandleFloatingPointIV - If the loop has floating induction variable
245 /// then insert corresponding integer induction variable if possible.
247 /// for(double i = 0; i < 10000; ++i)
249 /// is converted into
250 /// for(int i = 0; i < 10000; ++i)
253 void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
254 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
255 unsigned BackEdge = IncomingEdge^1;
257 // Check incoming value.
258 ConstantFP *InitValueVal =
259 dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
262 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
265 // Check IV increment. Reject this PN if increment operation is not
266 // an add or increment value can not be represented by an integer.
267 BinaryOperator *Incr =
268 dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
269 if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return;
271 // If this is not an add of the PHI with a constantfp, or if the constant fp
272 // is not an integer, bail out.
273 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
275 if (IncValueVal == 0 || Incr->getOperand(0) != PN ||
276 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
279 // Check Incr uses. One user is PN and the other user is an exit condition
280 // used by the conditional terminator.
281 Value::use_iterator IncrUse = Incr->use_begin();
282 Instruction *U1 = cast<Instruction>(*IncrUse++);
283 if (IncrUse == Incr->use_end()) return;
284 Instruction *U2 = cast<Instruction>(*IncrUse++);
285 if (IncrUse != Incr->use_end()) return;
287 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't
288 // only used by a branch, we can't transform it.
289 FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
291 Compare = dyn_cast<FCmpInst>(U2);
292 if (Compare == 0 || !Compare->hasOneUse() ||
293 !isa<BranchInst>(Compare->use_back()))
296 BranchInst *TheBr = cast<BranchInst>(Compare->use_back());
298 // We need to verify that the branch actually controls the iteration count
299 // of the loop. If not, the new IV can overflow and no one will notice.
300 // The branch block must be in the loop and one of the successors must be out
302 assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
303 if (!L->contains(TheBr->getParent()) ||
304 (L->contains(TheBr->getSuccessor(0)) &&
305 L->contains(TheBr->getSuccessor(1))))
309 // If it isn't a comparison with an integer-as-fp (the exit value), we can't
311 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
313 if (ExitValueVal == 0 ||
314 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
317 // Find new predicate for integer comparison.
318 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
319 switch (Compare->getPredicate()) {
320 default: return; // Unknown comparison.
321 case CmpInst::FCMP_OEQ:
322 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
323 case CmpInst::FCMP_ONE:
324 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
325 case CmpInst::FCMP_OGT:
326 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
327 case CmpInst::FCMP_OGE:
328 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
329 case CmpInst::FCMP_OLT:
330 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
331 case CmpInst::FCMP_OLE:
332 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
335 // We convert the floating point induction variable to a signed i32 value if
336 // we can. This is only safe if the comparison will not overflow in a way
337 // that won't be trapped by the integer equivalent operations. Check for this
339 // TODO: We could use i64 if it is native and the range requires it.
341 // The start/stride/exit values must all fit in signed i32.
342 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
345 // If not actually striding (add x, 0.0), avoid touching the code.
349 // Positive and negative strides have different safety conditions.
351 // If we have a positive stride, we require the init to be less than the
353 if (InitValue >= ExitValue)
356 uint32_t Range = uint32_t(ExitValue-InitValue);
357 // Check for infinite loop, either:
358 // while (i <= Exit) or until (i > Exit)
359 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
360 if (++Range == 0) return; // Range overflows.
363 unsigned Leftover = Range % uint32_t(IncValue);
365 // If this is an equality comparison, we require that the strided value
366 // exactly land on the exit value, otherwise the IV condition will wrap
367 // around and do things the fp IV wouldn't.
368 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
372 // If the stride would wrap around the i32 before exiting, we can't
374 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
378 // If we have a negative stride, we require the init to be greater than the
380 if (InitValue <= ExitValue)
383 uint32_t Range = uint32_t(InitValue-ExitValue);
384 // Check for infinite loop, either:
385 // while (i >= Exit) or until (i < Exit)
386 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
387 if (++Range == 0) return; // Range overflows.
390 unsigned Leftover = Range % uint32_t(-IncValue);
392 // If this is an equality comparison, we require that the strided value
393 // exactly land on the exit value, otherwise the IV condition will wrap
394 // around and do things the fp IV wouldn't.
395 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
399 // If the stride would wrap around the i32 before exiting, we can't
401 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
405 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
407 // Insert new integer induction variable.
408 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
409 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
410 PN->getIncomingBlock(IncomingEdge));
413 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
414 Incr->getName()+".int", Incr);
415 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
417 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
418 ConstantInt::get(Int32Ty, ExitValue),
421 // In the following deletions, PN may become dead and may be deleted.
422 // Use a WeakVH to observe whether this happens.
425 // Delete the old floating point exit comparison. The branch starts using the
427 NewCompare->takeName(Compare);
428 Compare->replaceAllUsesWith(NewCompare);
429 RecursivelyDeleteTriviallyDeadInstructions(Compare);
431 // Delete the old floating point increment.
432 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
433 RecursivelyDeleteTriviallyDeadInstructions(Incr);
435 // If the FP induction variable still has uses, this is because something else
436 // in the loop uses its value. In order to canonicalize the induction
437 // variable, we chose to eliminate the IV and rewrite it in terms of an
440 // We give preference to sitofp over uitofp because it is faster on most
443 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
444 PN->getParent()->getFirstInsertionPt());
445 PN->replaceAllUsesWith(Conv);
446 RecursivelyDeleteTriviallyDeadInstructions(PN);
449 // Add a new IVUsers entry for the newly-created integer PHI.
451 IU->AddUsersIfInteresting(NewPHI);
456 void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
457 // First step. Check to see if there are any floating-point recurrences.
458 // If there are, change them into integer recurrences, permitting analysis by
459 // the SCEV routines.
461 BasicBlock *Header = L->getHeader();
463 SmallVector<WeakVH, 8> PHIs;
464 for (BasicBlock::iterator I = Header->begin();
465 PHINode *PN = dyn_cast<PHINode>(I); ++I)
468 for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
469 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
470 HandleFloatingPointIV(L, PN);
472 // If the loop previously had floating-point IV, ScalarEvolution
473 // may not have been able to compute a trip count. Now that we've done some
474 // re-writing, the trip count may be computable.
479 //===----------------------------------------------------------------------===//
480 // RewriteLoopExitValues - Optimize IV users outside the loop.
481 // As a side effect, reduces the amount of IV processing within the loop.
482 //===----------------------------------------------------------------------===//
484 /// RewriteLoopExitValues - Check to see if this loop has a computable
485 /// loop-invariant execution count. If so, this means that we can compute the
486 /// final value of any expressions that are recurrent in the loop, and
487 /// substitute the exit values from the loop into any instructions outside of
488 /// the loop that use the final values of the current expressions.
490 /// This is mostly redundant with the regular IndVarSimplify activities that
491 /// happen later, except that it's more powerful in some cases, because it's
492 /// able to brute-force evaluate arbitrary instructions as long as they have
493 /// constant operands at the beginning of the loop.
494 void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
495 // Verify the input to the pass in already in LCSSA form.
496 assert(L->isLCSSAForm(*DT));
498 SmallVector<BasicBlock*, 8> ExitBlocks;
499 L->getUniqueExitBlocks(ExitBlocks);
501 // Find all values that are computed inside the loop, but used outside of it.
502 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan
503 // the exit blocks of the loop to find them.
504 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
505 BasicBlock *ExitBB = ExitBlocks[i];
507 // If there are no PHI nodes in this exit block, then no values defined
508 // inside the loop are used on this path, skip it.
509 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
512 unsigned NumPreds = PN->getNumIncomingValues();
514 // Iterate over all of the PHI nodes.
515 BasicBlock::iterator BBI = ExitBB->begin();
516 while ((PN = dyn_cast<PHINode>(BBI++))) {
518 continue; // dead use, don't replace it
520 // SCEV only supports integer expressions for now.
521 if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
524 // It's necessary to tell ScalarEvolution about this explicitly so that
525 // it can walk the def-use list and forget all SCEVs, as it may not be
526 // watching the PHI itself. Once the new exit value is in place, there
527 // may not be a def-use connection between the loop and every instruction
528 // which got a SCEVAddRecExpr for that loop.
531 // Iterate over all of the values in all the PHI nodes.
532 for (unsigned i = 0; i != NumPreds; ++i) {
533 // If the value being merged in is not integer or is not defined
534 // in the loop, skip it.
535 Value *InVal = PN->getIncomingValue(i);
536 if (!isa<Instruction>(InVal))
539 // If this pred is for a subloop, not L itself, skip it.
540 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
541 continue; // The Block is in a subloop, skip it.
543 // Check that InVal is defined in the loop.
544 Instruction *Inst = cast<Instruction>(InVal);
545 if (!L->contains(Inst))
548 // Okay, this instruction has a user outside of the current loop
549 // and varies predictably *inside* the loop. Evaluate the value it
550 // contains when the loop exits, if possible.
551 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
552 if (!SE->isLoopInvariant(ExitValue, L))
555 Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
557 DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
558 << " LoopVal = " << *Inst << "\n");
560 if (!isValidRewrite(Inst, ExitVal)) {
561 DeadInsts.push_back(ExitVal);
567 PN->setIncomingValue(i, ExitVal);
569 // If this instruction is dead now, delete it.
570 RecursivelyDeleteTriviallyDeadInstructions(Inst);
573 // Completely replace a single-pred PHI. This is safe, because the
574 // NewVal won't be variant in the loop, so we don't need an LCSSA phi
576 PN->replaceAllUsesWith(ExitVal);
577 RecursivelyDeleteTriviallyDeadInstructions(PN);
581 // Clone the PHI and delete the original one. This lets IVUsers and
582 // any other maps purge the original user from their records.
583 PHINode *NewPN = cast<PHINode>(PN->clone());
585 NewPN->insertBefore(PN);
586 PN->replaceAllUsesWith(NewPN);
587 PN->eraseFromParent();
592 // The insertion point instruction may have been deleted; clear it out
593 // so that the rewriter doesn't trip over it later.
594 Rewriter.clearInsertPoint();
597 //===----------------------------------------------------------------------===//
598 // Rewrite IV users based on a canonical IV.
599 // Only for use with -enable-iv-rewrite.
600 //===----------------------------------------------------------------------===//
602 /// FIXME: It is an extremely bad idea to indvar substitute anything more
603 /// complex than affine induction variables. Doing so will put expensive
604 /// polynomial evaluations inside of the loop, and the str reduction pass
605 /// currently can only reduce affine polynomials. For now just disable
606 /// indvar subst on anything more complex than an affine addrec, unless
607 /// it can be expanded to a trivial value.
608 static bool isSafe(const SCEV *S, const Loop *L, ScalarEvolution *SE) {
609 // Loop-invariant values are safe.
610 if (SE->isLoopInvariant(S, L)) return true;
612 // Affine addrecs are safe. Non-affine are not, because LSR doesn't know how
613 // to transform them into efficient code.
614 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
615 return AR->isAffine();
617 // An add is safe it all its operands are safe.
618 if (const SCEVCommutativeExpr *Commutative
619 = dyn_cast<SCEVCommutativeExpr>(S)) {
620 for (SCEVCommutativeExpr::op_iterator I = Commutative->op_begin(),
621 E = Commutative->op_end(); I != E; ++I)
622 if (!isSafe(*I, L, SE)) return false;
626 // A cast is safe if its operand is.
627 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
628 return isSafe(C->getOperand(), L, SE);
630 // A udiv is safe if its operands are.
631 if (const SCEVUDivExpr *UD = dyn_cast<SCEVUDivExpr>(S))
632 return isSafe(UD->getLHS(), L, SE) &&
633 isSafe(UD->getRHS(), L, SE);
635 // SCEVUnknown is always safe.
636 if (isa<SCEVUnknown>(S))
639 // Nothing else is safe.
643 void IndVarSimplify::RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter) {
644 // Rewrite all induction variable expressions in terms of the canonical
645 // induction variable.
647 // If there were induction variables of other sizes or offsets, manually
648 // add the offsets to the primary induction variable and cast, avoiding
649 // the need for the code evaluation methods to insert induction variables
650 // of different sizes.
651 for (IVUsers::iterator UI = IU->begin(), E = IU->end(); UI != E; ++UI) {
652 Value *Op = UI->getOperandValToReplace();
653 Type *UseTy = Op->getType();
654 Instruction *User = UI->getUser();
656 // Compute the final addrec to expand into code.
657 const SCEV *AR = IU->getReplacementExpr(*UI);
659 // Evaluate the expression out of the loop, if possible.
660 if (!L->contains(UI->getUser())) {
661 const SCEV *ExitVal = SE->getSCEVAtScope(AR, L->getParentLoop());
662 if (SE->isLoopInvariant(ExitVal, L))
666 // FIXME: It is an extremely bad idea to indvar substitute anything more
667 // complex than affine induction variables. Doing so will put expensive
668 // polynomial evaluations inside of the loop, and the str reduction pass
669 // currently can only reduce affine polynomials. For now just disable
670 // indvar subst on anything more complex than an affine addrec, unless
671 // it can be expanded to a trivial value.
672 if (!isSafe(AR, L, SE))
675 // Determine the insertion point for this user. By default, insert
676 // immediately before the user. The SCEVExpander class will automatically
677 // hoist loop invariants out of the loop. For PHI nodes, there may be
678 // multiple uses, so compute the nearest common dominator for the
680 Instruction *InsertPt = getInsertPointForUses(User, Op, DT);
682 // Now expand it into actual Instructions and patch it into place.
683 Value *NewVal = Rewriter.expandCodeFor(AR, UseTy, InsertPt);
685 DEBUG(dbgs() << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << '\n'
686 << " into = " << *NewVal << "\n");
688 if (!isValidRewrite(Op, NewVal)) {
689 DeadInsts.push_back(NewVal);
692 // Inform ScalarEvolution that this value is changing. The change doesn't
693 // affect its value, but it does potentially affect which use lists the
694 // value will be on after the replacement, which affects ScalarEvolution's
695 // ability to walk use lists and drop dangling pointers when a value is
697 SE->forgetValue(User);
699 // Patch the new value into place.
701 NewVal->takeName(Op);
702 if (Instruction *NewValI = dyn_cast<Instruction>(NewVal))
703 NewValI->setDebugLoc(User->getDebugLoc());
704 User->replaceUsesOfWith(Op, NewVal);
705 UI->setOperandValToReplace(NewVal);
710 // The old value may be dead now.
711 DeadInsts.push_back(Op);
715 //===----------------------------------------------------------------------===//
716 // IV Widening - Extend the width of an IV to cover its widest uses.
717 //===----------------------------------------------------------------------===//
720 // Collect information about induction variables that are used by sign/zero
721 // extend operations. This information is recorded by CollectExtend and
722 // provides the input to WidenIV.
725 Type *WidestNativeType; // Widest integer type created [sz]ext
726 bool IsSigned; // Was an sext user seen before a zext?
728 WideIVInfo() : NarrowIV(0), WidestNativeType(0), IsSigned(false) {}
731 class WideIVVisitor : public IVVisitor {
733 const TargetData *TD;
738 WideIVVisitor(PHINode *NarrowIV, ScalarEvolution *SCEV,
739 const TargetData *TData) :
740 SE(SCEV), TD(TData) { WI.NarrowIV = NarrowIV; }
742 // Implement the interface used by simplifyUsersOfIV.
743 virtual void visitCast(CastInst *Cast);
747 /// visitCast - Update information about the induction variable that is
748 /// extended by this sign or zero extend operation. This is used to determine
749 /// the final width of the IV before actually widening it.
750 void WideIVVisitor::visitCast(CastInst *Cast) {
751 bool IsSigned = Cast->getOpcode() == Instruction::SExt;
752 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
755 Type *Ty = Cast->getType();
756 uint64_t Width = SE->getTypeSizeInBits(Ty);
757 if (TD && !TD->isLegalInteger(Width))
760 if (!WI.WidestNativeType) {
761 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
762 WI.IsSigned = IsSigned;
766 // We extend the IV to satisfy the sign of its first user, arbitrarily.
767 if (WI.IsSigned != IsSigned)
770 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
771 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
776 /// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the
777 /// WideIV that computes the same value as the Narrow IV def. This avoids
778 /// caching Use* pointers.
779 struct NarrowIVDefUse {
780 Instruction *NarrowDef;
781 Instruction *NarrowUse;
782 Instruction *WideDef;
784 NarrowIVDefUse(): NarrowDef(0), NarrowUse(0), WideDef(0) {}
786 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD):
787 NarrowDef(ND), NarrowUse(NU), WideDef(WD) {}
790 /// WidenIV - The goal of this transform is to remove sign and zero extends
791 /// without creating any new induction variables. To do this, it creates a new
792 /// phi of the wider type and redirects all users, either removing extends or
793 /// inserting truncs whenever we stop propagating the type.
809 Instruction *WideInc;
810 const SCEV *WideIncExpr;
811 SmallVectorImpl<WeakVH> &DeadInsts;
813 SmallPtrSet<Instruction*,16> Widened;
814 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
817 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo,
818 ScalarEvolution *SEv, DominatorTree *DTree,
819 SmallVectorImpl<WeakVH> &DI) :
820 OrigPhi(WI.NarrowIV),
821 WideType(WI.WidestNativeType),
822 IsSigned(WI.IsSigned),
824 L(LI->getLoopFor(OrigPhi->getParent())),
831 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
834 PHINode *CreateWideIV(SCEVExpander &Rewriter);
837 Value *getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
840 Instruction *CloneIVUser(NarrowIVDefUse DU);
842 const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse);
844 const SCEVAddRecExpr* GetExtendedOperandRecurrence(NarrowIVDefUse DU);
846 Instruction *WidenIVUse(NarrowIVDefUse DU);
848 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
850 } // anonymous namespace
852 /// isLoopInvariant - Perform a quick domtree based check for loop invariance
853 /// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems
854 /// gratuitous for this purpose.
855 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) {
856 Instruction *Inst = dyn_cast<Instruction>(V);
860 return DT->properlyDominates(Inst->getParent(), L->getHeader());
863 Value *WidenIV::getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
865 // Set the debug location and conservative insertion point.
866 IRBuilder<> Builder(Use);
867 // Hoist the insertion point into loop preheaders as far as possible.
868 for (const Loop *L = LI->getLoopFor(Use->getParent());
869 L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT);
870 L = L->getParentLoop())
871 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
873 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
874 Builder.CreateZExt(NarrowOper, WideType);
877 /// CloneIVUser - Instantiate a wide operation to replace a narrow
878 /// operation. This only needs to handle operations that can evaluation to
879 /// SCEVAddRec. It can safely return 0 for any operation we decide not to clone.
880 Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) {
881 unsigned Opcode = DU.NarrowUse->getOpcode();
885 case Instruction::Add:
886 case Instruction::Mul:
887 case Instruction::UDiv:
888 case Instruction::Sub:
889 case Instruction::And:
890 case Instruction::Or:
891 case Instruction::Xor:
892 case Instruction::Shl:
893 case Instruction::LShr:
894 case Instruction::AShr:
895 DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n");
897 // Replace NarrowDef operands with WideDef. Otherwise, we don't know
898 // anything about the narrow operand yet so must insert a [sz]ext. It is
899 // probably loop invariant and will be folded or hoisted. If it actually
900 // comes from a widened IV, it should be removed during a future call to
902 Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef :
903 getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, DU.NarrowUse);
904 Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef :
905 getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, DU.NarrowUse);
907 BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse);
908 BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(),
910 NarrowBO->getName());
911 IRBuilder<> Builder(DU.NarrowUse);
912 Builder.Insert(WideBO);
913 if (const OverflowingBinaryOperator *OBO =
914 dyn_cast<OverflowingBinaryOperator>(NarrowBO)) {
915 if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap();
916 if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap();
923 /// No-wrap operations can transfer sign extension of their result to their
924 /// operands. Generate the SCEV value for the widened operation without
925 /// actually modifying the IR yet. If the expression after extending the
926 /// operands is an AddRec for this loop, return it.
927 const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) {
928 // Handle the common case of add<nsw/nuw>
929 if (DU.NarrowUse->getOpcode() != Instruction::Add)
932 // One operand (NarrowDef) has already been extended to WideDef. Now determine
933 // if extending the other will lead to a recurrence.
934 unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
935 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
937 const SCEV *ExtendOperExpr = 0;
938 const OverflowingBinaryOperator *OBO =
939 cast<OverflowingBinaryOperator>(DU.NarrowUse);
940 if (IsSigned && OBO->hasNoSignedWrap())
941 ExtendOperExpr = SE->getSignExtendExpr(
942 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
943 else if(!IsSigned && OBO->hasNoUnsignedWrap())
944 ExtendOperExpr = SE->getZeroExtendExpr(
945 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
949 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(
950 SE->getAddExpr(SE->getSCEV(DU.WideDef), ExtendOperExpr,
951 IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW));
953 if (!AddRec || AddRec->getLoop() != L)
958 /// GetWideRecurrence - Is this instruction potentially interesting from
959 /// IVUsers' perspective after widening it's type? In other words, can the
960 /// extend be safely hoisted out of the loop with SCEV reducing the value to a
961 /// recurrence on the same loop. If so, return the sign or zero extended
962 /// recurrence. Otherwise return NULL.
963 const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) {
964 if (!SE->isSCEVable(NarrowUse->getType()))
967 const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
968 if (SE->getTypeSizeInBits(NarrowExpr->getType())
969 >= SE->getTypeSizeInBits(WideType)) {
970 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
971 // index. So don't follow this use.
975 const SCEV *WideExpr = IsSigned ?
976 SE->getSignExtendExpr(NarrowExpr, WideType) :
977 SE->getZeroExtendExpr(NarrowExpr, WideType);
978 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
979 if (!AddRec || AddRec->getLoop() != L)
984 /// WidenIVUse - Determine whether an individual user of the narrow IV can be
985 /// widened. If so, return the wide clone of the user.
986 Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU) {
988 // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
989 if (isa<PHINode>(DU.NarrowUse) &&
990 LI->getLoopFor(DU.NarrowUse->getParent()) != L)
993 // Our raison d'etre! Eliminate sign and zero extension.
994 if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) {
995 Value *NewDef = DU.WideDef;
996 if (DU.NarrowUse->getType() != WideType) {
997 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
998 unsigned IVWidth = SE->getTypeSizeInBits(WideType);
999 if (CastWidth < IVWidth) {
1000 // The cast isn't as wide as the IV, so insert a Trunc.
1001 IRBuilder<> Builder(DU.NarrowUse);
1002 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
1005 // A wider extend was hidden behind a narrower one. This may induce
1006 // another round of IV widening in which the intermediate IV becomes
1007 // dead. It should be very rare.
1008 DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
1009 << " not wide enough to subsume " << *DU.NarrowUse << "\n");
1010 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1011 NewDef = DU.NarrowUse;
1014 if (NewDef != DU.NarrowUse) {
1015 DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
1016 << " replaced by " << *DU.WideDef << "\n");
1018 DU.NarrowUse->replaceAllUsesWith(NewDef);
1019 DeadInsts.push_back(DU.NarrowUse);
1021 // Now that the extend is gone, we want to expose it's uses for potential
1022 // further simplification. We don't need to directly inform SimplifyIVUsers
1023 // of the new users, because their parent IV will be processed later as a
1024 // new loop phi. If we preserved IVUsers analysis, we would also want to
1025 // push the uses of WideDef here.
1027 // No further widening is needed. The deceased [sz]ext had done it for us.
1031 // Does this user itself evaluate to a recurrence after widening?
1032 const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse);
1034 WideAddRec = GetExtendedOperandRecurrence(DU);
1037 // This user does not evaluate to a recurence after widening, so don't
1038 // follow it. Instead insert a Trunc to kill off the original use,
1039 // eventually isolating the original narrow IV so it can be removed.
1040 IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT));
1041 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
1042 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
1045 // Assume block terminators cannot evaluate to a recurrence. We can't to
1046 // insert a Trunc after a terminator if there happens to be a critical edge.
1047 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
1048 "SCEV is not expected to evaluate a block terminator");
1050 // Reuse the IV increment that SCEVExpander created as long as it dominates
1052 Instruction *WideUse = 0;
1053 if (WideAddRec == WideIncExpr
1054 && SCEVExpander::hoistStep(WideInc, DU.NarrowUse, DT))
1057 WideUse = CloneIVUser(DU);
1061 // Evaluation of WideAddRec ensured that the narrow expression could be
1062 // extended outside the loop without overflow. This suggests that the wide use
1063 // evaluates to the same expression as the extended narrow use, but doesn't
1064 // absolutely guarantee it. Hence the following failsafe check. In rare cases
1065 // where it fails, we simply throw away the newly created wide use.
1066 if (WideAddRec != SE->getSCEV(WideUse)) {
1067 DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
1068 << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
1069 DeadInsts.push_back(WideUse);
1073 // Returning WideUse pushes it on the worklist.
1077 /// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers.
1079 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1080 for (Value::use_iterator UI = NarrowDef->use_begin(),
1081 UE = NarrowDef->use_end(); UI != UE; ++UI) {
1082 Instruction *NarrowUse = cast<Instruction>(*UI);
1084 // Handle data flow merges and bizarre phi cycles.
1085 if (!Widened.insert(NarrowUse))
1088 NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUse, WideDef));
1092 /// CreateWideIV - Process a single induction variable. First use the
1093 /// SCEVExpander to create a wide induction variable that evaluates to the same
1094 /// recurrence as the original narrow IV. Then use a worklist to forward
1095 /// traverse the narrow IV's def-use chain. After WidenIVUse has processed all
1096 /// interesting IV users, the narrow IV will be isolated for removal by
1099 /// It would be simpler to delete uses as they are processed, but we must avoid
1100 /// invalidating SCEV expressions.
1102 PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
1103 // Is this phi an induction variable?
1104 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1108 // Widen the induction variable expression.
1109 const SCEV *WideIVExpr = IsSigned ?
1110 SE->getSignExtendExpr(AddRec, WideType) :
1111 SE->getZeroExtendExpr(AddRec, WideType);
1113 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1114 "Expect the new IV expression to preserve its type");
1116 // Can the IV be extended outside the loop without overflow?
1117 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1118 if (!AddRec || AddRec->getLoop() != L)
1121 // An AddRec must have loop-invariant operands. Since this AddRec is
1122 // materialized by a loop header phi, the expression cannot have any post-loop
1123 // operands, so they must dominate the loop header.
1124 assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1125 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader())
1126 && "Loop header phi recurrence inputs do not dominate the loop");
1128 // The rewriter provides a value for the desired IV expression. This may
1129 // either find an existing phi or materialize a new one. Either way, we
1130 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1131 // of the phi-SCC dominates the loop entry.
1132 Instruction *InsertPt = L->getHeader()->begin();
1133 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1135 // Remembering the WideIV increment generated by SCEVExpander allows
1136 // WidenIVUse to reuse it when widening the narrow IV's increment. We don't
1137 // employ a general reuse mechanism because the call above is the only call to
1138 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1139 if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1141 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1142 WideIncExpr = SE->getSCEV(WideInc);
1145 DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1148 // Traverse the def-use chain using a worklist starting at the original IV.
1149 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1151 Widened.insert(OrigPhi);
1152 pushNarrowIVUsers(OrigPhi, WidePhi);
1154 while (!NarrowIVUsers.empty()) {
1155 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1157 // Process a def-use edge. This may replace the use, so don't hold a
1158 // use_iterator across it.
1159 Instruction *WideUse = WidenIVUse(DU);
1161 // Follow all def-use edges from the previous narrow use.
1163 pushNarrowIVUsers(DU.NarrowUse, WideUse);
1165 // WidenIVUse may have removed the def-use edge.
1166 if (DU.NarrowDef->use_empty())
1167 DeadInsts.push_back(DU.NarrowDef);
1172 //===----------------------------------------------------------------------===//
1173 // Simplification of IV users based on SCEV evaluation.
1174 //===----------------------------------------------------------------------===//
1177 /// SimplifyAndExtend - Iteratively perform simplification on a worklist of IV
1178 /// users. Each successive simplification may push more users which may
1179 /// themselves be candidates for simplification.
1181 /// Sign/Zero extend elimination is interleaved with IV simplification.
1183 void IndVarSimplify::SimplifyAndExtend(Loop *L,
1184 SCEVExpander &Rewriter,
1185 LPPassManager &LPM) {
1186 SmallVector<WideIVInfo, 8> WideIVs;
1188 SmallVector<PHINode*, 8> LoopPhis;
1189 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1190 LoopPhis.push_back(cast<PHINode>(I));
1192 // Each round of simplification iterates through the SimplifyIVUsers worklist
1193 // for all current phis, then determines whether any IVs can be
1194 // widened. Widening adds new phis to LoopPhis, inducing another round of
1195 // simplification on the wide IVs.
1196 while (!LoopPhis.empty()) {
1197 // Evaluate as many IV expressions as possible before widening any IVs. This
1198 // forces SCEV to set no-wrap flags before evaluating sign/zero
1199 // extension. The first time SCEV attempts to normalize sign/zero extension,
1200 // the result becomes final. So for the most predictable results, we delay
1201 // evaluation of sign/zero extend evaluation until needed, and avoid running
1202 // other SCEV based analysis prior to SimplifyAndExtend.
1204 PHINode *CurrIV = LoopPhis.pop_back_val();
1206 // Information about sign/zero extensions of CurrIV.
1207 WideIVVisitor WIV(CurrIV, SE, TD);
1209 Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &WIV);
1211 if (WIV.WI.WidestNativeType) {
1212 WideIVs.push_back(WIV.WI);
1214 } while(!LoopPhis.empty());
1216 for (; !WideIVs.empty(); WideIVs.pop_back()) {
1217 WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts);
1218 if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) {
1220 LoopPhis.push_back(WidePhi);
1226 //===----------------------------------------------------------------------===//
1227 // LinearFunctionTestReplace and its kin. Rewrite the loop exit condition.
1228 //===----------------------------------------------------------------------===//
1230 /// Check for expressions that ScalarEvolution generates to compute
1231 /// BackedgeTakenInfo. If these expressions have not been reduced, then
1232 /// expanding them may incur additional cost (albeit in the loop preheader).
1233 static bool isHighCostExpansion(const SCEV *S, BranchInst *BI,
1234 ScalarEvolution *SE) {
1235 // If the backedge-taken count is a UDiv, it's very likely a UDiv that
1236 // ScalarEvolution's HowFarToZero or HowManyLessThans produced to compute a
1237 // precise expression, rather than a UDiv from the user's code. If we can't
1238 // find a UDiv in the code with some simple searching, assume the former and
1239 // forego rewriting the loop.
1240 if (isa<SCEVUDivExpr>(S)) {
1241 ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition());
1242 if (!OrigCond) return true;
1243 const SCEV *R = SE->getSCEV(OrigCond->getOperand(1));
1244 R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1));
1246 const SCEV *L = SE->getSCEV(OrigCond->getOperand(0));
1247 L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1));
1253 if (EnableIVRewrite)
1256 // Recurse past add expressions, which commonly occur in the
1257 // BackedgeTakenCount. They may already exist in program code, and if not,
1258 // they are not too expensive rematerialize.
1259 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
1260 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1262 if (isHighCostExpansion(*I, BI, SE))
1268 // HowManyLessThans uses a Max expression whenever the loop is not guarded by
1269 // the exit condition.
1270 if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S))
1273 // If we haven't recognized an expensive SCEV patter, assume its an expression
1274 // produced by program code.
1278 /// canExpandBackedgeTakenCount - Return true if this loop's backedge taken
1279 /// count expression can be safely and cheaply expanded into an instruction
1280 /// sequence that can be used by LinearFunctionTestReplace.
1281 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) {
1282 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1283 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
1284 BackedgeTakenCount->isZero())
1287 if (!L->getExitingBlock())
1290 // Can't rewrite non-branch yet.
1291 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1295 if (isHighCostExpansion(BackedgeTakenCount, BI, SE))
1301 /// getBackedgeIVType - Get the widest type used by the loop test after peeking
1304 /// TODO: Unnecessary when ForceLFTR is removed.
1305 static Type *getBackedgeIVType(Loop *L) {
1306 if (!L->getExitingBlock())
1309 // Can't rewrite non-branch yet.
1310 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1314 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1319 for(User::op_iterator OI = Cond->op_begin(), OE = Cond->op_end();
1321 assert((!Ty || Ty == (*OI)->getType()) && "bad icmp operand types");
1322 TruncInst *Trunc = dyn_cast<TruncInst>(*OI);
1326 return Trunc->getSrcTy();
1331 /// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop
1332 /// invariant value to the phi.
1333 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
1334 Instruction *IncI = dyn_cast<Instruction>(IncV);
1338 switch (IncI->getOpcode()) {
1339 case Instruction::Add:
1340 case Instruction::Sub:
1342 case Instruction::GetElementPtr:
1343 // An IV counter must preserve its type.
1344 if (IncI->getNumOperands() == 2)
1350 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
1351 if (Phi && Phi->getParent() == L->getHeader()) {
1352 if (isLoopInvariant(IncI->getOperand(1), L, DT))
1356 if (IncI->getOpcode() == Instruction::GetElementPtr)
1359 // Allow add/sub to be commuted.
1360 Phi = dyn_cast<PHINode>(IncI->getOperand(1));
1361 if (Phi && Phi->getParent() == L->getHeader()) {
1362 if (isLoopInvariant(IncI->getOperand(0), L, DT))
1368 /// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show
1369 /// that the current exit test is already sufficiently canonical.
1370 static bool needsLFTR(Loop *L, DominatorTree *DT) {
1371 assert(L->getExitingBlock() && "expected loop exit");
1373 BasicBlock *LatchBlock = L->getLoopLatch();
1374 // Don't bother with LFTR if the loop is not properly simplified.
1378 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1379 assert(BI && "expected exit branch");
1381 // Do LFTR to simplify the exit condition to an ICMP.
1382 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1386 // Do LFTR to simplify the exit ICMP to EQ/NE
1387 ICmpInst::Predicate Pred = Cond->getPredicate();
1388 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
1391 // Look for a loop invariant RHS
1392 Value *LHS = Cond->getOperand(0);
1393 Value *RHS = Cond->getOperand(1);
1394 if (!isLoopInvariant(RHS, L, DT)) {
1395 if (!isLoopInvariant(LHS, L, DT))
1397 std::swap(LHS, RHS);
1399 // Look for a simple IV counter LHS
1400 PHINode *Phi = dyn_cast<PHINode>(LHS);
1402 Phi = getLoopPhiForCounter(LHS, L, DT);
1407 // Do LFTR if the exit condition's IV is *not* a simple counter.
1408 Value *IncV = Phi->getIncomingValueForBlock(L->getLoopLatch());
1409 return Phi != getLoopPhiForCounter(IncV, L, DT);
1412 /// AlmostDeadIV - Return true if this IV has any uses other than the (soon to
1413 /// be rewritten) loop exit test.
1414 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
1415 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1416 Value *IncV = Phi->getIncomingValue(LatchIdx);
1418 for (Value::use_iterator UI = Phi->use_begin(), UE = Phi->use_end();
1420 if (*UI != Cond && *UI != IncV) return false;
1423 for (Value::use_iterator UI = IncV->use_begin(), UE = IncV->use_end();
1425 if (*UI != Cond && *UI != Phi) return false;
1430 /// FindLoopCounter - Find an affine IV in canonical form.
1432 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
1434 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
1435 /// This is difficult in general for SCEV because of potential overflow. But we
1436 /// could at least handle constant BECounts.
1438 FindLoopCounter(Loop *L, const SCEV *BECount,
1439 ScalarEvolution *SE, DominatorTree *DT, const TargetData *TD) {
1440 // I'm not sure how BECount could be a pointer type, but we definitely don't
1441 // want to LFTR that.
1442 if (BECount->getType()->isPointerTy())
1445 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
1448 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
1450 // Loop over all of the PHI nodes, looking for a simple counter.
1451 PHINode *BestPhi = 0;
1452 const SCEV *BestInit = 0;
1453 BasicBlock *LatchBlock = L->getLoopLatch();
1454 assert(LatchBlock && "needsLFTR should guarantee a loop latch");
1456 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1457 PHINode *Phi = cast<PHINode>(I);
1458 if (!SE->isSCEVable(Phi->getType()))
1461 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
1462 if (!AR || AR->getLoop() != L || !AR->isAffine())
1465 // AR may be a pointer type, while BECount is an integer type.
1466 // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
1467 // AR may not be a narrower type, or we may never exit.
1468 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
1469 if (PhiWidth < BCWidth || (TD && !TD->isLegalInteger(PhiWidth)))
1472 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
1473 if (!Step || !Step->isOne())
1476 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1477 Value *IncV = Phi->getIncomingValue(LatchIdx);
1478 if (getLoopPhiForCounter(IncV, L, DT) != Phi)
1481 const SCEV *Init = AR->getStart();
1483 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
1484 // Don't force a live loop counter if another IV can be used.
1485 if (AlmostDeadIV(Phi, LatchBlock, Cond))
1488 // Prefer to count-from-zero. This is a more "canonical" counter form. It
1489 // also prefers integer to pointer IVs.
1490 if (BestInit->isZero() != Init->isZero()) {
1491 if (BestInit->isZero())
1494 // If two IVs both count from zero or both count from nonzero then the
1495 // narrower is likely a dead phi that has been widened. Use the wider phi
1496 // to allow the other to be eliminated.
1497 if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
1506 /// LinearFunctionTestReplace - This method rewrites the exit condition of the
1507 /// loop to be a canonical != comparison against the incremented loop induction
1508 /// variable. This pass is able to rewrite the exit tests of any loop where the
1509 /// SCEV analysis can determine a loop-invariant trip count of the loop, which
1510 /// is actually a much broader range than just linear tests.
1511 Value *IndVarSimplify::
1512 LinearFunctionTestReplace(Loop *L,
1513 const SCEV *BackedgeTakenCount,
1515 SCEVExpander &Rewriter) {
1516 assert(canExpandBackedgeTakenCount(L, SE) && "precondition");
1517 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1519 // LFTR can ignore IV overflow and truncate to the width of
1520 // BECount. This avoids materializing the add(zext(add)) expression.
1521 Type *CntTy = !EnableIVRewrite ?
1522 BackedgeTakenCount->getType() : IndVar->getType();
1524 const SCEV *IVLimit = BackedgeTakenCount;
1526 // If the exiting block is not the same as the backedge block, we must compare
1527 // against the preincremented value, otherwise we prefer to compare against
1528 // the post-incremented value.
1530 if (L->getExitingBlock() == L->getLoopLatch()) {
1531 // Add one to the "backedge-taken" count to get the trip count.
1532 // If this addition may overflow, we have to be more pessimistic and
1533 // cast the induction variable before doing the add.
1535 SE->getAddExpr(IVLimit, SE->getConstant(IVLimit->getType(), 1));
1536 if (CntTy == IVLimit->getType())
1539 const SCEV *Zero = SE->getConstant(IVLimit->getType(), 0);
1540 if ((isa<SCEVConstant>(N) && !N->isZero()) ||
1541 SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
1542 // No overflow. Cast the sum.
1543 IVLimit = SE->getTruncateOrZeroExtend(N, CntTy);
1545 // Potential overflow. Cast before doing the add.
1546 IVLimit = SE->getTruncateOrZeroExtend(IVLimit, CntTy);
1547 IVLimit = SE->getAddExpr(IVLimit, SE->getConstant(CntTy, 1));
1550 // The BackedgeTaken expression contains the number of times that the
1551 // backedge branches to the loop header. This is one less than the
1552 // number of times the loop executes, so use the incremented indvar.
1553 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
1555 // We have to use the preincremented value...
1556 IVLimit = SE->getTruncateOrZeroExtend(IVLimit, CntTy);
1560 // For unit stride, IVLimit = Start + BECount with 2's complement overflow.
1561 // So for non-zero start compute the IVLimit here.
1562 Type *CmpTy = CntTy;
1563 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1564 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
1565 if (!AR->getStart()->isZero()) {
1566 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
1567 const SCEV *IVInit = AR->getStart();
1569 // For pointer types, sign extend BECount in order to materialize a GEP.
1570 // Note that for without EnableIVRewrite, we never run SCEVExpander on a
1571 // pointer type, because we must preserve the existing GEPs. Instead we
1572 // directly generate a GEP later.
1573 if (CmpIndVar->getType()->isPointerTy()) {
1574 CmpTy = SE->getEffectiveSCEVType(IVInit->getType());
1575 IVLimit = SE->getTruncateOrSignExtend(IVLimit, CmpTy);
1577 // For integer types, truncate the IV before computing IVInit + BECount.
1579 if (SE->getTypeSizeInBits(IVInit->getType())
1580 > SE->getTypeSizeInBits(CmpTy))
1581 IVInit = SE->getTruncateExpr(IVInit, CmpTy);
1583 IVLimit = SE->getAddExpr(IVInit, IVLimit);
1586 // Expand the code for the iteration count.
1587 IRBuilder<> Builder(BI);
1589 assert(SE->isLoopInvariant(IVLimit, L) &&
1590 "Computed iteration count is not loop invariant!");
1591 assert( !IVLimit->getType()->isPointerTy() &&
1592 "Should not expand pointer types" );
1593 Value *ExitCnt = Rewriter.expandCodeFor(IVLimit, CmpTy, BI);
1595 // Create a gep for IVInit + IVLimit from on an existing pointer base.
1597 // In the presence of null pointer values, the SCEV expression may be an
1598 // integer type while the IV is a pointer type. Ensure that the compare
1599 // operands are always the same type by checking the IV type here.
1600 if (CmpIndVar->getType()->isPointerTy()) {
1601 Value *IVStart = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
1602 assert(AR->getStart() == SE->getSCEV(IVStart) && "bad loop counter");
1603 assert(SE->getSizeOfExpr(
1604 cast<PointerType>(IVStart->getType())->getElementType())->isOne()
1605 && "unit stride pointer IV must be i8*");
1607 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
1608 ExitCnt = Builder.CreateGEP(IVStart, ExitCnt, "lftr.limit");
1609 Builder.SetInsertPoint(BI);
1612 // Insert a new icmp_ne or icmp_eq instruction before the branch.
1613 ICmpInst::Predicate P;
1614 if (L->contains(BI->getSuccessor(0)))
1615 P = ICmpInst::ICMP_NE;
1617 P = ICmpInst::ICMP_EQ;
1619 DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
1620 << " LHS:" << *CmpIndVar << '\n'
1622 << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
1623 << " RHS:\t" << *ExitCnt << "\n"
1624 << " Expr:\t" << *IVLimit << "\n");
1626 if (SE->getTypeSizeInBits(CmpIndVar->getType())
1627 > SE->getTypeSizeInBits(CmpTy)) {
1628 CmpIndVar = Builder.CreateTrunc(CmpIndVar, CmpTy, "lftr.wideiv");
1631 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
1632 Value *OrigCond = BI->getCondition();
1633 // It's tempting to use replaceAllUsesWith here to fully replace the old
1634 // comparison, but that's not immediately safe, since users of the old
1635 // comparison may not be dominated by the new comparison. Instead, just
1636 // update the branch to use the new comparison; in the common case this
1637 // will make old comparison dead.
1638 BI->setCondition(Cond);
1639 DeadInsts.push_back(OrigCond);
1646 //===----------------------------------------------------------------------===//
1647 // SinkUnusedInvariants. A late subpass to cleanup loop preheaders.
1648 //===----------------------------------------------------------------------===//
1650 /// If there's a single exit block, sink any loop-invariant values that
1651 /// were defined in the preheader but not used inside the loop into the
1652 /// exit block to reduce register pressure in the loop.
1653 void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
1654 BasicBlock *ExitBlock = L->getExitBlock();
1655 if (!ExitBlock) return;
1657 BasicBlock *Preheader = L->getLoopPreheader();
1658 if (!Preheader) return;
1660 Instruction *InsertPt = ExitBlock->getFirstInsertionPt();
1661 BasicBlock::iterator I = Preheader->getTerminator();
1662 while (I != Preheader->begin()) {
1664 // New instructions were inserted at the end of the preheader.
1665 if (isa<PHINode>(I))
1668 // Don't move instructions which might have side effects, since the side
1669 // effects need to complete before instructions inside the loop. Also don't
1670 // move instructions which might read memory, since the loop may modify
1671 // memory. Note that it's okay if the instruction might have undefined
1672 // behavior: LoopSimplify guarantees that the preheader dominates the exit
1674 if (I->mayHaveSideEffects() || I->mayReadFromMemory())
1677 // Skip debug info intrinsics.
1678 if (isa<DbgInfoIntrinsic>(I))
1681 // Skip landingpad instructions.
1682 if (isa<LandingPadInst>(I))
1685 // Don't sink alloca: we never want to sink static alloca's out of the
1686 // entry block, and correctly sinking dynamic alloca's requires
1687 // checks for stacksave/stackrestore intrinsics.
1688 // FIXME: Refactor this check somehow?
1689 if (isa<AllocaInst>(I))
1692 // Determine if there is a use in or before the loop (direct or
1694 bool UsedInLoop = false;
1695 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
1698 BasicBlock *UseBB = cast<Instruction>(U)->getParent();
1699 if (PHINode *P = dyn_cast<PHINode>(U)) {
1701 PHINode::getIncomingValueNumForOperand(UI.getOperandNo());
1702 UseBB = P->getIncomingBlock(i);
1704 if (UseBB == Preheader || L->contains(UseBB)) {
1710 // If there is, the def must remain in the preheader.
1714 // Otherwise, sink it to the exit block.
1715 Instruction *ToMove = I;
1718 if (I != Preheader->begin()) {
1719 // Skip debug info intrinsics.
1722 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
1724 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
1730 ToMove->moveBefore(InsertPt);
1736 //===----------------------------------------------------------------------===//
1737 // IndVarSimplify driver. Manage several subpasses of IV simplification.
1738 //===----------------------------------------------------------------------===//
1740 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
1741 // If LoopSimplify form is not available, stay out of trouble. Some notes:
1742 // - LSR currently only supports LoopSimplify-form loops. Indvars'
1743 // canonicalization can be a pessimization without LSR to "clean up"
1745 // - We depend on having a preheader; in particular,
1746 // Loop::getCanonicalInductionVariable only supports loops with preheaders,
1747 // and we're in trouble if we can't find the induction variable even when
1748 // we've manually inserted one.
1749 if (!L->isLoopSimplifyForm())
1752 if (EnableIVRewrite)
1753 IU = &getAnalysis<IVUsers>();
1754 LI = &getAnalysis<LoopInfo>();
1755 SE = &getAnalysis<ScalarEvolution>();
1756 DT = &getAnalysis<DominatorTree>();
1757 TD = getAnalysisIfAvailable<TargetData>();
1762 // If there are any floating-point recurrences, attempt to
1763 // transform them to use integer recurrences.
1764 RewriteNonIntegerIVs(L);
1766 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1768 // Create a rewriter object which we'll use to transform the code with.
1769 SCEVExpander Rewriter(*SE, "indvars");
1771 Rewriter.setDebugType(DEBUG_TYPE);
1774 // Eliminate redundant IV users.
1776 // Simplification works best when run before other consumers of SCEV. We
1777 // attempt to avoid evaluating SCEVs for sign/zero extend operations until
1778 // other expressions involving loop IVs have been evaluated. This helps SCEV
1779 // set no-wrap flags before normalizing sign/zero extension.
1780 if (!EnableIVRewrite) {
1781 Rewriter.disableCanonicalMode();
1782 SimplifyAndExtend(L, Rewriter, LPM);
1785 // Check to see if this loop has a computable loop-invariant execution count.
1786 // If so, this means that we can compute the final value of any expressions
1787 // that are recurrent in the loop, and substitute the exit values from the
1788 // loop into any instructions outside of the loop that use the final values of
1789 // the current expressions.
1791 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1792 RewriteLoopExitValues(L, Rewriter);
1794 // Eliminate redundant IV users.
1795 if (EnableIVRewrite)
1796 Changed |= simplifyIVUsers(IU, SE, &LPM, DeadInsts);
1798 // Eliminate redundant IV cycles.
1799 if (!EnableIVRewrite)
1800 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
1802 // Compute the type of the largest recurrence expression, and decide whether
1803 // a canonical induction variable should be inserted.
1804 Type *LargestType = 0;
1805 bool NeedCannIV = false;
1806 bool ExpandBECount = canExpandBackedgeTakenCount(L, SE);
1807 if (EnableIVRewrite && ExpandBECount) {
1808 // If we have a known trip count and a single exit block, we'll be
1809 // rewriting the loop exit test condition below, which requires a
1810 // canonical induction variable.
1812 Type *Ty = BackedgeTakenCount->getType();
1813 if (!EnableIVRewrite) {
1814 // In this mode, SimplifyIVUsers may have already widened the IV used by
1815 // the backedge test and inserted a Trunc on the compare's operand. Get
1816 // the wider type to avoid creating a redundant narrow IV only used by the
1818 LargestType = getBackedgeIVType(L);
1821 SE->getTypeSizeInBits(Ty) >
1822 SE->getTypeSizeInBits(LargestType))
1823 LargestType = SE->getEffectiveSCEVType(Ty);
1825 if (EnableIVRewrite) {
1826 for (IVUsers::const_iterator I = IU->begin(), E = IU->end(); I != E; ++I) {
1829 SE->getEffectiveSCEVType(I->getOperandValToReplace()->getType());
1831 SE->getTypeSizeInBits(Ty) >
1832 SE->getTypeSizeInBits(LargestType))
1837 // Now that we know the largest of the induction variable expressions
1838 // in this loop, insert a canonical induction variable of the largest size.
1839 PHINode *IndVar = 0;
1841 // Check to see if the loop already has any canonical-looking induction
1842 // variables. If any are present and wider than the planned canonical
1843 // induction variable, temporarily remove them, so that the Rewriter
1844 // doesn't attempt to reuse them.
1845 SmallVector<PHINode *, 2> OldCannIVs;
1846 while (PHINode *OldCannIV = L->getCanonicalInductionVariable()) {
1847 if (SE->getTypeSizeInBits(OldCannIV->getType()) >
1848 SE->getTypeSizeInBits(LargestType))
1849 OldCannIV->removeFromParent();
1852 OldCannIVs.push_back(OldCannIV);
1855 IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L, LargestType);
1859 DEBUG(dbgs() << "INDVARS: New CanIV: " << *IndVar << '\n');
1861 // Now that the official induction variable is established, reinsert
1862 // any old canonical-looking variables after it so that the IR remains
1863 // consistent. They will be deleted as part of the dead-PHI deletion at
1864 // the end of the pass.
1865 while (!OldCannIVs.empty()) {
1866 PHINode *OldCannIV = OldCannIVs.pop_back_val();
1867 OldCannIV->insertBefore(L->getHeader()->getFirstInsertionPt());
1870 else if (!EnableIVRewrite && ExpandBECount && needsLFTR(L, DT)) {
1871 IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, TD);
1873 // If we have a trip count expression, rewrite the loop's exit condition
1874 // using it. We can currently only handle loops with a single exit.
1876 if (ExpandBECount && IndVar) {
1877 // Check preconditions for proper SCEVExpander operation. SCEV does not
1878 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
1879 // pass that uses the SCEVExpander must do it. This does not work well for
1880 // loop passes because SCEVExpander makes assumptions about all loops, while
1881 // LoopPassManager only forces the current loop to be simplified.
1883 // FIXME: SCEV expansion has no way to bail out, so the caller must
1884 // explicitly check any assumptions made by SCEV. Brittle.
1885 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
1886 if (!AR || AR->getLoop()->getLoopPreheader())
1888 LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar, Rewriter);
1890 // Rewrite IV-derived expressions.
1891 if (EnableIVRewrite)
1892 RewriteIVExpressions(L, Rewriter);
1894 // Clear the rewriter cache, because values that are in the rewriter's cache
1895 // can be deleted in the loop below, causing the AssertingVH in the cache to
1899 // Now that we're done iterating through lists, clean up any instructions
1900 // which are now dead.
1901 while (!DeadInsts.empty())
1902 if (Instruction *Inst =
1903 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
1904 RecursivelyDeleteTriviallyDeadInstructions(Inst);
1906 // The Rewriter may not be used from this point on.
1908 // Loop-invariant instructions in the preheader that aren't used in the
1909 // loop may be sunk below the loop to reduce register pressure.
1910 SinkUnusedInvariants(L);
1912 // For completeness, inform IVUsers of the IV use in the newly-created
1913 // loop exit test instruction.
1914 if (IU && NewICmp) {
1915 ICmpInst *NewICmpInst = dyn_cast<ICmpInst>(NewICmp);
1917 IU->AddUsersIfInteresting(cast<Instruction>(NewICmpInst->getOperand(0)));
1919 // Clean up dead instructions.
1920 Changed |= DeleteDeadPHIs(L->getHeader());
1921 // Check a post-condition.
1922 assert(L->isLCSSAForm(*DT) &&
1923 "Indvars did not leave the loop in lcssa form!");
1925 // Verify that LFTR, and any other change have not interfered with SCEV's
1926 // ability to compute trip count.
1928 if (!EnableIVRewrite && VerifyIndvars &&
1929 !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
1931 const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
1932 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
1933 SE->getTypeSizeInBits(NewBECount->getType()))
1934 NewBECount = SE->getTruncateOrNoop(NewBECount,
1935 BackedgeTakenCount->getType());
1937 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
1938 NewBECount->getType());
1939 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");