Getting ADCE to interact well with unreachable instructions seems like a nontrivial
[oota-llvm.git] / lib / Transforms / Scalar / ADCE.cpp
1 //===- ADCE.cpp - Code to perform aggressive dead code elimination --------===//
2 // 
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
7 // 
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements "aggressive" dead code elimination.  ADCE is DCe where
11 // values are assumed to be dead until proven otherwise.  This is similar to 
12 // SCCP, except applied to the liveness of values.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/Transforms/Scalar.h"
17 #include "llvm/Constant.h"
18 #include "llvm/Instructions.h"
19 #include "llvm/Type.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/PostDominators.h"
22 #include "llvm/Support/CFG.h"
23 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
24 #include "llvm/Transforms/Utils/Local.h"
25 #include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/ADT/DepthFirstIterator.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include <algorithm>
31 using namespace llvm;
32
33 namespace {
34   Statistic<> NumBlockRemoved("adce", "Number of basic blocks removed");
35   Statistic<> NumInstRemoved ("adce", "Number of instructions removed");
36   Statistic<> NumCallRemoved ("adce", "Number of calls and invokes removed");
37
38 //===----------------------------------------------------------------------===//
39 // ADCE Class
40 //
41 // This class does all of the work of Aggressive Dead Code Elimination.
42 // It's public interface consists of a constructor and a doADCE() method.
43 //
44 class ADCE : public FunctionPass {
45   Function *Func;                       // The function that we are working on
46   std::vector<Instruction*> WorkList;   // Instructions that just became live
47   std::set<Instruction*>    LiveSet;    // The set of live instructions
48
49   //===--------------------------------------------------------------------===//
50   // The public interface for this class
51   //
52 public:
53   // Execute the Aggressive Dead Code Elimination Algorithm
54   //
55   virtual bool runOnFunction(Function &F) {
56     Func = &F;
57     bool Changed = doADCE();
58     assert(WorkList.empty());
59     LiveSet.clear();
60     return Changed;
61   }
62   // getAnalysisUsage - We require post dominance frontiers (aka Control
63   // Dependence Graph)
64   virtual void getAnalysisUsage(AnalysisUsage &AU) const {
65     // We require that all function nodes are unified, because otherwise code
66     // can be marked live that wouldn't necessarily be otherwise.
67     AU.addRequired<UnifyFunctionExitNodes>();
68     AU.addRequired<AliasAnalysis>();
69     AU.addRequired<PostDominatorTree>();
70     AU.addRequired<PostDominanceFrontier>();
71   }
72
73
74   //===--------------------------------------------------------------------===//
75   // The implementation of this class
76   //
77 private:
78   // doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning
79   // true if the function was modified.
80   //
81   bool doADCE();
82
83   void markBlockAlive(BasicBlock *BB);
84
85
86   // dropReferencesOfDeadInstructionsInLiveBlock - Loop over all of the
87   // instructions in the specified basic block, dropping references on
88   // instructions that are dead according to LiveSet.
89   bool dropReferencesOfDeadInstructionsInLiveBlock(BasicBlock *BB);
90
91   TerminatorInst *convertToUnconditionalBranch(TerminatorInst *TI);
92
93   inline void markInstructionLive(Instruction *I) {
94     if (LiveSet.count(I)) return;
95     DEBUG(std::cerr << "Insn Live: " << *I);
96     LiveSet.insert(I);
97     WorkList.push_back(I);
98   }
99
100   inline void markTerminatorLive(const BasicBlock *BB) {
101     DEBUG(std::cerr << "Terminator Live: " << *BB->getTerminator());
102     markInstructionLive(const_cast<TerminatorInst*>(BB->getTerminator()));
103   }
104 };
105
106   RegisterOpt<ADCE> X("adce", "Aggressive Dead Code Elimination");
107 } // End of anonymous namespace
108
109 FunctionPass *llvm::createAggressiveDCEPass() { return new ADCE(); }
110
111 void ADCE::markBlockAlive(BasicBlock *BB) {
112   // Mark the basic block as being newly ALIVE... and mark all branches that
113   // this block is control dependent on as being alive also...
114   //
115   PostDominanceFrontier &CDG = getAnalysis<PostDominanceFrontier>();
116
117   PostDominanceFrontier::const_iterator It = CDG.find(BB);
118   if (It != CDG.end()) {
119     // Get the blocks that this node is control dependent on...
120     const PostDominanceFrontier::DomSetType &CDB = It->second;
121     for_each(CDB.begin(), CDB.end(),   // Mark all their terminators as live
122              bind_obj(this, &ADCE::markTerminatorLive));
123   }
124   
125   // If this basic block is live, and it ends in an unconditional branch, then
126   // the branch is alive as well...
127   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
128     if (BI->isUnconditional())
129       markTerminatorLive(BB);
130 }
131
132 // dropReferencesOfDeadInstructionsInLiveBlock - Loop over all of the
133 // instructions in the specified basic block, dropping references on
134 // instructions that are dead according to LiveSet.
135 bool ADCE::dropReferencesOfDeadInstructionsInLiveBlock(BasicBlock *BB) {
136   bool Changed = false;
137   for (BasicBlock::iterator I = BB->begin(), E = --BB->end(); I != E; )
138     if (!LiveSet.count(I)) {              // Is this instruction alive?
139       I->dropAllReferences();             // Nope, drop references... 
140       if (PHINode *PN = dyn_cast<PHINode>(I)) {
141         // We don't want to leave PHI nodes in the program that have
142         // #arguments != #predecessors, so we remove them now.
143         //
144         PN->replaceAllUsesWith(Constant::getNullValue(PN->getType()));
145
146         // Delete the instruction...
147         ++I;
148         BB->getInstList().erase(PN);
149         Changed = true;
150         ++NumInstRemoved;
151       } else {
152         ++I;
153       }
154     } else {
155       ++I;
156     }
157   return Changed;
158 }
159
160
161 /// convertToUnconditionalBranch - Transform this conditional terminator
162 /// instruction into an unconditional branch because we don't care which of the
163 /// successors it goes to.  This eliminate a use of the condition as well.
164 ///
165 TerminatorInst *ADCE::convertToUnconditionalBranch(TerminatorInst *TI) {
166   BranchInst *NB = new BranchInst(TI->getSuccessor(0), TI);
167   BasicBlock *BB = TI->getParent();
168
169   // Remove entries from PHI nodes to avoid confusing ourself later...
170   for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
171     TI->getSuccessor(i)->removePredecessor(BB);
172   
173   // Delete the old branch itself...
174   BB->getInstList().erase(TI);
175   return NB;
176 }
177
178
179 // doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning
180 // true if the function was modified.
181 //
182 bool ADCE::doADCE() {
183   bool MadeChanges = false;
184
185   AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
186
187
188   // Iterate over all invokes in the function, turning invokes into calls if
189   // they cannot throw.
190   for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB)
191     if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator()))
192       if (Function *F = II->getCalledFunction())
193         if (AA.onlyReadsMemory(F)) {
194           // The function cannot unwind.  Convert it to a call with a branch
195           // after it to the normal destination.
196           std::vector<Value*> Args(II->op_begin()+3, II->op_end());
197           std::string Name = II->getName(); II->setName("");
198           Instruction *NewCall = new CallInst(F, Args, Name, II);
199           II->replaceAllUsesWith(NewCall);
200           new BranchInst(II->getNormalDest(), II);
201
202           // Update PHI nodes in the unwind destination
203           II->getUnwindDest()->removePredecessor(BB);
204           BB->getInstList().erase(II);
205
206           if (NewCall->use_empty()) {
207             BB->getInstList().erase(NewCall);
208             ++NumCallRemoved;
209           }
210         }
211
212   // Iterate over all of the instructions in the function, eliminating trivially
213   // dead instructions, and marking instructions live that are known to be 
214   // needed.  Perform the walk in depth first order so that we avoid marking any
215   // instructions live in basic blocks that are unreachable.  These blocks will
216   // be eliminated later, along with the instructions inside.
217   //
218   std::set<BasicBlock*> ReachableBBs;
219   for (df_ext_iterator<BasicBlock*>
220          BBI = df_ext_begin(&Func->front(), ReachableBBs),
221          BBE = df_ext_end(&Func->front(), ReachableBBs); BBI != BBE; ++BBI) {
222     BasicBlock *BB = *BBI;
223     for (BasicBlock::iterator II = BB->begin(), EI = BB->end(); II != EI; ) {
224       Instruction *I = II++;
225       if (CallInst *CI = dyn_cast<CallInst>(I)) {
226         Function *F = CI->getCalledFunction();
227         if (F && AA.onlyReadsMemory(F)) {
228           if (CI->use_empty()) {
229             BB->getInstList().erase(CI);
230             ++NumCallRemoved;
231           }
232         } else {
233           markInstructionLive(I);
234         }
235       } else if (I->mayWriteToMemory() || isa<ReturnInst>(I) ||
236                  isa<UnwindInst>(I) || isa<UnreachableInst>(I)) {
237         // FIXME: Unreachable instructions should not be marked intrinsically
238         // live here.
239         markInstructionLive(I);
240       } else if (isInstructionTriviallyDead(I)) {
241         // Remove the instruction from it's basic block...
242         BB->getInstList().erase(I);
243         ++NumInstRemoved;
244       }
245     }
246   }
247
248   // Check to ensure we have an exit node for this CFG.  If we don't, we won't
249   // have any post-dominance information, thus we cannot perform our
250   // transformations safely.
251   //
252   PostDominatorTree &DT = getAnalysis<PostDominatorTree>();
253   if (DT[&Func->getEntryBlock()] == 0) {
254     WorkList.clear();
255     return MadeChanges;
256   }
257
258   // Scan the function marking blocks without post-dominance information as
259   // live.  Blocks without post-dominance information occur when there is an
260   // infinite loop in the program.  Because the infinite loop could contain a
261   // function which unwinds, exits or has side-effects, we don't want to delete
262   // the infinite loop or those blocks leading up to it.
263   for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I)
264     if (DT[I] == 0)
265       for (pred_iterator PI = pred_begin(I), E = pred_end(I); PI != E; ++PI)
266         markInstructionLive((*PI)->getTerminator());
267
268
269
270   DEBUG(std::cerr << "Processing work list\n");
271
272   // AliveBlocks - Set of basic blocks that we know have instructions that are
273   // alive in them...
274   //
275   std::set<BasicBlock*> AliveBlocks;
276
277   // Process the work list of instructions that just became live... if they
278   // became live, then that means that all of their operands are necessary as
279   // well... make them live as well.
280   //
281   while (!WorkList.empty()) {
282     Instruction *I = WorkList.back(); // Get an instruction that became live...
283     WorkList.pop_back();
284
285     BasicBlock *BB = I->getParent();
286     if (!ReachableBBs.count(BB)) continue;
287     if (!AliveBlocks.count(BB)) {     // Basic block not alive yet...
288       AliveBlocks.insert(BB);         // Block is now ALIVE!
289       markBlockAlive(BB);             // Make it so now!
290     }
291
292     // PHI nodes are a special case, because the incoming values are actually
293     // defined in the predecessor nodes of this block, meaning that the PHI
294     // makes the predecessors alive.
295     //
296     if (PHINode *PN = dyn_cast<PHINode>(I))
297       for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI)
298         if (!AliveBlocks.count(*PI)) {
299           AliveBlocks.insert(BB);         // Block is now ALIVE!
300           markBlockAlive(*PI);
301         }
302
303     // Loop over all of the operands of the live instruction, making sure that
304     // they are known to be alive as well...
305     //
306     for (unsigned op = 0, End = I->getNumOperands(); op != End; ++op)
307       if (Instruction *Operand = dyn_cast<Instruction>(I->getOperand(op)))
308         markInstructionLive(Operand);
309   }
310
311   DEBUG(
312     std::cerr << "Current Function: X = Live\n";
313     for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I){
314       std::cerr << I->getName() << ":\t"
315                 << (AliveBlocks.count(I) ? "LIVE\n" : "DEAD\n");
316       for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE; ++BI){
317         if (LiveSet.count(BI)) std::cerr << "X ";
318         std::cerr << *BI;
319       }
320     });
321
322   // Find the first postdominator of the entry node that is alive.  Make it the
323   // new entry node...
324   //
325   if (AliveBlocks.size() == Func->size()) {  // No dead blocks?
326     for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) {
327       // Loop over all of the instructions in the function, telling dead
328       // instructions to drop their references.  This is so that the next sweep
329       // over the program can safely delete dead instructions without other dead
330       // instructions still referring to them.
331       //
332       dropReferencesOfDeadInstructionsInLiveBlock(I);
333
334       // Check to make sure the terminator instruction is live.  If it isn't,
335       // this means that the condition that it branches on (we know it is not an
336       // unconditional branch), is not needed to make the decision of where to
337       // go to, because all outgoing edges go to the same place.  We must remove
338       // the use of the condition (because it's probably dead), so we convert
339       // the terminator to a conditional branch.
340       //
341       TerminatorInst *TI = I->getTerminator();
342       if (!LiveSet.count(TI))
343         convertToUnconditionalBranch(TI);
344     }
345     
346   } else {                                   // If there are some blocks dead...
347     // If the entry node is dead, insert a new entry node to eliminate the entry
348     // node as a special case.
349     //
350     if (!AliveBlocks.count(&Func->front())) {
351       BasicBlock *NewEntry = new BasicBlock();
352       new BranchInst(&Func->front(), NewEntry);
353       Func->getBasicBlockList().push_front(NewEntry);
354       AliveBlocks.insert(NewEntry);    // This block is always alive!
355       LiveSet.insert(NewEntry->getTerminator());  // The branch is live
356     }
357     
358     // Loop over all of the alive blocks in the function.  If any successor
359     // blocks are not alive, we adjust the outgoing branches to branch to the
360     // first live postdominator of the live block, adjusting any PHI nodes in
361     // the block to reflect this.
362     //
363     for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I)
364       if (AliveBlocks.count(I)) {
365         BasicBlock *BB = I;
366         TerminatorInst *TI = BB->getTerminator();
367       
368         // If the terminator instruction is alive, but the block it is contained
369         // in IS alive, this means that this terminator is a conditional branch
370         // on a condition that doesn't matter.  Make it an unconditional branch
371         // to ONE of the successors.  This has the side effect of dropping a use
372         // of the conditional value, which may also be dead.
373         if (!LiveSet.count(TI))
374           TI = convertToUnconditionalBranch(TI);
375
376         // Loop over all of the successors, looking for ones that are not alive.
377         // We cannot save the number of successors in the terminator instruction
378         // here because we may remove them if we don't have a postdominator...
379         //
380         for (unsigned i = 0; i != TI->getNumSuccessors(); ++i)
381           if (!AliveBlocks.count(TI->getSuccessor(i))) {
382             // Scan up the postdominator tree, looking for the first
383             // postdominator that is alive, and the last postdominator that is
384             // dead...
385             //
386             PostDominatorTree::Node *LastNode = DT[TI->getSuccessor(i)];
387
388             // There is a special case here... if there IS no post-dominator for
389             // the block we have no owhere to point our branch to.  Instead,
390             // convert it to a return.  This can only happen if the code
391             // branched into an infinite loop.  Note that this may not be
392             // desirable, because we _are_ altering the behavior of the code.
393             // This is a well known drawback of ADCE, so in the future if we
394             // choose to revisit the decision, this is where it should be.
395             //
396             if (LastNode == 0) {        // No postdominator!
397               // Call RemoveSuccessor to transmogrify the terminator instruction
398               // to not contain the outgoing branch, or to create a new
399               // terminator if the form fundamentally changes (i.e.,
400               // unconditional branch to return).  Note that this will change a
401               // branch into an infinite loop into a return instruction!
402               //
403               RemoveSuccessor(TI, i);
404
405               // RemoveSuccessor may replace TI... make sure we have a fresh
406               // pointer... and e variable.
407               //
408               TI = BB->getTerminator();
409
410               // Rescan this successor...
411               --i;
412             } else {
413               PostDominatorTree::Node *NextNode = LastNode->getIDom();
414
415               while (!AliveBlocks.count(NextNode->getBlock())) {
416                 LastNode = NextNode;
417                 NextNode = NextNode->getIDom();
418               }
419             
420               // Get the basic blocks that we need...
421               BasicBlock *LastDead = LastNode->getBlock();
422               BasicBlock *NextAlive = NextNode->getBlock();
423
424               // Make the conditional branch now go to the next alive block...
425               TI->getSuccessor(i)->removePredecessor(BB);
426               TI->setSuccessor(i, NextAlive);
427
428               // If there are PHI nodes in NextAlive, we need to add entries to
429               // the PHI nodes for the new incoming edge.  The incoming values
430               // should be identical to the incoming values for LastDead.
431               //
432               for (BasicBlock::iterator II = NextAlive->begin();
433                    isa<PHINode>(II); ++II) {
434                 PHINode *PN = cast<PHINode>(II);
435                 if (LiveSet.count(PN)) {  // Only modify live phi nodes
436                   // Get the incoming value for LastDead...
437                   int OldIdx = PN->getBasicBlockIndex(LastDead);
438                   assert(OldIdx != -1 &&"LastDead is not a pred of NextAlive!");
439                   Value *InVal = PN->getIncomingValue(OldIdx);
440                   
441                   // Add an incoming value for BB now...
442                   PN->addIncoming(InVal, BB);
443                 }
444               }
445             }
446           }
447
448         // Now loop over all of the instructions in the basic block, telling
449         // dead instructions to drop their references.  This is so that the next
450         // sweep over the program can safely delete dead instructions without
451         // other dead instructions still referring to them.
452         //
453         dropReferencesOfDeadInstructionsInLiveBlock(BB);
454       }
455   }
456
457   // We make changes if there are any dead blocks in the function...
458   if (unsigned NumDeadBlocks = Func->size() - AliveBlocks.size()) {
459     MadeChanges = true;
460     NumBlockRemoved += NumDeadBlocks;
461   }
462
463   // Loop over all of the basic blocks in the function, removing control flow
464   // edges to live blocks (also eliminating any entries in PHI functions in
465   // referenced blocks).
466   //
467   for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB)
468     if (!AliveBlocks.count(BB)) {
469       // Remove all outgoing edges from this basic block and convert the
470       // terminator into a return instruction.
471       std::vector<BasicBlock*> Succs(succ_begin(BB), succ_end(BB));
472       
473       if (!Succs.empty()) {
474         // Loop over all of the successors, removing this block from PHI node
475         // entries that might be in the block...
476         while (!Succs.empty()) {
477           Succs.back()->removePredecessor(BB);
478           Succs.pop_back();
479         }
480         
481         // Delete the old terminator instruction...
482         const Type *TermTy = BB->getTerminator()->getType();
483         if (TermTy != Type::VoidTy)
484           BB->getTerminator()->replaceAllUsesWith(
485                                Constant::getNullValue(TermTy));
486         BB->getInstList().pop_back();
487         const Type *RetTy = Func->getReturnType();
488         new ReturnInst(RetTy != Type::VoidTy ?
489                        Constant::getNullValue(RetTy) : 0, BB);
490       }
491     }
492
493
494   // Loop over all of the basic blocks in the function, dropping references of
495   // the dead basic blocks.  We must do this after the previous step to avoid
496   // dropping references to PHIs which still have entries...
497   //
498   for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB)
499     if (!AliveBlocks.count(BB))
500       BB->dropAllReferences();
501
502   // Now loop through all of the blocks and delete the dead ones.  We can safely
503   // do this now because we know that there are no references to dead blocks
504   // (because they have dropped all of their references...  we also remove dead
505   // instructions from alive blocks.
506   //
507   for (Function::iterator BI = Func->begin(); BI != Func->end(); )
508     if (!AliveBlocks.count(BI)) {                // Delete dead blocks...
509       BI = Func->getBasicBlockList().erase(BI);
510     } else {                                     // Scan alive blocks...
511       for (BasicBlock::iterator II = BI->begin(); II != --BI->end(); )
512         if (!LiveSet.count(II)) {             // Is this instruction alive?
513           // Nope... remove the instruction from it's basic block...
514           if (isa<CallInst>(II))
515             ++NumCallRemoved;
516           else
517             ++NumInstRemoved;
518           II = BI->getInstList().erase(II);
519           MadeChanges = true;
520         } else {
521           ++II;
522         }
523
524       ++BI;                                           // Increment iterator...
525     }
526
527   return MadeChanges;
528 }