Extend instcombine's shufflevector simplification to handle more cases where the...
[oota-llvm.git] / lib / Transforms / InstCombine / InstCombineVectorOps.cpp
1 //===- InstCombineVectorOps.cpp -------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements instcombine for ExtractElement, InsertElement and
11 // ShuffleVector.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "InstCombine.h"
16 using namespace llvm;
17
18 /// CheapToScalarize - Return true if the value is cheaper to scalarize than it
19 /// is to leave as a vector operation.
20 static bool CheapToScalarize(Value *V, bool isConstant) {
21   if (isa<ConstantAggregateZero>(V))
22     return true;
23   if (ConstantVector *C = dyn_cast<ConstantVector>(V)) {
24     if (isConstant) return true;
25     // If all elts are the same, we can extract.
26     Constant *Op0 = C->getOperand(0);
27     for (unsigned i = 1; i < C->getNumOperands(); ++i)
28       if (C->getOperand(i) != Op0)
29         return false;
30     return true;
31   }
32   Instruction *I = dyn_cast<Instruction>(V);
33   if (!I) return false;
34
35   // Insert element gets simplified to the inserted element or is deleted if
36   // this is constant idx extract element and its a constant idx insertelt.
37   if (I->getOpcode() == Instruction::InsertElement && isConstant &&
38       isa<ConstantInt>(I->getOperand(2)))
39     return true;
40   if (I->getOpcode() == Instruction::Load && I->hasOneUse())
41     return true;
42   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
43     if (BO->hasOneUse() &&
44         (CheapToScalarize(BO->getOperand(0), isConstant) ||
45          CheapToScalarize(BO->getOperand(1), isConstant)))
46       return true;
47   if (CmpInst *CI = dyn_cast<CmpInst>(I))
48     if (CI->hasOneUse() &&
49         (CheapToScalarize(CI->getOperand(0), isConstant) ||
50          CheapToScalarize(CI->getOperand(1), isConstant)))
51       return true;
52
53   return false;
54 }
55
56 /// getShuffleMask - Read and decode a shufflevector mask.
57 /// Turn undef elements into negative values.
58 static SmallVector<int, 16> getShuffleMask(const ShuffleVectorInst *SVI) {
59   unsigned NElts = SVI->getType()->getNumElements();
60   if (isa<ConstantAggregateZero>(SVI->getOperand(2)))
61     return SmallVector<int, 16>(NElts, 0);
62   if (isa<UndefValue>(SVI->getOperand(2)))
63     return SmallVector<int, 16>(NElts, -1);
64
65   SmallVector<int, 16> Result;
66   const ConstantVector *CP = cast<ConstantVector>(SVI->getOperand(2));
67   for (User::const_op_iterator i = CP->op_begin(), e = CP->op_end(); i!=e; ++i)
68     if (isa<UndefValue>(*i))
69       Result.push_back(-1);  // undef
70     else
71       Result.push_back(cast<ConstantInt>(*i)->getZExtValue());
72   return Result;
73 }
74
75 /// FindScalarElement - Given a vector and an element number, see if the scalar
76 /// value is already around as a register, for example if it were inserted then
77 /// extracted from the vector.
78 static Value *FindScalarElement(Value *V, unsigned EltNo) {
79   assert(V->getType()->isVectorTy() && "Not looking at a vector?");
80   VectorType *PTy = cast<VectorType>(V->getType());
81   unsigned Width = PTy->getNumElements();
82   if (EltNo >= Width)  // Out of range access.
83     return UndefValue::get(PTy->getElementType());
84
85   if (isa<UndefValue>(V))
86     return UndefValue::get(PTy->getElementType());
87   if (isa<ConstantAggregateZero>(V))
88     return Constant::getNullValue(PTy->getElementType());
89   if (ConstantVector *CP = dyn_cast<ConstantVector>(V))
90     return CP->getOperand(EltNo);
91
92   if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
93     // If this is an insert to a variable element, we don't know what it is.
94     if (!isa<ConstantInt>(III->getOperand(2)))
95       return 0;
96     unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
97
98     // If this is an insert to the element we are looking for, return the
99     // inserted value.
100     if (EltNo == IIElt)
101       return III->getOperand(1);
102
103     // Otherwise, the insertelement doesn't modify the value, recurse on its
104     // vector input.
105     return FindScalarElement(III->getOperand(0), EltNo);
106   }
107
108   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
109     unsigned LHSWidth =
110       cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements();
111     int InEl = getShuffleMask(SVI)[EltNo];
112     if (InEl < 0)
113       return UndefValue::get(PTy->getElementType());
114     if (InEl < (int)LHSWidth)
115       return FindScalarElement(SVI->getOperand(0), InEl);
116     return FindScalarElement(SVI->getOperand(1), InEl - LHSWidth);
117   }
118
119   // Otherwise, we don't know.
120   return 0;
121 }
122
123 Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
124   // If vector val is undef, replace extract with scalar undef.
125   if (isa<UndefValue>(EI.getOperand(0)))
126     return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
127
128   // If vector val is constant 0, replace extract with scalar 0.
129   if (isa<ConstantAggregateZero>(EI.getOperand(0)))
130     return ReplaceInstUsesWith(EI, Constant::getNullValue(EI.getType()));
131
132   if (ConstantVector *C = dyn_cast<ConstantVector>(EI.getOperand(0))) {
133     // If vector val is constant with all elements the same, replace EI with
134     // that element. When the elements are not identical, we cannot replace yet
135     // (we do that below, but only when the index is constant).
136     Constant *op0 = C->getOperand(0);
137     for (unsigned i = 1; i != C->getNumOperands(); ++i)
138       if (C->getOperand(i) != op0) {
139         op0 = 0;
140         break;
141       }
142     if (op0)
143       return ReplaceInstUsesWith(EI, op0);
144   }
145
146   // If extracting a specified index from the vector, see if we can recursively
147   // find a previously computed scalar that was inserted into the vector.
148   if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
149     unsigned IndexVal = IdxC->getZExtValue();
150     unsigned VectorWidth = EI.getVectorOperandType()->getNumElements();
151
152     // If this is extracting an invalid index, turn this into undef, to avoid
153     // crashing the code below.
154     if (IndexVal >= VectorWidth)
155       return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
156
157     // This instruction only demands the single element from the input vector.
158     // If the input vector has a single use, simplify it based on this use
159     // property.
160     if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) {
161       APInt UndefElts(VectorWidth, 0);
162       APInt DemandedMask(VectorWidth, 0);
163       DemandedMask.setBit(IndexVal);
164       if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0),
165                                                 DemandedMask, UndefElts)) {
166         EI.setOperand(0, V);
167         return &EI;
168       }
169     }
170
171     if (Value *Elt = FindScalarElement(EI.getOperand(0), IndexVal))
172       return ReplaceInstUsesWith(EI, Elt);
173
174     // If the this extractelement is directly using a bitcast from a vector of
175     // the same number of elements, see if we can find the source element from
176     // it.  In this case, we will end up needing to bitcast the scalars.
177     if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) {
178       if (VectorType *VT =
179           dyn_cast<VectorType>(BCI->getOperand(0)->getType()))
180         if (VT->getNumElements() == VectorWidth)
181           if (Value *Elt = FindScalarElement(BCI->getOperand(0), IndexVal))
182             return new BitCastInst(Elt, EI.getType());
183     }
184   }
185
186   if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
187     // Push extractelement into predecessor operation if legal and
188     // profitable to do so
189     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
190       if (I->hasOneUse() &&
191           CheapToScalarize(BO, isa<ConstantInt>(EI.getOperand(1)))) {
192         Value *newEI0 =
193           Builder->CreateExtractElement(BO->getOperand(0), EI.getOperand(1),
194                                         EI.getName()+".lhs");
195         Value *newEI1 =
196           Builder->CreateExtractElement(BO->getOperand(1), EI.getOperand(1),
197                                         EI.getName()+".rhs");
198         return BinaryOperator::Create(BO->getOpcode(), newEI0, newEI1);
199       }
200     } else if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
201       // Extracting the inserted element?
202       if (IE->getOperand(2) == EI.getOperand(1))
203         return ReplaceInstUsesWith(EI, IE->getOperand(1));
204       // If the inserted and extracted elements are constants, they must not
205       // be the same value, extract from the pre-inserted value instead.
206       if (isa<Constant>(IE->getOperand(2)) && isa<Constant>(EI.getOperand(1))) {
207         Worklist.AddValue(EI.getOperand(0));
208         EI.setOperand(0, IE->getOperand(0));
209         return &EI;
210       }
211     } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) {
212       // If this is extracting an element from a shufflevector, figure out where
213       // it came from and extract from the appropriate input element instead.
214       if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) {
215         int SrcIdx = getShuffleMask(SVI)[Elt->getZExtValue()];
216         Value *Src;
217         unsigned LHSWidth =
218           cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements();
219
220         if (SrcIdx < 0)
221           return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
222         if (SrcIdx < (int)LHSWidth)
223           Src = SVI->getOperand(0);
224         else {
225           SrcIdx -= LHSWidth;
226           Src = SVI->getOperand(1);
227         }
228         Type *Int32Ty = Type::getInt32Ty(EI.getContext());
229         return ExtractElementInst::Create(Src,
230                                           ConstantInt::get(Int32Ty,
231                                                            SrcIdx, false));
232       }
233     } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
234       // Canonicalize extractelement(cast) -> cast(extractelement)
235       // bitcasts can change the number of vector elements and they cost nothing
236       if (CI->hasOneUse() && EI.hasOneUse() &&
237           (CI->getOpcode() != Instruction::BitCast)) {
238         Value *EE = Builder->CreateExtractElement(CI->getOperand(0),
239                                                   EI.getIndexOperand());
240         return CastInst::Create(CI->getOpcode(), EE, EI.getType());
241       }
242     }
243   }
244   return 0;
245 }
246
247 /// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns
248 /// elements from either LHS or RHS, return the shuffle mask and true.
249 /// Otherwise, return false.
250 static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
251                                          std::vector<Constant*> &Mask) {
252   assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() &&
253          "Invalid CollectSingleShuffleElements");
254   unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
255
256   if (isa<UndefValue>(V)) {
257     Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
258     return true;
259   }
260
261   if (V == LHS) {
262     for (unsigned i = 0; i != NumElts; ++i)
263       Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
264     return true;
265   }
266
267   if (V == RHS) {
268     for (unsigned i = 0; i != NumElts; ++i)
269       Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()),
270                                       i+NumElts));
271     return true;
272   }
273
274   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
275     // If this is an insert of an extract from some other vector, include it.
276     Value *VecOp    = IEI->getOperand(0);
277     Value *ScalarOp = IEI->getOperand(1);
278     Value *IdxOp    = IEI->getOperand(2);
279
280     if (!isa<ConstantInt>(IdxOp))
281       return false;
282     unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
283
284     if (isa<UndefValue>(ScalarOp)) {  // inserting undef into vector.
285       // Okay, we can handle this if the vector we are insertinting into is
286       // transitively ok.
287       if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
288         // If so, update the mask to reflect the inserted undef.
289         Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext()));
290         return true;
291       }
292     } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
293       if (isa<ConstantInt>(EI->getOperand(1)) &&
294           EI->getOperand(0)->getType() == V->getType()) {
295         unsigned ExtractedIdx =
296         cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
297
298         // This must be extracting from either LHS or RHS.
299         if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
300           // Okay, we can handle this if the vector we are insertinting into is
301           // transitively ok.
302           if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
303             // If so, update the mask to reflect the inserted value.
304             if (EI->getOperand(0) == LHS) {
305               Mask[InsertedIdx % NumElts] =
306               ConstantInt::get(Type::getInt32Ty(V->getContext()),
307                                ExtractedIdx);
308             } else {
309               assert(EI->getOperand(0) == RHS);
310               Mask[InsertedIdx % NumElts] =
311               ConstantInt::get(Type::getInt32Ty(V->getContext()),
312                                ExtractedIdx+NumElts);
313             }
314             return true;
315           }
316         }
317       }
318     }
319   }
320   // TODO: Handle shufflevector here!
321
322   return false;
323 }
324
325 /// CollectShuffleElements - We are building a shuffle of V, using RHS as the
326 /// RHS of the shuffle instruction, if it is not null.  Return a shuffle mask
327 /// that computes V and the LHS value of the shuffle.
328 static Value *CollectShuffleElements(Value *V, std::vector<Constant*> &Mask,
329                                      Value *&RHS) {
330   assert(V->getType()->isVectorTy() &&
331          (RHS == 0 || V->getType() == RHS->getType()) &&
332          "Invalid shuffle!");
333   unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
334
335   if (isa<UndefValue>(V)) {
336     Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
337     return V;
338   } else if (isa<ConstantAggregateZero>(V)) {
339     Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0));
340     return V;
341   } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
342     // If this is an insert of an extract from some other vector, include it.
343     Value *VecOp    = IEI->getOperand(0);
344     Value *ScalarOp = IEI->getOperand(1);
345     Value *IdxOp    = IEI->getOperand(2);
346
347     if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
348       if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
349           EI->getOperand(0)->getType() == V->getType()) {
350         unsigned ExtractedIdx =
351           cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
352         unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
353
354         // Either the extracted from or inserted into vector must be RHSVec,
355         // otherwise we'd end up with a shuffle of three inputs.
356         if (EI->getOperand(0) == RHS || RHS == 0) {
357           RHS = EI->getOperand(0);
358           Value *V = CollectShuffleElements(VecOp, Mask, RHS);
359           Mask[InsertedIdx % NumElts] =
360             ConstantInt::get(Type::getInt32Ty(V->getContext()),
361                              NumElts+ExtractedIdx);
362           return V;
363         }
364
365         if (VecOp == RHS) {
366           Value *V = CollectShuffleElements(EI->getOperand(0), Mask, RHS);
367           // Everything but the extracted element is replaced with the RHS.
368           for (unsigned i = 0; i != NumElts; ++i) {
369             if (i != InsertedIdx)
370               Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()),
371                                          NumElts+i);
372           }
373           return V;
374         }
375
376         // If this insertelement is a chain that comes from exactly these two
377         // vectors, return the vector and the effective shuffle.
378         if (CollectSingleShuffleElements(IEI, EI->getOperand(0), RHS, Mask))
379           return EI->getOperand(0);
380       }
381     }
382   }
383   // TODO: Handle shufflevector here!
384
385   // Otherwise, can't do anything fancy.  Return an identity vector.
386   for (unsigned i = 0; i != NumElts; ++i)
387     Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
388   return V;
389 }
390
391 Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
392   Value *VecOp    = IE.getOperand(0);
393   Value *ScalarOp = IE.getOperand(1);
394   Value *IdxOp    = IE.getOperand(2);
395
396   // Inserting an undef or into an undefined place, remove this.
397   if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
398     ReplaceInstUsesWith(IE, VecOp);
399
400   // If the inserted element was extracted from some other vector, and if the
401   // indexes are constant, try to turn this into a shufflevector operation.
402   if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
403     if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
404         EI->getOperand(0)->getType() == IE.getType()) {
405       unsigned NumVectorElts = IE.getType()->getNumElements();
406       unsigned ExtractedIdx =
407         cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
408       unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
409
410       if (ExtractedIdx >= NumVectorElts) // Out of range extract.
411         return ReplaceInstUsesWith(IE, VecOp);
412
413       if (InsertedIdx >= NumVectorElts)  // Out of range insert.
414         return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType()));
415
416       // If we are extracting a value from a vector, then inserting it right
417       // back into the same place, just use the input vector.
418       if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
419         return ReplaceInstUsesWith(IE, VecOp);
420
421       // If this insertelement isn't used by some other insertelement, turn it
422       // (and any insertelements it points to), into one big shuffle.
423       if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.use_back())) {
424         std::vector<Constant*> Mask;
425         Value *RHS = 0;
426         Value *LHS = CollectShuffleElements(&IE, Mask, RHS);
427         if (RHS == 0) RHS = UndefValue::get(LHS->getType());
428         // We now have a shuffle of LHS, RHS, Mask.
429         return new ShuffleVectorInst(LHS, RHS, ConstantVector::get(Mask));
430       }
431     }
432   }
433
434   unsigned VWidth = cast<VectorType>(VecOp->getType())->getNumElements();
435   APInt UndefElts(VWidth, 0);
436   APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
437   if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
438     if (V != &IE)
439       return ReplaceInstUsesWith(IE, V);
440     return &IE;
441   }
442
443   return 0;
444 }
445
446
447 Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
448   Value *LHS = SVI.getOperand(0);
449   Value *RHS = SVI.getOperand(1);
450   SmallVector<int, 16> Mask = getShuffleMask(&SVI);
451
452   bool MadeChange = false;
453
454   // Undefined shuffle mask -> undefined value.
455   if (isa<UndefValue>(SVI.getOperand(2)))
456     return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
457
458   unsigned VWidth = cast<VectorType>(SVI.getType())->getNumElements();
459
460   APInt UndefElts(VWidth, 0);
461   APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
462   if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
463     if (V != &SVI)
464       return ReplaceInstUsesWith(SVI, V);
465     LHS = SVI.getOperand(0);
466     RHS = SVI.getOperand(1);
467     MadeChange = true;
468   }
469
470   unsigned LHSWidth = cast<VectorType>(LHS->getType())->getNumElements();
471
472   // Canonicalize shuffle(x    ,x,mask) -> shuffle(x, undef,mask')
473   // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
474   if (LHS == RHS || isa<UndefValue>(LHS)) {
475     if (isa<UndefValue>(LHS) && LHS == RHS) {
476       // shuffle(undef,undef,mask) -> undef.
477       Value* result = (VWidth == LHSWidth)
478                       ? LHS : UndefValue::get(SVI.getType());
479       return ReplaceInstUsesWith(SVI, result);
480     }
481
482     // Remap any references to RHS to use LHS.
483     std::vector<Constant*> Elts;
484     for (unsigned i = 0, e = LHSWidth; i != VWidth; ++i) {
485       if (Mask[i] < 0)
486         Elts.push_back(UndefValue::get(Type::getInt32Ty(SVI.getContext())));
487       else {
488         if ((Mask[i] >= (int)e && isa<UndefValue>(RHS)) ||
489             (Mask[i] <  (int)e && isa<UndefValue>(LHS))) {
490           Mask[i] = -1;     // Turn into undef.
491           Elts.push_back(UndefValue::get(Type::getInt32Ty(SVI.getContext())));
492         } else {
493           Mask[i] = Mask[i] % e;  // Force to LHS.
494           Elts.push_back(ConstantInt::get(Type::getInt32Ty(SVI.getContext()),
495                                           Mask[i]));
496         }
497       }
498     }
499     SVI.setOperand(0, SVI.getOperand(1));
500     SVI.setOperand(1, UndefValue::get(RHS->getType()));
501     SVI.setOperand(2, ConstantVector::get(Elts));
502     LHS = SVI.getOperand(0);
503     RHS = SVI.getOperand(1);
504     MadeChange = true;
505   }
506
507   if (VWidth == LHSWidth) {
508     // Analyze the shuffle, are the LHS or RHS and identity shuffles?
509     bool isLHSID = true, isRHSID = true;
510
511     for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
512       if (Mask[i] < 0) continue;  // Ignore undef values.
513       // Is this an identity shuffle of the LHS value?
514       isLHSID &= (Mask[i] == (int)i);
515
516       // Is this an identity shuffle of the RHS value?
517       isRHSID &= (Mask[i]-e == i);
518     }
519
520     // Eliminate identity shuffles.
521     if (isLHSID) return ReplaceInstUsesWith(SVI, LHS);
522     if (isRHSID) return ReplaceInstUsesWith(SVI, RHS);
523   }
524
525   // If the LHS is a shufflevector itself, see if we can combine it with this
526   // one without producing an unusual shuffle.
527   // Cases that might be simplified:
528   // 1.
529   // x1=shuffle(v1,v2,mask1)
530   //  x=shuffle(x1,undef,mask)
531   //        ==>
532   //  x=shuffle(v1,undef,newMask)
533   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
534   // 2.
535   // x1=shuffle(v1,undef,mask1)
536   //  x=shuffle(x1,x2,mask)
537   // where v1.size() == mask1.size()
538   //        ==>
539   //  x=shuffle(v1,x2,newMask)
540   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
541   // 3.
542   // x2=shuffle(v2,undef,mask2)
543   //  x=shuffle(x1,x2,mask)
544   // where v2.size() == mask2.size()
545   //        ==>
546   //  x=shuffle(x1,v2,newMask)
547   // newMask[i] = (mask[i] < x1.size())
548   //              ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
549   // 4.
550   // x1=shuffle(v1,undef,mask1)
551   // x2=shuffle(v2,undef,mask2)
552   //  x=shuffle(x1,x2,mask)
553   // where v1.size() == v2.size()
554   //        ==>
555   //  x=shuffle(v1,v2,newMask)
556   // newMask[i] = (mask[i] < x1.size())
557   //              ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
558   //
559   // Here we are really conservative:
560   // we are absolutely afraid of producing a shuffle mask not in the input
561   // program, because the code gen may not be smart enough to turn a merged
562   // shuffle into two specific shuffles: it may produce worse code.  As such,
563   // we only merge two shuffles if the result is either a splat or one of the
564   // input shuffle masks.  In this case, merging the shuffles just removes
565   // one instruction, which we know is safe.  This is good for things like
566   // turning: (splat(splat)) -> splat, or
567   // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
568   ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
569   ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
570   if (LHSShuffle)
571     if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS))
572       LHSShuffle = NULL;
573   if (RHSShuffle)
574     if (!isa<UndefValue>(RHSShuffle->getOperand(1)))
575       RHSShuffle = NULL;
576   if (!LHSShuffle && !RHSShuffle)
577     return MadeChange ? &SVI : 0;
578
579   Value* LHSOp0 = NULL;
580   Value* LHSOp1 = NULL;
581   Value* RHSOp0 = NULL;
582   unsigned LHSOp0Width = 0;
583   unsigned RHSOp0Width = 0;
584   if (LHSShuffle) {
585     LHSOp0 = LHSShuffle->getOperand(0);
586     LHSOp1 = LHSShuffle->getOperand(1);
587     LHSOp0Width = cast<VectorType>(LHSOp0->getType())->getNumElements();
588   }
589   if (RHSShuffle) {
590     RHSOp0 = RHSShuffle->getOperand(0);
591     RHSOp0Width = cast<VectorType>(RHSOp0->getType())->getNumElements();
592   }
593   Value* newLHS = LHS;
594   Value* newRHS = RHS;
595   if (LHSShuffle) {
596     // case 1
597     if (isa<UndefValue>(RHS)) {
598       newLHS = LHSOp0;
599       newRHS = LHSOp1;
600     }
601     // case 2 or 4
602     else if (LHSOp0Width == LHSWidth) {
603       newLHS = LHSOp0;
604     }
605   }
606   // case 3 or 4
607   if (RHSShuffle && RHSOp0Width == LHSWidth) {
608     newRHS = RHSOp0;
609   }
610   // case 4
611   if (LHSOp0 == RHSOp0) {
612     newLHS = LHSOp0;
613     newRHS = NULL;
614   }
615
616   if (newLHS == LHS && newRHS == RHS)
617     return MadeChange ? &SVI : 0;
618
619   SmallVector<int, 16> LHSMask;
620   SmallVector<int, 16> RHSMask;
621   if (newLHS != LHS) {
622     LHSMask = getShuffleMask(LHSShuffle);
623   }
624   if (RHSShuffle && newRHS != RHS) {
625     RHSMask = getShuffleMask(RHSShuffle);
626   }
627   unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
628   SmallVector<int, 16> newMask;
629   bool isSplat = true;
630   int SplatElt = -1;
631   // Create a new mask for the new ShuffleVectorInst so that the new
632   // ShuffleVectorInst is equivalent to the original one.
633   for (unsigned i = 0; i < VWidth; ++i) {
634     int eltMask;
635     if (Mask[i] == -1) {
636       // This element is an undef value.
637       eltMask = -1;
638     } else if (Mask[i] < (int)LHSWidth) {
639       // This element is from left hand side vector operand.
640       // 
641       // If LHS is going to be replaced (case 1, 2, or 4), calculate the
642       // new mask value for the element.
643       if (newLHS != LHS) {
644         eltMask = LHSMask[Mask[i]];
645         // If the value selected is an undef value, explicitly specify it
646         // with a -1 mask value.
647         if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
648           eltMask = -1;
649       }
650       else
651         eltMask = Mask[i];
652     } else {
653       // This element is from right hand side vector operand
654       //
655       // If the value selected is an undef value, explicitly specify it
656       // with a -1 mask value. (case 1)
657       if (isa<UndefValue>(RHS))
658         eltMask = -1;
659       // If RHS is going to be replaced (case 3 or 4), calculate the
660       // new mask value for the element.
661       else if (newRHS != RHS) {
662         eltMask = RHSMask[Mask[i]-LHSWidth];
663         // If the value selected is an undef value, explicitly specify it
664         // with a -1 mask value.
665         if (eltMask >= (int)RHSOp0Width) {
666           assert(isa<UndefValue>(RHSShuffle->getOperand(1))
667                  && "should have been check above");
668           eltMask = -1;
669         }
670       }
671       else
672         eltMask = Mask[i]-LHSWidth;
673
674       // If LHS's width is changed, shift the mask value accordingly.
675       // If newRHS == NULL, i.e. LHSOp0 == RHSOp0, we want to remap any
676       // references to RHSOp0 to LHSOp0, so we don't need to shift the mask.
677       if (eltMask >= 0 && newRHS != NULL)
678         eltMask += newLHSWidth;
679     }
680
681     // Check if this could still be a splat.
682     if (eltMask >= 0) {
683       if (SplatElt >= 0 && SplatElt != eltMask)
684         isSplat = false;
685       SplatElt = eltMask;
686     }
687
688     newMask.push_back(eltMask);
689   }
690
691   // If the result mask is equal to one of the original shuffle masks,
692   // or is a splat, do the replacement.
693   if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
694     SmallVector<Constant*, 16> Elts;
695     Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
696     for (unsigned i = 0, e = newMask.size(); i != e; ++i) {
697       if (newMask[i] < 0) {
698         Elts.push_back(UndefValue::get(Int32Ty));
699       } else {
700         Elts.push_back(ConstantInt::get(Int32Ty, newMask[i]));
701       }
702     }
703     if (newRHS == NULL)
704       newRHS = UndefValue::get(newLHS->getType());
705     return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts));
706   }
707
708   return MadeChange ? &SVI : 0;
709 }