Reduce number of set operations.
[oota-llvm.git] / lib / Transforms / Scalar / ADCE.cpp
1 //===- ADCE.cpp - Code to perform aggressive dead code elimination --------===//
2 // 
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
7 // 
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements "aggressive" dead code elimination.  ADCE is DCe where
11 // values are assumed to be dead until proven otherwise.  This is similar to 
12 // SCCP, except applied to the liveness of values.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/Transforms/Scalar.h"
17 #include "llvm/Constant.h"
18 #include "llvm/Instructions.h"
19 #include "llvm/Type.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/PostDominators.h"
22 #include "llvm/Support/CFG.h"
23 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
24 #include "llvm/Transforms/Utils/Local.h"
25 #include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/ADT/DepthFirstIterator.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include <algorithm>
31 using namespace llvm;
32
33 namespace {
34   Statistic<> NumBlockRemoved("adce", "Number of basic blocks removed");
35   Statistic<> NumInstRemoved ("adce", "Number of instructions removed");
36   Statistic<> NumCallRemoved ("adce", "Number of calls and invokes removed");
37
38 //===----------------------------------------------------------------------===//
39 // ADCE Class
40 //
41 // This class does all of the work of Aggressive Dead Code Elimination.
42 // It's public interface consists of a constructor and a doADCE() method.
43 //
44 class ADCE : public FunctionPass {
45   Function *Func;                       // The function that we are working on
46   std::vector<Instruction*> WorkList;   // Instructions that just became live
47   std::set<Instruction*>    LiveSet;    // The set of live instructions
48
49   //===--------------------------------------------------------------------===//
50   // The public interface for this class
51   //
52 public:
53   // Execute the Aggressive Dead Code Elimination Algorithm
54   //
55   virtual bool runOnFunction(Function &F) {
56     Func = &F;
57     bool Changed = doADCE();
58     assert(WorkList.empty());
59     LiveSet.clear();
60     return Changed;
61   }
62   // getAnalysisUsage - We require post dominance frontiers (aka Control
63   // Dependence Graph)
64   virtual void getAnalysisUsage(AnalysisUsage &AU) const {
65     // We require that all function nodes are unified, because otherwise code
66     // can be marked live that wouldn't necessarily be otherwise.
67     AU.addRequired<UnifyFunctionExitNodes>();
68     AU.addRequired<AliasAnalysis>();
69     AU.addRequired<PostDominatorTree>();
70     AU.addRequired<PostDominanceFrontier>();
71   }
72
73
74   //===--------------------------------------------------------------------===//
75   // The implementation of this class
76   //
77 private:
78   // doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning
79   // true if the function was modified.
80   //
81   bool doADCE();
82
83   void markBlockAlive(BasicBlock *BB);
84
85
86   // dropReferencesOfDeadInstructionsInLiveBlock - Loop over all of the
87   // instructions in the specified basic block, dropping references on
88   // instructions that are dead according to LiveSet.
89   bool dropReferencesOfDeadInstructionsInLiveBlock(BasicBlock *BB);
90
91   TerminatorInst *convertToUnconditionalBranch(TerminatorInst *TI);
92
93   inline void markInstructionLive(Instruction *I) {
94     if (!LiveSet.insert(I).second) return;
95     DEBUG(std::cerr << "Insn Live: " << *I);
96     WorkList.push_back(I);
97   }
98
99   inline void markTerminatorLive(const BasicBlock *BB) {
100     DEBUG(std::cerr << "Terminator Live: " << *BB->getTerminator());
101     markInstructionLive(const_cast<TerminatorInst*>(BB->getTerminator()));
102   }
103 };
104
105   RegisterOpt<ADCE> X("adce", "Aggressive Dead Code Elimination");
106 } // End of anonymous namespace
107
108 FunctionPass *llvm::createAggressiveDCEPass() { return new ADCE(); }
109
110 void ADCE::markBlockAlive(BasicBlock *BB) {
111   // Mark the basic block as being newly ALIVE... and mark all branches that
112   // this block is control dependent on as being alive also...
113   //
114   PostDominanceFrontier &CDG = getAnalysis<PostDominanceFrontier>();
115
116   PostDominanceFrontier::const_iterator It = CDG.find(BB);
117   if (It != CDG.end()) {
118     // Get the blocks that this node is control dependent on...
119     const PostDominanceFrontier::DomSetType &CDB = It->second;
120     for_each(CDB.begin(), CDB.end(),   // Mark all their terminators as live
121              bind_obj(this, &ADCE::markTerminatorLive));
122   }
123   
124   // If this basic block is live, and it ends in an unconditional branch, then
125   // the branch is alive as well...
126   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
127     if (BI->isUnconditional())
128       markTerminatorLive(BB);
129 }
130
131 // dropReferencesOfDeadInstructionsInLiveBlock - Loop over all of the
132 // instructions in the specified basic block, dropping references on
133 // instructions that are dead according to LiveSet.
134 bool ADCE::dropReferencesOfDeadInstructionsInLiveBlock(BasicBlock *BB) {
135   bool Changed = false;
136   for (BasicBlock::iterator I = BB->begin(), E = --BB->end(); I != E; )
137     if (!LiveSet.count(I)) {              // Is this instruction alive?
138       I->dropAllReferences();             // Nope, drop references... 
139       if (PHINode *PN = dyn_cast<PHINode>(I)) {
140         // We don't want to leave PHI nodes in the program that have
141         // #arguments != #predecessors, so we remove them now.
142         //
143         PN->replaceAllUsesWith(Constant::getNullValue(PN->getType()));
144
145         // Delete the instruction...
146         ++I;
147         BB->getInstList().erase(PN);
148         Changed = true;
149         ++NumInstRemoved;
150       } else {
151         ++I;
152       }
153     } else {
154       ++I;
155     }
156   return Changed;
157 }
158
159
160 /// convertToUnconditionalBranch - Transform this conditional terminator
161 /// instruction into an unconditional branch because we don't care which of the
162 /// successors it goes to.  This eliminate a use of the condition as well.
163 ///
164 TerminatorInst *ADCE::convertToUnconditionalBranch(TerminatorInst *TI) {
165   BranchInst *NB = new BranchInst(TI->getSuccessor(0), TI);
166   BasicBlock *BB = TI->getParent();
167
168   // Remove entries from PHI nodes to avoid confusing ourself later...
169   for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
170     TI->getSuccessor(i)->removePredecessor(BB);
171   
172   // Delete the old branch itself...
173   BB->getInstList().erase(TI);
174   return NB;
175 }
176
177
178 // doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning
179 // true if the function was modified.
180 //
181 bool ADCE::doADCE() {
182   bool MadeChanges = false;
183
184   AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
185
186
187   // Iterate over all invokes in the function, turning invokes into calls if
188   // they cannot throw.
189   for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB)
190     if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator()))
191       if (Function *F = II->getCalledFunction())
192         if (AA.onlyReadsMemory(F)) {
193           // The function cannot unwind.  Convert it to a call with a branch
194           // after it to the normal destination.
195           std::vector<Value*> Args(II->op_begin()+3, II->op_end());
196           std::string Name = II->getName(); II->setName("");
197           Instruction *NewCall = new CallInst(F, Args, Name, II);
198           II->replaceAllUsesWith(NewCall);
199           new BranchInst(II->getNormalDest(), II);
200
201           // Update PHI nodes in the unwind destination
202           II->getUnwindDest()->removePredecessor(BB);
203           BB->getInstList().erase(II);
204
205           if (NewCall->use_empty()) {
206             BB->getInstList().erase(NewCall);
207             ++NumCallRemoved;
208           }
209         }
210
211   // Iterate over all of the instructions in the function, eliminating trivially
212   // dead instructions, and marking instructions live that are known to be 
213   // needed.  Perform the walk in depth first order so that we avoid marking any
214   // instructions live in basic blocks that are unreachable.  These blocks will
215   // be eliminated later, along with the instructions inside.
216   //
217   std::set<BasicBlock*> ReachableBBs;
218   for (df_ext_iterator<BasicBlock*>
219          BBI = df_ext_begin(&Func->front(), ReachableBBs),
220          BBE = df_ext_end(&Func->front(), ReachableBBs); BBI != BBE; ++BBI) {
221     BasicBlock *BB = *BBI;
222     for (BasicBlock::iterator II = BB->begin(), EI = BB->end(); II != EI; ) {
223       Instruction *I = II++;
224       if (CallInst *CI = dyn_cast<CallInst>(I)) {
225         Function *F = CI->getCalledFunction();
226         if (F && AA.onlyReadsMemory(F)) {
227           if (CI->use_empty()) {
228             BB->getInstList().erase(CI);
229             ++NumCallRemoved;
230           }
231         } else {
232           markInstructionLive(I);
233         }
234       } else if (I->mayWriteToMemory() || isa<ReturnInst>(I) ||
235                  isa<UnwindInst>(I) || isa<UnreachableInst>(I)) {
236         // FIXME: Unreachable instructions should not be marked intrinsically
237         // live here.
238         markInstructionLive(I);
239       } else if (isInstructionTriviallyDead(I)) {
240         // Remove the instruction from it's basic block...
241         BB->getInstList().erase(I);
242         ++NumInstRemoved;
243       }
244     }
245   }
246
247   // Check to ensure we have an exit node for this CFG.  If we don't, we won't
248   // have any post-dominance information, thus we cannot perform our
249   // transformations safely.
250   //
251   PostDominatorTree &DT = getAnalysis<PostDominatorTree>();
252   if (DT[&Func->getEntryBlock()] == 0) {
253     WorkList.clear();
254     return MadeChanges;
255   }
256
257   // Scan the function marking blocks without post-dominance information as
258   // live.  Blocks without post-dominance information occur when there is an
259   // infinite loop in the program.  Because the infinite loop could contain a
260   // function which unwinds, exits or has side-effects, we don't want to delete
261   // the infinite loop or those blocks leading up to it.
262   for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I)
263     if (DT[I] == 0)
264       for (pred_iterator PI = pred_begin(I), E = pred_end(I); PI != E; ++PI)
265         markInstructionLive((*PI)->getTerminator());
266
267
268
269   DEBUG(std::cerr << "Processing work list\n");
270
271   // AliveBlocks - Set of basic blocks that we know have instructions that are
272   // alive in them...
273   //
274   std::set<BasicBlock*> AliveBlocks;
275
276   // Process the work list of instructions that just became live... if they
277   // became live, then that means that all of their operands are necessary as
278   // well... make them live as well.
279   //
280   while (!WorkList.empty()) {
281     Instruction *I = WorkList.back(); // Get an instruction that became live...
282     WorkList.pop_back();
283
284     BasicBlock *BB = I->getParent();
285     if (!ReachableBBs.count(BB)) continue;
286     if (!AliveBlocks.count(BB)) {     // Basic block not alive yet...
287       AliveBlocks.insert(BB);         // Block is now ALIVE!
288       markBlockAlive(BB);             // Make it so now!
289     }
290
291     // PHI nodes are a special case, because the incoming values are actually
292     // defined in the predecessor nodes of this block, meaning that the PHI
293     // makes the predecessors alive.
294     //
295     if (PHINode *PN = dyn_cast<PHINode>(I))
296       for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI)
297         if (!AliveBlocks.count(*PI)) {
298           AliveBlocks.insert(BB);         // Block is now ALIVE!
299           markBlockAlive(*PI);
300         }
301
302     // Loop over all of the operands of the live instruction, making sure that
303     // they are known to be alive as well...
304     //
305     for (unsigned op = 0, End = I->getNumOperands(); op != End; ++op)
306       if (Instruction *Operand = dyn_cast<Instruction>(I->getOperand(op)))
307         markInstructionLive(Operand);
308   }
309
310   DEBUG(
311     std::cerr << "Current Function: X = Live\n";
312     for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I){
313       std::cerr << I->getName() << ":\t"
314                 << (AliveBlocks.count(I) ? "LIVE\n" : "DEAD\n");
315       for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE; ++BI){
316         if (LiveSet.count(BI)) std::cerr << "X ";
317         std::cerr << *BI;
318       }
319     });
320
321   // Find the first postdominator of the entry node that is alive.  Make it the
322   // new entry node...
323   //
324   if (AliveBlocks.size() == Func->size()) {  // No dead blocks?
325     for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) {
326       // Loop over all of the instructions in the function, telling dead
327       // instructions to drop their references.  This is so that the next sweep
328       // over the program can safely delete dead instructions without other dead
329       // instructions still referring to them.
330       //
331       dropReferencesOfDeadInstructionsInLiveBlock(I);
332
333       // Check to make sure the terminator instruction is live.  If it isn't,
334       // this means that the condition that it branches on (we know it is not an
335       // unconditional branch), is not needed to make the decision of where to
336       // go to, because all outgoing edges go to the same place.  We must remove
337       // the use of the condition (because it's probably dead), so we convert
338       // the terminator to a conditional branch.
339       //
340       TerminatorInst *TI = I->getTerminator();
341       if (!LiveSet.count(TI))
342         convertToUnconditionalBranch(TI);
343     }
344     
345   } else {                                   // If there are some blocks dead...
346     // If the entry node is dead, insert a new entry node to eliminate the entry
347     // node as a special case.
348     //
349     if (!AliveBlocks.count(&Func->front())) {
350       BasicBlock *NewEntry = new BasicBlock();
351       new BranchInst(&Func->front(), NewEntry);
352       Func->getBasicBlockList().push_front(NewEntry);
353       AliveBlocks.insert(NewEntry);    // This block is always alive!
354       LiveSet.insert(NewEntry->getTerminator());  // The branch is live
355     }
356     
357     // Loop over all of the alive blocks in the function.  If any successor
358     // blocks are not alive, we adjust the outgoing branches to branch to the
359     // first live postdominator of the live block, adjusting any PHI nodes in
360     // the block to reflect this.
361     //
362     for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I)
363       if (AliveBlocks.count(I)) {
364         BasicBlock *BB = I;
365         TerminatorInst *TI = BB->getTerminator();
366       
367         // If the terminator instruction is alive, but the block it is contained
368         // in IS alive, this means that this terminator is a conditional branch
369         // on a condition that doesn't matter.  Make it an unconditional branch
370         // to ONE of the successors.  This has the side effect of dropping a use
371         // of the conditional value, which may also be dead.
372         if (!LiveSet.count(TI))
373           TI = convertToUnconditionalBranch(TI);
374
375         // Loop over all of the successors, looking for ones that are not alive.
376         // We cannot save the number of successors in the terminator instruction
377         // here because we may remove them if we don't have a postdominator...
378         //
379         for (unsigned i = 0; i != TI->getNumSuccessors(); ++i)
380           if (!AliveBlocks.count(TI->getSuccessor(i))) {
381             // Scan up the postdominator tree, looking for the first
382             // postdominator that is alive, and the last postdominator that is
383             // dead...
384             //
385             PostDominatorTree::Node *LastNode = DT[TI->getSuccessor(i)];
386
387             // There is a special case here... if there IS no post-dominator for
388             // the block we have no owhere to point our branch to.  Instead,
389             // convert it to a return.  This can only happen if the code
390             // branched into an infinite loop.  Note that this may not be
391             // desirable, because we _are_ altering the behavior of the code.
392             // This is a well known drawback of ADCE, so in the future if we
393             // choose to revisit the decision, this is where it should be.
394             //
395             if (LastNode == 0) {        // No postdominator!
396               // Call RemoveSuccessor to transmogrify the terminator instruction
397               // to not contain the outgoing branch, or to create a new
398               // terminator if the form fundamentally changes (i.e.,
399               // unconditional branch to return).  Note that this will change a
400               // branch into an infinite loop into a return instruction!
401               //
402               RemoveSuccessor(TI, i);
403
404               // RemoveSuccessor may replace TI... make sure we have a fresh
405               // pointer... and e variable.
406               //
407               TI = BB->getTerminator();
408
409               // Rescan this successor...
410               --i;
411             } else {
412               PostDominatorTree::Node *NextNode = LastNode->getIDom();
413
414               while (!AliveBlocks.count(NextNode->getBlock())) {
415                 LastNode = NextNode;
416                 NextNode = NextNode->getIDom();
417               }
418             
419               // Get the basic blocks that we need...
420               BasicBlock *LastDead = LastNode->getBlock();
421               BasicBlock *NextAlive = NextNode->getBlock();
422
423               // Make the conditional branch now go to the next alive block...
424               TI->getSuccessor(i)->removePredecessor(BB);
425               TI->setSuccessor(i, NextAlive);
426
427               // If there are PHI nodes in NextAlive, we need to add entries to
428               // the PHI nodes for the new incoming edge.  The incoming values
429               // should be identical to the incoming values for LastDead.
430               //
431               for (BasicBlock::iterator II = NextAlive->begin();
432                    isa<PHINode>(II); ++II) {
433                 PHINode *PN = cast<PHINode>(II);
434                 if (LiveSet.count(PN)) {  // Only modify live phi nodes
435                   // Get the incoming value for LastDead...
436                   int OldIdx = PN->getBasicBlockIndex(LastDead);
437                   assert(OldIdx != -1 &&"LastDead is not a pred of NextAlive!");
438                   Value *InVal = PN->getIncomingValue(OldIdx);
439                   
440                   // Add an incoming value for BB now...
441                   PN->addIncoming(InVal, BB);
442                 }
443               }
444             }
445           }
446
447         // Now loop over all of the instructions in the basic block, telling
448         // dead instructions to drop their references.  This is so that the next
449         // sweep over the program can safely delete dead instructions without
450         // other dead instructions still referring to them.
451         //
452         dropReferencesOfDeadInstructionsInLiveBlock(BB);
453       }
454   }
455
456   // We make changes if there are any dead blocks in the function...
457   if (unsigned NumDeadBlocks = Func->size() - AliveBlocks.size()) {
458     MadeChanges = true;
459     NumBlockRemoved += NumDeadBlocks;
460   }
461
462   // Loop over all of the basic blocks in the function, removing control flow
463   // edges to live blocks (also eliminating any entries in PHI functions in
464   // referenced blocks).
465   //
466   for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB)
467     if (!AliveBlocks.count(BB)) {
468       // Remove all outgoing edges from this basic block and convert the
469       // terminator into a return instruction.
470       std::vector<BasicBlock*> Succs(succ_begin(BB), succ_end(BB));
471       
472       if (!Succs.empty()) {
473         // Loop over all of the successors, removing this block from PHI node
474         // entries that might be in the block...
475         while (!Succs.empty()) {
476           Succs.back()->removePredecessor(BB);
477           Succs.pop_back();
478         }
479         
480         // Delete the old terminator instruction...
481         const Type *TermTy = BB->getTerminator()->getType();
482         if (TermTy != Type::VoidTy)
483           BB->getTerminator()->replaceAllUsesWith(
484                                Constant::getNullValue(TermTy));
485         BB->getInstList().pop_back();
486         const Type *RetTy = Func->getReturnType();
487         new ReturnInst(RetTy != Type::VoidTy ?
488                        Constant::getNullValue(RetTy) : 0, BB);
489       }
490     }
491
492
493   // Loop over all of the basic blocks in the function, dropping references of
494   // the dead basic blocks.  We must do this after the previous step to avoid
495   // dropping references to PHIs which still have entries...
496   //
497   for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB)
498     if (!AliveBlocks.count(BB))
499       BB->dropAllReferences();
500
501   // Now loop through all of the blocks and delete the dead ones.  We can safely
502   // do this now because we know that there are no references to dead blocks
503   // (because they have dropped all of their references...  we also remove dead
504   // instructions from alive blocks.
505   //
506   for (Function::iterator BI = Func->begin(); BI != Func->end(); )
507     if (!AliveBlocks.count(BI)) {                // Delete dead blocks...
508       BI = Func->getBasicBlockList().erase(BI);
509     } else {                                     // Scan alive blocks...
510       for (BasicBlock::iterator II = BI->begin(); II != --BI->end(); )
511         if (!LiveSet.count(II)) {             // Is this instruction alive?
512           // Nope... remove the instruction from it's basic block...
513           if (isa<CallInst>(II))
514             ++NumCallRemoved;
515           else
516             ++NumInstRemoved;
517           II = BI->getInstList().erase(II);
518           MadeChanges = true;
519         } else {
520           ++II;
521         }
522
523       ++BI;                                           // Increment iterator...
524     }
525
526   return MadeChanges;
527 }