Simplification noticed by Frits.
[oota-llvm.git] / lib / Transforms / Scalar / DeadStoreElimination.cpp
1 //===- DeadStoreElimination.cpp - Fast Dead Store Elimination -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a trivial dead store elimination that only considers
11 // basic-block local redundant stores.
12 //
13 // FIXME: This should eventually be extended to be a post-dominator tree
14 // traversal.  Doing so would be pretty trivial.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #define DEBUG_TYPE "dse"
19 #include "llvm/Transforms/Scalar.h"
20 #include "llvm/Constants.h"
21 #include "llvm/Function.h"
22 #include "llvm/GlobalVariable.h"
23 #include "llvm/Instructions.h"
24 #include "llvm/IntrinsicInst.h"
25 #include "llvm/Pass.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/Dominators.h"
28 #include "llvm/Analysis/MemoryBuiltins.h"
29 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/Target/TargetData.h"
32 #include "llvm/Transforms/Utils/Local.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/ADT/SmallPtrSet.h"
35 #include "llvm/ADT/Statistic.h"
36 using namespace llvm;
37
38 STATISTIC(NumFastStores, "Number of stores deleted");
39 STATISTIC(NumFastOther , "Number of other instrs removed");
40
41 namespace {
42   struct DSE : public FunctionPass {
43     AliasAnalysis *AA;
44     MemoryDependenceAnalysis *MD;
45
46     static char ID; // Pass identification, replacement for typeid
47     DSE() : FunctionPass(ID), AA(0), MD(0) {
48       initializeDSEPass(*PassRegistry::getPassRegistry());
49     }
50
51     virtual bool runOnFunction(Function &F) {
52       AA = &getAnalysis<AliasAnalysis>();
53       MD = &getAnalysis<MemoryDependenceAnalysis>();
54       DominatorTree &DT = getAnalysis<DominatorTree>();
55       
56       bool Changed = false;
57       for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
58         // Only check non-dead blocks.  Dead blocks may have strange pointer
59         // cycles that will confuse alias analysis.
60         if (DT.isReachableFromEntry(I))
61           Changed |= runOnBasicBlock(*I);
62       
63       AA = 0; MD = 0;
64       return Changed;
65     }
66     
67     bool runOnBasicBlock(BasicBlock &BB);
68     bool HandleFree(CallInst *F);
69     bool handleEndBlock(BasicBlock &BB);
70     void RemoveAccessedObjects(const AliasAnalysis::Location &LoadedLoc,
71                                SmallPtrSet<Value*, 16> &DeadStackObjects);
72
73     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
74       AU.setPreservesCFG();
75       AU.addRequired<DominatorTree>();
76       AU.addRequired<AliasAnalysis>();
77       AU.addRequired<MemoryDependenceAnalysis>();
78       AU.addPreserved<AliasAnalysis>();
79       AU.addPreserved<DominatorTree>();
80       AU.addPreserved<MemoryDependenceAnalysis>();
81     }
82   };
83 }
84
85 char DSE::ID = 0;
86 INITIALIZE_PASS_BEGIN(DSE, "dse", "Dead Store Elimination", false, false)
87 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
88 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
89 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
90 INITIALIZE_PASS_END(DSE, "dse", "Dead Store Elimination", false, false)
91
92 FunctionPass *llvm::createDeadStoreEliminationPass() { return new DSE(); }
93
94 //===----------------------------------------------------------------------===//
95 // Helper functions
96 //===----------------------------------------------------------------------===//
97
98 /// DeleteDeadInstruction - Delete this instruction.  Before we do, go through
99 /// and zero out all the operands of this instruction.  If any of them become
100 /// dead, delete them and the computation tree that feeds them.
101 ///
102 /// If ValueSet is non-null, remove any deleted instructions from it as well.
103 ///
104 static void DeleteDeadInstruction(Instruction *I,
105                                   MemoryDependenceAnalysis &MD,
106                                   SmallPtrSet<Value*, 16> *ValueSet = 0) {
107   SmallVector<Instruction*, 32> NowDeadInsts;
108   
109   NowDeadInsts.push_back(I);
110   --NumFastOther;
111   
112   // Before we touch this instruction, remove it from memdep!
113   do {
114     Instruction *DeadInst = NowDeadInsts.pop_back_val();
115     ++NumFastOther;
116     
117     // This instruction is dead, zap it, in stages.  Start by removing it from
118     // MemDep, which needs to know the operands and needs it to be in the
119     // function.
120     MD.removeInstruction(DeadInst);
121     
122     for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) {
123       Value *Op = DeadInst->getOperand(op);
124       DeadInst->setOperand(op, 0);
125       
126       // If this operand just became dead, add it to the NowDeadInsts list.
127       if (!Op->use_empty()) continue;
128       
129       if (Instruction *OpI = dyn_cast<Instruction>(Op))
130         if (isInstructionTriviallyDead(OpI))
131           NowDeadInsts.push_back(OpI);
132     }
133     
134     DeadInst->eraseFromParent();
135     
136     if (ValueSet) ValueSet->erase(DeadInst);
137   } while (!NowDeadInsts.empty());
138 }
139
140
141 /// hasMemoryWrite - Does this instruction write some memory?  This only returns
142 /// true for things that we can analyze with other helpers below.
143 static bool hasMemoryWrite(Instruction *I) {
144   if (isa<StoreInst>(I))
145     return true;
146   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
147     switch (II->getIntrinsicID()) {
148     default:
149       return false;
150     case Intrinsic::memset:
151     case Intrinsic::memmove:
152     case Intrinsic::memcpy:
153     case Intrinsic::init_trampoline:
154     case Intrinsic::lifetime_end:
155       return true;
156     }
157   }
158   return false;
159 }
160
161 /// getLocForWrite - Return a Location stored to by the specified instruction.
162 static AliasAnalysis::Location
163 getLocForWrite(Instruction *Inst, AliasAnalysis &AA) {
164   if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
165     return AA.getLocation(SI);
166   
167   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(Inst)) {
168     // memcpy/memmove/memset.
169     AliasAnalysis::Location Loc = AA.getLocationForDest(MI);
170     // If we don't have target data around, an unknown size in Location means
171     // that we should use the size of the pointee type.  This isn't valid for
172     // memset/memcpy, which writes more than an i8.
173     if (Loc.Size == AliasAnalysis::UnknownSize && AA.getTargetData() == 0)
174       return AliasAnalysis::Location();
175     return Loc;
176   }
177   
178   IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst);
179   if (II == 0) return AliasAnalysis::Location();
180   
181   switch (II->getIntrinsicID()) {
182   default: return AliasAnalysis::Location(); // Unhandled intrinsic.
183   case Intrinsic::init_trampoline:
184     // If we don't have target data around, an unknown size in Location means
185     // that we should use the size of the pointee type.  This isn't valid for
186     // init.trampoline, which writes more than an i8.
187     if (AA.getTargetData() == 0) return AliasAnalysis::Location();
188       
189     // FIXME: We don't know the size of the trampoline, so we can't really
190     // handle it here.
191     return AliasAnalysis::Location(II->getArgOperand(0));
192   case Intrinsic::lifetime_end: {
193     uint64_t Len = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
194     return AliasAnalysis::Location(II->getArgOperand(1), Len);
195   }
196   }
197 }
198
199 /// getLocForRead - Return the location read by the specified "hasMemoryWrite"
200 /// instruction if any.
201 static AliasAnalysis::Location 
202 getLocForRead(Instruction *Inst, AliasAnalysis &AA) {
203   assert(hasMemoryWrite(Inst) && "Unknown instruction case");
204   
205   // The only instructions that both read and write are the mem transfer
206   // instructions (memcpy/memmove).
207   if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(Inst))
208     return AA.getLocationForSource(MTI);
209   return AliasAnalysis::Location();
210 }
211
212
213 /// isRemovable - If the value of this instruction and the memory it writes to
214 /// is unused, may we delete this instruction?
215 static bool isRemovable(Instruction *I) {
216   // Don't remove volatile stores.
217   if (StoreInst *SI = dyn_cast<StoreInst>(I))
218     return !SI->isVolatile();
219   
220   IntrinsicInst *II = cast<IntrinsicInst>(I);
221   switch (II->getIntrinsicID()) {
222   default: assert(0 && "doesn't pass 'hasMemoryWrite' predicate");
223   case Intrinsic::lifetime_end:
224     // Never remove dead lifetime_end's, e.g. because it is followed by a
225     // free.
226     return false;
227   case Intrinsic::init_trampoline:
228     // Always safe to remove init_trampoline.
229     return true;
230     
231   case Intrinsic::memset:
232   case Intrinsic::memmove:
233   case Intrinsic::memcpy:
234     // Don't remove volatile memory intrinsics.
235     return !cast<MemIntrinsic>(II)->isVolatile();
236   }
237 }
238
239 /// getStoredPointerOperand - Return the pointer that is being written to.
240 static Value *getStoredPointerOperand(Instruction *I) {
241   if (StoreInst *SI = dyn_cast<StoreInst>(I))
242     return SI->getPointerOperand();
243   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
244     return MI->getDest();
245
246   IntrinsicInst *II = cast<IntrinsicInst>(I);
247   switch (II->getIntrinsicID()) {
248   default: assert(false && "Unexpected intrinsic!");
249   case Intrinsic::init_trampoline:
250     return II->getArgOperand(0);
251   }
252 }
253
254 static uint64_t getPointerSize(Value *V, AliasAnalysis &AA) {
255   const TargetData *TD = AA.getTargetData();
256   if (TD == 0)
257     return AliasAnalysis::UnknownSize;
258   
259   if (AllocaInst *A = dyn_cast<AllocaInst>(V)) {
260     // Get size information for the alloca
261     if (ConstantInt *C = dyn_cast<ConstantInt>(A->getArraySize()))
262       return C->getZExtValue() * TD->getTypeAllocSize(A->getAllocatedType());
263     return AliasAnalysis::UnknownSize;
264   }
265   
266   assert(isa<Argument>(V) && "Expected AllocaInst or Argument!");
267   const PointerType *PT = cast<PointerType>(V->getType());
268   return TD->getTypeAllocSize(PT->getElementType());
269 }
270
271 /// isObjectPointerWithTrustworthySize - Return true if the specified Value* is
272 /// pointing to an object with a pointer size we can trust.
273 static bool isObjectPointerWithTrustworthySize(const Value *V) {
274   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
275     return !AI->isArrayAllocation();
276   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
277     return !GV->mayBeOverridden();
278   if (const Argument *A = dyn_cast<Argument>(V))
279     return A->hasByValAttr();
280   return false;
281 }
282
283 /// isCompleteOverwrite - Return true if a store to the 'Later' location
284 /// completely overwrites a store to the 'Earlier' location.
285 static bool isCompleteOverwrite(const AliasAnalysis::Location &Later,
286                                 const AliasAnalysis::Location &Earlier,
287                                 AliasAnalysis &AA) {
288   const Value *P1 = Earlier.Ptr->stripPointerCasts();
289   const Value *P2 = Later.Ptr->stripPointerCasts();
290   
291   // If the start pointers are the same, we just have to compare sizes to see if
292   // the later store was larger than the earlier store.
293   if (P1 == P2) {
294     // If we don't know the sizes of either access, then we can't do a
295     // comparison.
296     if (Later.Size == AliasAnalysis::UnknownSize ||
297         Earlier.Size == AliasAnalysis::UnknownSize) {
298       // If we have no TargetData information around, then the size of the store
299       // is inferrable from the pointee type.  If they are the same type, then
300       // we know that the store is safe.
301       if (AA.getTargetData() == 0)
302         return Later.Ptr->getType() == Earlier.Ptr->getType();
303       return false;
304     }
305     
306     // Make sure that the Later size is >= the Earlier size.
307     if (Later.Size < Earlier.Size)
308       return false;
309     return true;
310   }
311   
312   // Otherwise, we have to have size information, and the later store has to be
313   // larger than the earlier one.
314   if (Later.Size == AliasAnalysis::UnknownSize ||
315       Earlier.Size == AliasAnalysis::UnknownSize ||
316       Later.Size <= Earlier.Size || AA.getTargetData() == 0)
317     return false;
318   
319   // Check to see if the later store is to the entire object (either a global,
320   // an alloca, or a byval argument).  If so, then it clearly overwrites any
321   // other store to the same object.
322   const TargetData &TD = *AA.getTargetData();
323   
324   const Value *UO1 = GetUnderlyingObject(P1, &TD),
325               *UO2 = GetUnderlyingObject(P2, &TD);
326   
327   // If we can't resolve the same pointers to the same object, then we can't
328   // analyze them at all.
329   if (UO1 != UO2)
330     return false;
331   
332   // If the "Later" store is to a recognizable object, get its size.
333   if (isObjectPointerWithTrustworthySize(UO2)) {
334     uint64_t ObjectSize =
335       TD.getTypeAllocSize(cast<PointerType>(UO2->getType())->getElementType());
336     if (ObjectSize == Later.Size)
337       return true;
338   }
339   
340   // Okay, we have stores to two completely different pointers.  Try to
341   // decompose the pointer into a "base + constant_offset" form.  If the base
342   // pointers are equal, then we can reason about the two stores.
343   int64_t EarlierOff = 0, LaterOff = 0;
344   const Value *BP1 = GetPointerBaseWithConstantOffset(P1, EarlierOff, TD);
345   const Value *BP2 = GetPointerBaseWithConstantOffset(P2, LaterOff, TD);
346   
347   // If the base pointers still differ, we have two completely different stores.
348   if (BP1 != BP2)
349     return false;
350
351   // The later store completely overlaps the earlier store if:
352   // 
353   // 1. Both start at the same offset and the later one's size is greater than
354   //    or equal to the earlier one's, or
355   //
356   //      |--earlier--|
357   //      |--   later   --|
358   //      
359   // 2. The earlier store has an offset greater than the later offset, but which
360   //    still lies completely within the later store.
361   //
362   //        |--earlier--|
363   //    |-----  later  ------|
364   if (EarlierOff >= LaterOff &&
365       EarlierOff + Earlier.Size <= LaterOff + Later.Size)
366     return true;
367
368   // Otherwise, they don't completely overlap.
369   return false;
370 }
371
372 /// isPossibleSelfRead - If 'Inst' might be a self read (i.e. a noop copy of a
373 /// memory region into an identical pointer) then it doesn't actually make its
374 /// input dead in the traditional sense.  Consider this case: 
375 ///
376 ///   memcpy(A <- B)
377 ///   memcpy(A <- A)
378 ///
379 /// In this case, the second store to A does not make the first store to A dead.
380 /// The usual situation isn't an explicit A<-A store like this (which can be
381 /// trivially removed) but a case where two pointers may alias.
382 ///
383 /// This function detects when it is unsafe to remove a dependent instruction
384 /// because the DSE inducing instruction may be a self-read.
385 static bool isPossibleSelfRead(Instruction *Inst,
386                                const AliasAnalysis::Location &InstStoreLoc,
387                                Instruction *DepWrite, AliasAnalysis &AA) {
388   // Self reads can only happen for instructions that read memory.  Get the
389   // location read.
390   AliasAnalysis::Location InstReadLoc = getLocForRead(Inst, AA);
391   if (InstReadLoc.Ptr == 0) return false;  // Not a reading instruction.
392   
393   // If the read and written loc obviously don't alias, it isn't a read.
394   if (AA.isNoAlias(InstReadLoc, InstStoreLoc)) return false;
395   
396   // Okay, 'Inst' may copy over itself.  However, we can still remove a the
397   // DepWrite instruction if we can prove that it reads from the same location
398   // as Inst.  This handles useful cases like:
399   //   memcpy(A <- B)
400   //   memcpy(A <- B)
401   // Here we don't know if A/B may alias, but we do know that B/B are must
402   // aliases, so removing the first memcpy is safe (assuming it writes <= #
403   // bytes as the second one.
404   AliasAnalysis::Location DepReadLoc = getLocForRead(DepWrite, AA);
405   
406   if (DepReadLoc.Ptr && AA.isMustAlias(InstReadLoc.Ptr, DepReadLoc.Ptr))
407     return false;
408   
409   // If DepWrite doesn't read memory or if we can't prove it is a must alias,
410   // then it can't be considered dead.
411   return true;
412 }
413
414
415 //===----------------------------------------------------------------------===//
416 // DSE Pass
417 //===----------------------------------------------------------------------===//
418
419 bool DSE::runOnBasicBlock(BasicBlock &BB) {
420   bool MadeChange = false;
421   
422   // Do a top-down walk on the BB.
423   for (BasicBlock::iterator BBI = BB.begin(), BBE = BB.end(); BBI != BBE; ) {
424     Instruction *Inst = BBI++;
425     
426     // Handle 'free' calls specially.
427     if (CallInst *F = isFreeCall(Inst)) {
428       MadeChange |= HandleFree(F);
429       continue;
430     }
431     
432     // If we find something that writes memory, get its memory dependence.
433     if (!hasMemoryWrite(Inst))
434       continue;
435
436     MemDepResult InstDep = MD->getDependency(Inst);
437     
438     // Ignore non-local store liveness.
439     // FIXME: cross-block DSE would be fun. :)
440     if (InstDep.isNonLocal() || 
441         // Ignore self dependence, which happens in the entry block of the
442         // function.
443         InstDep.getInst() == Inst)
444       continue;
445      
446     // If we're storing the same value back to a pointer that we just
447     // loaded from, then the store can be removed.
448     if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
449       if (LoadInst *DepLoad = dyn_cast<LoadInst>(InstDep.getInst())) {
450         if (SI->getPointerOperand() == DepLoad->getPointerOperand() &&
451             SI->getOperand(0) == DepLoad && !SI->isVolatile()) {
452           DEBUG(dbgs() << "DSE: Remove Store Of Load from same pointer:\n  "
453                        << "LOAD: " << *DepLoad << "\n  STORE: " << *SI << '\n');
454           
455           // DeleteDeadInstruction can delete the current instruction.  Save BBI
456           // in case we need it.
457           WeakVH NextInst(BBI);
458           
459           DeleteDeadInstruction(SI, *MD);
460           
461           if (NextInst == 0)  // Next instruction deleted.
462             BBI = BB.begin();
463           else if (BBI != BB.begin())  // Revisit this instruction if possible.
464             --BBI;
465           ++NumFastStores;
466           MadeChange = true;
467           continue;
468         }
469       }
470     }
471     
472     // Figure out what location is being stored to.
473     AliasAnalysis::Location Loc = getLocForWrite(Inst, *AA);
474
475     // If we didn't get a useful location, fail.
476     if (Loc.Ptr == 0)
477       continue;
478     
479     while (!InstDep.isNonLocal()) {
480       // Get the memory clobbered by the instruction we depend on.  MemDep will
481       // skip any instructions that 'Loc' clearly doesn't interact with.  If we
482       // end up depending on a may- or must-aliased load, then we can't optimize
483       // away the store and we bail out.  However, if we depend on on something
484       // that overwrites the memory location we *can* potentially optimize it.
485       //
486       // Find out what memory location the dependant instruction stores.
487       Instruction *DepWrite = InstDep.getInst();
488       AliasAnalysis::Location DepLoc = getLocForWrite(DepWrite, *AA);
489       // If we didn't get a useful location, or if it isn't a size, bail out.
490       if (DepLoc.Ptr == 0)
491         break;
492
493       // If we find a write that is a) removable (i.e., non-volatile), b) is
494       // completely obliterated by the store to 'Loc', and c) which we know that
495       // 'Inst' doesn't load from, then we can remove it.
496       if (isRemovable(DepWrite) && isCompleteOverwrite(Loc, DepLoc, *AA) &&
497           !isPossibleSelfRead(Inst, Loc, DepWrite, *AA)) {
498         DEBUG(dbgs() << "DSE: Remove Dead Store:\n  DEAD: "
499               << *DepWrite << "\n  KILLER: " << *Inst << '\n');
500         
501         // Delete the store and now-dead instructions that feed it.
502         DeleteDeadInstruction(DepWrite, *MD);
503         ++NumFastStores;
504         MadeChange = true;
505         
506         // DeleteDeadInstruction can delete the current instruction in loop
507         // cases, reset BBI.
508         BBI = Inst;
509         if (BBI != BB.begin())
510           --BBI;
511         break;
512       }
513       
514       // If this is a may-aliased store that is clobbering the store value, we
515       // can keep searching past it for another must-aliased pointer that stores
516       // to the same location.  For example, in:
517       //   store -> P
518       //   store -> Q
519       //   store -> P
520       // we can remove the first store to P even though we don't know if P and Q
521       // alias.
522       if (DepWrite == &BB.front()) break;
523       
524       // Can't look past this instruction if it might read 'Loc'.
525       if (AA->getModRefInfo(DepWrite, Loc) & AliasAnalysis::Ref)
526         break;
527         
528       InstDep = MD->getPointerDependencyFrom(Loc, false, DepWrite, &BB);
529     }
530   }
531   
532   // If this block ends in a return, unwind, or unreachable, all allocas are
533   // dead at its end, which means stores to them are also dead.
534   if (BB.getTerminator()->getNumSuccessors() == 0)
535     MadeChange |= handleEndBlock(BB);
536   
537   return MadeChange;
538 }
539
540 /// HandleFree - Handle frees of entire structures whose dependency is a store
541 /// to a field of that structure.
542 bool DSE::HandleFree(CallInst *F) {
543   MemDepResult Dep = MD->getDependency(F);
544   do {
545     if (Dep.isNonLocal()) return false;
546     
547     Instruction *Dependency = Dep.getInst();
548     if (!hasMemoryWrite(Dependency) || !isRemovable(Dependency))
549       return false;
550   
551     Value *DepPointer =
552       GetUnderlyingObject(getStoredPointerOperand(Dependency));
553
554     // Check for aliasing.
555     if (!AA->isMustAlias(F->getArgOperand(0), DepPointer))
556       return false;
557   
558     // DCE instructions only used to calculate that store
559     DeleteDeadInstruction(Dependency, *MD);
560     ++NumFastStores;
561
562     // Inst's old Dependency is now deleted. Compute the next dependency,
563     // which may also be dead, as in
564     //    s[0] = 0;
565     //    s[1] = 0; // This has just been deleted.
566     //    free(s);
567     Dep = MD->getDependency(F);
568   } while (!Dep.isNonLocal());
569   
570   return true;
571 }
572
573 /// handleEndBlock - Remove dead stores to stack-allocated locations in the
574 /// function end block.  Ex:
575 /// %A = alloca i32
576 /// ...
577 /// store i32 1, i32* %A
578 /// ret void
579 bool DSE::handleEndBlock(BasicBlock &BB) {
580   bool MadeChange = false;
581   
582   // Keep track of all of the stack objects that are dead at the end of the
583   // function.
584   SmallPtrSet<Value*, 16> DeadStackObjects;
585   
586   // Find all of the alloca'd pointers in the entry block.
587   BasicBlock *Entry = BB.getParent()->begin();
588   for (BasicBlock::iterator I = Entry->begin(), E = Entry->end(); I != E; ++I)
589     if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
590       DeadStackObjects.insert(AI);
591   
592   // Treat byval arguments the same, stores to them are dead at the end of the
593   // function.
594   for (Function::arg_iterator AI = BB.getParent()->arg_begin(),
595        AE = BB.getParent()->arg_end(); AI != AE; ++AI)
596     if (AI->hasByValAttr())
597       DeadStackObjects.insert(AI);
598   
599   // Scan the basic block backwards
600   for (BasicBlock::iterator BBI = BB.end(); BBI != BB.begin(); ){
601     --BBI;
602     
603     // If we find a store, check to see if it points into a dead stack value.
604     if (hasMemoryWrite(BBI) && isRemovable(BBI)) {
605       // See through pointer-to-pointer bitcasts
606       Value *Pointer = GetUnderlyingObject(getStoredPointerOperand(BBI));
607
608       // Stores to stack values are valid candidates for removal.
609       if (DeadStackObjects.count(Pointer)) {
610         Instruction *Dead = BBI++;
611         
612         DEBUG(dbgs() << "DSE: Dead Store at End of Block:\n  DEAD: "
613                      << *Dead << "\n  Object: " << *Pointer << '\n');
614         
615         // DCE instructions only used to calculate that store.
616         DeleteDeadInstruction(Dead, *MD, &DeadStackObjects);
617         ++NumFastStores;
618         MadeChange = true;
619         continue;
620       }
621     }
622     
623     // Remove any dead non-memory-mutating instructions.
624     if (isInstructionTriviallyDead(BBI)) {
625       Instruction *Inst = BBI++;
626       DeleteDeadInstruction(Inst, *MD, &DeadStackObjects);
627       ++NumFastOther;
628       MadeChange = true;
629       continue;
630     }
631     
632     if (AllocaInst *A = dyn_cast<AllocaInst>(BBI)) {
633       DeadStackObjects.erase(A);
634       continue;
635     }
636     
637     if (CallSite CS = cast<Value>(BBI)) {
638       // If this call does not access memory, it can't be loading any of our
639       // pointers.
640       if (AA->doesNotAccessMemory(CS))
641         continue;
642       
643       unsigned NumModRef = 0, NumOther = 0;
644       
645       // If the call might load from any of our allocas, then any store above
646       // the call is live.
647       SmallVector<Value*, 8> LiveAllocas;
648       for (SmallPtrSet<Value*, 16>::iterator I = DeadStackObjects.begin(),
649            E = DeadStackObjects.end(); I != E; ++I) {
650         // If we detect that our AA is imprecise, it's not worth it to scan the
651         // rest of the DeadPointers set.  Just assume that the AA will return
652         // ModRef for everything, and go ahead and bail out.
653         if (NumModRef >= 16 && NumOther == 0)
654           return MadeChange;
655
656         // See if the call site touches it.
657         AliasAnalysis::ModRefResult A = 
658           AA->getModRefInfo(CS, *I, getPointerSize(*I, *AA));
659         
660         if (A == AliasAnalysis::ModRef)
661           ++NumModRef;
662         else
663           ++NumOther;
664         
665         if (A == AliasAnalysis::ModRef || A == AliasAnalysis::Ref)
666           LiveAllocas.push_back(*I);
667       }
668       
669       for (SmallVector<Value*, 8>::iterator I = LiveAllocas.begin(),
670            E = LiveAllocas.end(); I != E; ++I)
671         DeadStackObjects.erase(*I);
672       
673       // If all of the allocas were clobbered by the call then we're not going
674       // to find anything else to process.
675       if (DeadStackObjects.empty())
676         return MadeChange;
677       
678       continue;
679     }
680     
681     AliasAnalysis::Location LoadedLoc;
682     
683     // If we encounter a use of the pointer, it is no longer considered dead
684     if (LoadInst *L = dyn_cast<LoadInst>(BBI)) {
685       LoadedLoc = AA->getLocation(L);
686     } else if (VAArgInst *V = dyn_cast<VAArgInst>(BBI)) {
687       LoadedLoc = AA->getLocation(V);
688     } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(BBI)) {
689       LoadedLoc = AA->getLocationForSource(MTI);
690     } else {
691       // Not a loading instruction.
692       continue;
693     }
694
695     // Remove any allocas from the DeadPointer set that are loaded, as this
696     // makes any stores above the access live.
697     RemoveAccessedObjects(LoadedLoc, DeadStackObjects);
698
699     // If all of the allocas were clobbered by the access then we're not going
700     // to find anything else to process.
701     if (DeadStackObjects.empty())
702       break;
703   }
704   
705   return MadeChange;
706 }
707
708 /// RemoveAccessedObjects - Check to see if the specified location may alias any
709 /// of the stack objects in the DeadStackObjects set.  If so, they become live
710 /// because the location is being loaded.
711 void DSE::RemoveAccessedObjects(const AliasAnalysis::Location &LoadedLoc,
712                                 SmallPtrSet<Value*, 16> &DeadStackObjects) {
713   const Value *UnderlyingPointer = GetUnderlyingObject(LoadedLoc.Ptr);
714
715   // A constant can't be in the dead pointer set.
716   if (isa<Constant>(UnderlyingPointer))
717     return;
718   
719   // If the kill pointer can be easily reduced to an alloca, don't bother doing
720   // extraneous AA queries.
721   if (isa<AllocaInst>(UnderlyingPointer) || isa<Argument>(UnderlyingPointer)) {
722     DeadStackObjects.erase(const_cast<Value*>(UnderlyingPointer));
723     return;
724   }
725   
726   SmallVector<Value*, 16> NowLive;
727   for (SmallPtrSet<Value*, 16>::iterator I = DeadStackObjects.begin(),
728        E = DeadStackObjects.end(); I != E; ++I) {
729     // See if the loaded location could alias the stack location.
730     AliasAnalysis::Location StackLoc(*I, getPointerSize(*I, *AA));
731     if (!AA->isNoAlias(StackLoc, LoadedLoc))
732       NowLive.push_back(*I);
733   }
734
735   for (SmallVector<Value*, 16>::iterator I = NowLive.begin(), E = NowLive.end();
736        I != E; ++I)
737     DeadStackObjects.erase(*I);
738 }
739