Added select flavour for ABS and NEG(ABS)
[oota-llvm.git] / lib / Transforms / InstCombine / InstCombineSelect.cpp
1 //===- InstCombineSelect.cpp ----------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visitSelect function.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombine.h"
15 #include "llvm/Analysis/ConstantFolding.h"
16 #include "llvm/Analysis/InstructionSimplify.h"
17 #include "llvm/IR/PatternMatch.h"
18 using namespace llvm;
19 using namespace PatternMatch;
20
21 #define DEBUG_TYPE "instcombine"
22
23 /// MatchSelectPattern - Pattern match integer [SU]MIN, [SU]MAX, and ABS idioms,
24 /// returning the kind and providing the out parameter results if we
25 /// successfully match.
26 static SelectPatternFlavor
27 MatchSelectPattern(Value *V, Value *&LHS, Value *&RHS) {
28   SelectInst *SI = dyn_cast<SelectInst>(V);
29   if (!SI) return SPF_UNKNOWN;
30
31   ICmpInst *ICI = dyn_cast<ICmpInst>(SI->getCondition());
32   if (!ICI) return SPF_UNKNOWN;
33
34   ICmpInst::Predicate Pred = ICI->getPredicate();
35   Value *CmpLHS = ICI->getOperand(0);
36   Value *CmpRHS = ICI->getOperand(1);
37   Value *TrueVal = SI->getTrueValue();
38   Value *FalseVal = SI->getFalseValue();
39
40   LHS = CmpLHS;
41   RHS = CmpRHS;
42
43   // (icmp X, Y) ? X : Y
44   if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
45     switch (Pred) {
46     default: return SPF_UNKNOWN; // Equality.
47     case ICmpInst::ICMP_UGT:
48     case ICmpInst::ICMP_UGE: return SPF_UMAX;
49     case ICmpInst::ICMP_SGT:
50     case ICmpInst::ICMP_SGE: return SPF_SMAX;
51     case ICmpInst::ICMP_ULT:
52     case ICmpInst::ICMP_ULE: return SPF_UMIN;
53     case ICmpInst::ICMP_SLT:
54     case ICmpInst::ICMP_SLE: return SPF_SMIN;
55     }
56   }
57
58   // (icmp X, Y) ? Y : X
59   if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
60     switch (Pred) {
61     default: return SPF_UNKNOWN; // Equality.
62     case ICmpInst::ICMP_UGT:
63     case ICmpInst::ICMP_UGE: return SPF_UMIN;
64     case ICmpInst::ICMP_SGT:
65     case ICmpInst::ICMP_SGE: return SPF_SMIN;
66     case ICmpInst::ICMP_ULT:
67     case ICmpInst::ICMP_ULE: return SPF_UMAX;
68     case ICmpInst::ICMP_SLT:
69     case ICmpInst::ICMP_SLE: return SPF_SMAX;
70     }
71   }
72
73   if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) {
74     if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
75         (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
76
77       // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
78       // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
79       if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) {
80         return (CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS;
81       }
82
83       // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
84       // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
85       if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) {
86         return (CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS;
87       }
88     }
89   }
90
91   // TODO: (X > 4) ? X : 5   -->  (X >= 5) ? X : 5  -->  MAX(X, 5)
92
93   return SPF_UNKNOWN;
94 }
95
96
97 /// GetSelectFoldableOperands - We want to turn code that looks like this:
98 ///   %C = or %A, %B
99 ///   %D = select %cond, %C, %A
100 /// into:
101 ///   %C = select %cond, %B, 0
102 ///   %D = or %A, %C
103 ///
104 /// Assuming that the specified instruction is an operand to the select, return
105 /// a bitmask indicating which operands of this instruction are foldable if they
106 /// equal the other incoming value of the select.
107 ///
108 static unsigned GetSelectFoldableOperands(Instruction *I) {
109   switch (I->getOpcode()) {
110   case Instruction::Add:
111   case Instruction::Mul:
112   case Instruction::And:
113   case Instruction::Or:
114   case Instruction::Xor:
115     return 3;              // Can fold through either operand.
116   case Instruction::Sub:   // Can only fold on the amount subtracted.
117   case Instruction::Shl:   // Can only fold on the shift amount.
118   case Instruction::LShr:
119   case Instruction::AShr:
120     return 1;
121   default:
122     return 0;              // Cannot fold
123   }
124 }
125
126 /// GetSelectFoldableConstant - For the same transformation as the previous
127 /// function, return the identity constant that goes into the select.
128 static Constant *GetSelectFoldableConstant(Instruction *I) {
129   switch (I->getOpcode()) {
130   default: llvm_unreachable("This cannot happen!");
131   case Instruction::Add:
132   case Instruction::Sub:
133   case Instruction::Or:
134   case Instruction::Xor:
135   case Instruction::Shl:
136   case Instruction::LShr:
137   case Instruction::AShr:
138     return Constant::getNullValue(I->getType());
139   case Instruction::And:
140     return Constant::getAllOnesValue(I->getType());
141   case Instruction::Mul:
142     return ConstantInt::get(I->getType(), 1);
143   }
144 }
145
146 /// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
147 /// have the same opcode and only one use each.  Try to simplify this.
148 Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
149                                           Instruction *FI) {
150   if (TI->getNumOperands() == 1) {
151     // If this is a non-volatile load or a cast from the same type,
152     // merge.
153     if (TI->isCast()) {
154       Type *FIOpndTy = FI->getOperand(0)->getType();
155       if (TI->getOperand(0)->getType() != FIOpndTy)
156         return nullptr;
157       // The select condition may be a vector. We may only change the operand
158       // type if the vector width remains the same (and matches the condition).
159       Type *CondTy = SI.getCondition()->getType();
160       if (CondTy->isVectorTy() && (!FIOpndTy->isVectorTy() ||
161           CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements()))
162         return nullptr;
163     } else {
164       return nullptr;  // unknown unary op.
165     }
166
167     // Fold this by inserting a select from the input values.
168     Value *NewSI = Builder->CreateSelect(SI.getCondition(), TI->getOperand(0),
169                                          FI->getOperand(0), SI.getName()+".v");
170     return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
171                             TI->getType());
172   }
173
174   // Only handle binary operators here.
175   if (!isa<BinaryOperator>(TI))
176     return nullptr;
177
178   // Figure out if the operations have any operands in common.
179   Value *MatchOp, *OtherOpT, *OtherOpF;
180   bool MatchIsOpZero;
181   if (TI->getOperand(0) == FI->getOperand(0)) {
182     MatchOp  = TI->getOperand(0);
183     OtherOpT = TI->getOperand(1);
184     OtherOpF = FI->getOperand(1);
185     MatchIsOpZero = true;
186   } else if (TI->getOperand(1) == FI->getOperand(1)) {
187     MatchOp  = TI->getOperand(1);
188     OtherOpT = TI->getOperand(0);
189     OtherOpF = FI->getOperand(0);
190     MatchIsOpZero = false;
191   } else if (!TI->isCommutative()) {
192     return nullptr;
193   } else if (TI->getOperand(0) == FI->getOperand(1)) {
194     MatchOp  = TI->getOperand(0);
195     OtherOpT = TI->getOperand(1);
196     OtherOpF = FI->getOperand(0);
197     MatchIsOpZero = true;
198   } else if (TI->getOperand(1) == FI->getOperand(0)) {
199     MatchOp  = TI->getOperand(1);
200     OtherOpT = TI->getOperand(0);
201     OtherOpF = FI->getOperand(1);
202     MatchIsOpZero = true;
203   } else {
204     return nullptr;
205   }
206
207   // If we reach here, they do have operations in common.
208   Value *NewSI = Builder->CreateSelect(SI.getCondition(), OtherOpT,
209                                        OtherOpF, SI.getName()+".v");
210
211   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
212     if (MatchIsOpZero)
213       return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI);
214     else
215       return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp);
216   }
217   llvm_unreachable("Shouldn't get here");
218 }
219
220 static bool isSelect01(Constant *C1, Constant *C2) {
221   ConstantInt *C1I = dyn_cast<ConstantInt>(C1);
222   if (!C1I)
223     return false;
224   ConstantInt *C2I = dyn_cast<ConstantInt>(C2);
225   if (!C2I)
226     return false;
227   if (!C1I->isZero() && !C2I->isZero()) // One side must be zero.
228     return false;
229   return C1I->isOne() || C1I->isAllOnesValue() ||
230          C2I->isOne() || C2I->isAllOnesValue();
231 }
232
233 /// FoldSelectIntoOp - Try fold the select into one of the operands to
234 /// facilitate further optimization.
235 Instruction *InstCombiner::FoldSelectIntoOp(SelectInst &SI, Value *TrueVal,
236                                             Value *FalseVal) {
237   // See the comment above GetSelectFoldableOperands for a description of the
238   // transformation we are doing here.
239   if (Instruction *TVI = dyn_cast<Instruction>(TrueVal)) {
240     if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
241         !isa<Constant>(FalseVal)) {
242       if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
243         unsigned OpToFold = 0;
244         if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
245           OpToFold = 1;
246         } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
247           OpToFold = 2;
248         }
249
250         if (OpToFold) {
251           Constant *C = GetSelectFoldableConstant(TVI);
252           Value *OOp = TVI->getOperand(2-OpToFold);
253           // Avoid creating select between 2 constants unless it's selecting
254           // between 0, 1 and -1.
255           if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
256             Value *NewSel = Builder->CreateSelect(SI.getCondition(), OOp, C);
257             NewSel->takeName(TVI);
258             BinaryOperator *TVI_BO = cast<BinaryOperator>(TVI);
259             BinaryOperator *BO = BinaryOperator::Create(TVI_BO->getOpcode(),
260                                                         FalseVal, NewSel);
261             if (isa<PossiblyExactOperator>(BO))
262               BO->setIsExact(TVI_BO->isExact());
263             if (isa<OverflowingBinaryOperator>(BO)) {
264               BO->setHasNoUnsignedWrap(TVI_BO->hasNoUnsignedWrap());
265               BO->setHasNoSignedWrap(TVI_BO->hasNoSignedWrap());
266             }
267             return BO;
268           }
269         }
270       }
271     }
272   }
273
274   if (Instruction *FVI = dyn_cast<Instruction>(FalseVal)) {
275     if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
276         !isa<Constant>(TrueVal)) {
277       if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
278         unsigned OpToFold = 0;
279         if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
280           OpToFold = 1;
281         } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
282           OpToFold = 2;
283         }
284
285         if (OpToFold) {
286           Constant *C = GetSelectFoldableConstant(FVI);
287           Value *OOp = FVI->getOperand(2-OpToFold);
288           // Avoid creating select between 2 constants unless it's selecting
289           // between 0, 1 and -1.
290           if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
291             Value *NewSel = Builder->CreateSelect(SI.getCondition(), C, OOp);
292             NewSel->takeName(FVI);
293             BinaryOperator *FVI_BO = cast<BinaryOperator>(FVI);
294             BinaryOperator *BO = BinaryOperator::Create(FVI_BO->getOpcode(),
295                                                         TrueVal, NewSel);
296             if (isa<PossiblyExactOperator>(BO))
297               BO->setIsExact(FVI_BO->isExact());
298             if (isa<OverflowingBinaryOperator>(BO)) {
299               BO->setHasNoUnsignedWrap(FVI_BO->hasNoUnsignedWrap());
300               BO->setHasNoSignedWrap(FVI_BO->hasNoSignedWrap());
301             }
302             return BO;
303           }
304         }
305       }
306     }
307   }
308
309   return nullptr;
310 }
311
312 /// SimplifyWithOpReplaced - See if V simplifies when its operand Op is
313 /// replaced with RepOp.
314 static Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
315                                      const DataLayout *TD,
316                                      const TargetLibraryInfo *TLI) {
317   // Trivial replacement.
318   if (V == Op)
319     return RepOp;
320
321   Instruction *I = dyn_cast<Instruction>(V);
322   if (!I)
323     return nullptr;
324
325   // If this is a binary operator, try to simplify it with the replaced op.
326   if (BinaryOperator *B = dyn_cast<BinaryOperator>(I)) {
327     if (B->getOperand(0) == Op)
328       return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), TD, TLI);
329     if (B->getOperand(1) == Op)
330       return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, TD, TLI);
331   }
332
333   // Same for CmpInsts.
334   if (CmpInst *C = dyn_cast<CmpInst>(I)) {
335     if (C->getOperand(0) == Op)
336       return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), TD,
337                              TLI);
338     if (C->getOperand(1) == Op)
339       return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, TD,
340                              TLI);
341   }
342
343   // TODO: We could hand off more cases to instsimplify here.
344
345   // If all operands are constant after substituting Op for RepOp then we can
346   // constant fold the instruction.
347   if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) {
348     // Build a list of all constant operands.
349     SmallVector<Constant*, 8> ConstOps;
350     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
351       if (I->getOperand(i) == Op)
352         ConstOps.push_back(CRepOp);
353       else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i)))
354         ConstOps.push_back(COp);
355       else
356         break;
357     }
358
359     // All operands were constants, fold it.
360     if (ConstOps.size() == I->getNumOperands()) {
361       if (CmpInst *C = dyn_cast<CmpInst>(I))
362         return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
363                                                ConstOps[1], TD, TLI);
364
365       if (LoadInst *LI = dyn_cast<LoadInst>(I))
366         if (!LI->isVolatile())
367           return ConstantFoldLoadFromConstPtr(ConstOps[0], TD);
368
369       return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
370                                       ConstOps, TD, TLI);
371     }
372   }
373
374   return nullptr;
375 }
376
377 /// foldSelectICmpAndOr - We want to turn:
378 ///   (select (icmp eq (and X, C1), 0), Y, (or Y, C2))
379 /// into:
380 ///   (or (shl (and X, C1), C3), y)
381 /// iff:
382 ///   C1 and C2 are both powers of 2
383 /// where:
384 ///   C3 = Log(C2) - Log(C1)
385 ///
386 /// This transform handles cases where:
387 /// 1. The icmp predicate is inverted
388 /// 2. The select operands are reversed
389 /// 3. The magnitude of C2 and C1 are flipped
390 ///
391 /// This also tries to turn
392 /// --- Single bit tests:
393 /// if ((x & C) == 0) x |= C    to  x |= C
394 /// if ((x & C) != 0) x ^= C    to  x &= ~C
395 /// if ((x & C) == 0) x ^= C    to  x |= C
396 /// if ((x & C) != 0) x &= ~C   to  x &= ~C
397 /// if ((x & C) == 0) x &= ~C   to  nothing
398 static Value *foldSelectICmpAndOr(SelectInst &SI, Value *TrueVal,
399                                   Value *FalseVal,
400                                   InstCombiner::BuilderTy *Builder) {
401   const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition());
402   if (!IC || !IC->isEquality() || !SI.getType()->isIntegerTy())
403     return nullptr;
404
405   Value *CmpLHS = IC->getOperand(0);
406   Value *CmpRHS = IC->getOperand(1);
407
408   if (!match(CmpRHS, m_Zero()))
409     return nullptr;
410
411   Value *X;
412   const APInt *C1;
413   if (!match(CmpLHS, m_And(m_Value(X), m_Power2(C1))))
414     return nullptr;
415
416   const APInt *C2;
417   if (match(TrueVal, m_Specific(X))) {
418     // if ((X & C) != 0) X ^= C becomes X &= ~C
419     if (match(FalseVal, m_Xor(m_Specific(X), m_APInt(C2))) && C1 == C2)
420       return Builder->CreateAnd(X, ~(*C1));
421     // if ((X & C) != 0) X &= ~C becomes X &= ~C
422     if (match(FalseVal, m_And(m_Specific(X), m_APInt(C2))) && *C1 == ~(*C2))
423       return FalseVal;
424   } else if (match(FalseVal, m_Specific(X))) {
425     // if ((X & C) == 0) X ^= C becomes X |= C
426     if (match(TrueVal, m_Xor(m_Specific(X), m_APInt(C2))) && C1 == C2)
427       return Builder->CreateOr(X, *C1);
428     // if ((X & C) == 0) X &= ~C becomes nothing
429     if (match(TrueVal, m_And(m_Specific(X), m_APInt(C2))) && *C1 == ~(*C2))
430       return X;
431     // if ((X & C) == 0) X |= C becomes X |= C
432     if (match(TrueVal, m_Or(m_Specific(X), m_APInt(C2))) && C1 == C2)
433       return TrueVal;
434   }
435
436   bool OrOnTrueVal = false;
437   bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2)));
438   if (!OrOnFalseVal)
439     OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2)));
440
441   if (!OrOnFalseVal && !OrOnTrueVal)
442     return nullptr;
443
444   Value *V = CmpLHS;
445   Value *Y = OrOnFalseVal ? TrueVal : FalseVal;
446
447   unsigned C1Log = C1->logBase2();
448   unsigned C2Log = C2->logBase2();
449   if (C2Log > C1Log) {
450     V = Builder->CreateZExtOrTrunc(V, Y->getType());
451     V = Builder->CreateShl(V, C2Log - C1Log);
452   } else if (C1Log > C2Log) {
453     V = Builder->CreateLShr(V, C1Log - C2Log);
454     V = Builder->CreateZExtOrTrunc(V, Y->getType());
455   } else
456     V = Builder->CreateZExtOrTrunc(V, Y->getType());
457
458   ICmpInst::Predicate Pred = IC->getPredicate();
459   if ((Pred == ICmpInst::ICMP_NE && OrOnFalseVal) ||
460       (Pred == ICmpInst::ICMP_EQ && OrOnTrueVal))
461     V = Builder->CreateXor(V, *C2);
462
463   return Builder->CreateOr(V, Y);
464 }
465
466 /// visitSelectInstWithICmp - Visit a SelectInst that has an
467 /// ICmpInst as its first operand.
468 ///
469 Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
470                                                    ICmpInst *ICI) {
471   bool Changed = false;
472   ICmpInst::Predicate Pred = ICI->getPredicate();
473   Value *CmpLHS = ICI->getOperand(0);
474   Value *CmpRHS = ICI->getOperand(1);
475   Value *TrueVal = SI.getTrueValue();
476   Value *FalseVal = SI.getFalseValue();
477
478   // Check cases where the comparison is with a constant that
479   // can be adjusted to fit the min/max idiom. We may move or edit ICI
480   // here, so make sure the select is the only user.
481   if (ICI->hasOneUse())
482     if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) {
483       // X < MIN ? T : F  -->  F
484       if ((Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT)
485           && CI->isMinValue(Pred == ICmpInst::ICMP_SLT))
486         return ReplaceInstUsesWith(SI, FalseVal);
487       // X > MAX ? T : F  -->  F
488       else if ((Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT)
489                && CI->isMaxValue(Pred == ICmpInst::ICMP_SGT))
490         return ReplaceInstUsesWith(SI, FalseVal);
491       switch (Pred) {
492       default: break;
493       case ICmpInst::ICMP_ULT:
494       case ICmpInst::ICMP_SLT:
495       case ICmpInst::ICMP_UGT:
496       case ICmpInst::ICMP_SGT: {
497         // These transformations only work for selects over integers.
498         IntegerType *SelectTy = dyn_cast<IntegerType>(SI.getType());
499         if (!SelectTy)
500           break;
501
502         Constant *AdjustedRHS;
503         if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
504           AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() + 1);
505         else // (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
506           AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() - 1);
507
508         // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
509         // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
510         if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
511             (CmpLHS == FalseVal && AdjustedRHS == TrueVal))
512           ; // Nothing to do here. Values match without any sign/zero extension.
513
514         // Types do not match. Instead of calculating this with mixed types
515         // promote all to the larger type. This enables scalar evolution to
516         // analyze this expression.
517         else if (CmpRHS->getType()->getScalarSizeInBits()
518                  < SelectTy->getBitWidth()) {
519           Constant *sextRHS = ConstantExpr::getSExt(AdjustedRHS, SelectTy);
520
521           // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
522           // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
523           // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
524           // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
525           if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) &&
526                 sextRHS == FalseVal) {
527             CmpLHS = TrueVal;
528             AdjustedRHS = sextRHS;
529           } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
530                      sextRHS == TrueVal) {
531             CmpLHS = FalseVal;
532             AdjustedRHS = sextRHS;
533           } else if (ICI->isUnsigned()) {
534             Constant *zextRHS = ConstantExpr::getZExt(AdjustedRHS, SelectTy);
535             // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
536             // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
537             // zext + signed compare cannot be changed:
538             //    0xff <s 0x00, but 0x00ff >s 0x0000
539             if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) &&
540                 zextRHS == FalseVal) {
541               CmpLHS = TrueVal;
542               AdjustedRHS = zextRHS;
543             } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
544                        zextRHS == TrueVal) {
545               CmpLHS = FalseVal;
546               AdjustedRHS = zextRHS;
547             } else
548               break;
549           } else
550             break;
551         } else
552           break;
553
554         Pred = ICmpInst::getSwappedPredicate(Pred);
555         CmpRHS = AdjustedRHS;
556         std::swap(FalseVal, TrueVal);
557         ICI->setPredicate(Pred);
558         ICI->setOperand(0, CmpLHS);
559         ICI->setOperand(1, CmpRHS);
560         SI.setOperand(1, TrueVal);
561         SI.setOperand(2, FalseVal);
562
563         // Move ICI instruction right before the select instruction. Otherwise
564         // the sext/zext value may be defined after the ICI instruction uses it.
565         ICI->moveBefore(&SI);
566
567         Changed = true;
568         break;
569       }
570       }
571     }
572
573   // Transform (X >s -1) ? C1 : C2 --> ((X >>s 31) & (C2 - C1)) + C1
574   // and       (X <s  0) ? C2 : C1 --> ((X >>s 31) & (C2 - C1)) + C1
575   // FIXME: Type and constness constraints could be lifted, but we have to
576   //        watch code size carefully. We should consider xor instead of
577   //        sub/add when we decide to do that.
578   if (IntegerType *Ty = dyn_cast<IntegerType>(CmpLHS->getType())) {
579     if (TrueVal->getType() == Ty) {
580       if (ConstantInt *Cmp = dyn_cast<ConstantInt>(CmpRHS)) {
581         ConstantInt *C1 = nullptr, *C2 = nullptr;
582         if (Pred == ICmpInst::ICMP_SGT && Cmp->isAllOnesValue()) {
583           C1 = dyn_cast<ConstantInt>(TrueVal);
584           C2 = dyn_cast<ConstantInt>(FalseVal);
585         } else if (Pred == ICmpInst::ICMP_SLT && Cmp->isNullValue()) {
586           C1 = dyn_cast<ConstantInt>(FalseVal);
587           C2 = dyn_cast<ConstantInt>(TrueVal);
588         }
589         if (C1 && C2) {
590           // This shift results in either -1 or 0.
591           Value *AShr = Builder->CreateAShr(CmpLHS, Ty->getBitWidth()-1);
592
593           // Check if we can express the operation with a single or.
594           if (C2->isAllOnesValue())
595             return ReplaceInstUsesWith(SI, Builder->CreateOr(AShr, C1));
596
597           Value *And = Builder->CreateAnd(AShr, C2->getValue()-C1->getValue());
598           return ReplaceInstUsesWith(SI, Builder->CreateAdd(And, C1));
599         }
600       }
601     }
602   }
603
604   // If we have an equality comparison then we know the value in one of the
605   // arms of the select. See if substituting this value into the arm and
606   // simplifying the result yields the same value as the other arm.
607   if (Pred == ICmpInst::ICMP_EQ) {
608     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, DL, TLI) == TrueVal ||
609         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, DL, TLI) == TrueVal)
610       return ReplaceInstUsesWith(SI, FalseVal);
611     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, DL, TLI) == FalseVal ||
612         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, DL, TLI) == FalseVal)
613       return ReplaceInstUsesWith(SI, FalseVal);
614   } else if (Pred == ICmpInst::ICMP_NE) {
615     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, DL, TLI) == FalseVal ||
616         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, DL, TLI) == FalseVal)
617       return ReplaceInstUsesWith(SI, TrueVal);
618     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, DL, TLI) == TrueVal ||
619         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, DL, TLI) == TrueVal)
620       return ReplaceInstUsesWith(SI, TrueVal);
621   }
622
623   // NOTE: if we wanted to, this is where to detect integer MIN/MAX
624
625   if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
626     if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
627       // Transform (X == C) ? X : Y -> (X == C) ? C : Y
628       SI.setOperand(1, CmpRHS);
629       Changed = true;
630     } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
631       // Transform (X != C) ? Y : X -> (X != C) ? Y : C
632       SI.setOperand(2, CmpRHS);
633       Changed = true;
634     }
635   }
636
637   if (Value *V = foldSelectICmpAndOr(SI, TrueVal, FalseVal, Builder))
638     return ReplaceInstUsesWith(SI, V);
639
640   return Changed ? &SI : nullptr;
641 }
642
643
644 /// CanSelectOperandBeMappingIntoPredBlock - SI is a select whose condition is a
645 /// PHI node (but the two may be in different blocks).  See if the true/false
646 /// values (V) are live in all of the predecessor blocks of the PHI.  For
647 /// example, cases like this cannot be mapped:
648 ///
649 ///   X = phi [ C1, BB1], [C2, BB2]
650 ///   Y = add
651 ///   Z = select X, Y, 0
652 ///
653 /// because Y is not live in BB1/BB2.
654 ///
655 static bool CanSelectOperandBeMappingIntoPredBlock(const Value *V,
656                                                    const SelectInst &SI) {
657   // If the value is a non-instruction value like a constant or argument, it
658   // can always be mapped.
659   const Instruction *I = dyn_cast<Instruction>(V);
660   if (!I) return true;
661
662   // If V is a PHI node defined in the same block as the condition PHI, we can
663   // map the arguments.
664   const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
665
666   if (const PHINode *VP = dyn_cast<PHINode>(I))
667     if (VP->getParent() == CondPHI->getParent())
668       return true;
669
670   // Otherwise, if the PHI and select are defined in the same block and if V is
671   // defined in a different block, then we can transform it.
672   if (SI.getParent() == CondPHI->getParent() &&
673       I->getParent() != CondPHI->getParent())
674     return true;
675
676   // Otherwise we have a 'hard' case and we can't tell without doing more
677   // detailed dominator based analysis, punt.
678   return false;
679 }
680
681 /// FoldSPFofSPF - We have an SPF (e.g. a min or max) of an SPF of the form:
682 ///   SPF2(SPF1(A, B), C)
683 Instruction *InstCombiner::FoldSPFofSPF(Instruction *Inner,
684                                         SelectPatternFlavor SPF1,
685                                         Value *A, Value *B,
686                                         Instruction &Outer,
687                                         SelectPatternFlavor SPF2, Value *C) {
688   if (C == A || C == B) {
689     // MAX(MAX(A, B), B) -> MAX(A, B)
690     // MIN(MIN(a, b), a) -> MIN(a, b)
691     if (SPF1 == SPF2)
692       return ReplaceInstUsesWith(Outer, Inner);
693
694     // MAX(MIN(a, b), a) -> a
695     // MIN(MAX(a, b), a) -> a
696     if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
697         (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
698         (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
699         (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
700       return ReplaceInstUsesWith(Outer, C);
701   }
702
703   if (SPF1 == SPF2) {
704     if (ConstantInt *CB = dyn_cast<ConstantInt>(B)) {
705       if (ConstantInt *CC = dyn_cast<ConstantInt>(C)) {
706         APInt ACB = CB->getValue();
707         APInt ACC = CC->getValue();
708
709         // MIN(MIN(A, 23), 97) -> MIN(A, 23)
710         // MAX(MAX(A, 97), 23) -> MAX(A, 97)
711         if ((SPF1 == SPF_UMIN && ACB.ule(ACC)) ||
712             (SPF1 == SPF_SMIN && ACB.sle(ACC)) ||
713             (SPF1 == SPF_UMAX && ACB.uge(ACC)) ||
714             (SPF1 == SPF_SMAX && ACB.sge(ACC)))
715           return ReplaceInstUsesWith(Outer, Inner);
716
717         // MIN(MIN(A, 97), 23) -> MIN(A, 23)
718         // MAX(MAX(A, 23), 97) -> MAX(A, 97)
719         if ((SPF1 == SPF_UMIN && ACB.ugt(ACC)) ||
720             (SPF1 == SPF_SMIN && ACB.sgt(ACC)) ||
721             (SPF1 == SPF_UMAX && ACB.ult(ACC)) ||
722             (SPF1 == SPF_SMAX && ACB.slt(ACC))) {
723           Outer.replaceUsesOfWith(Inner, A);
724           return &Outer;
725         }
726       }
727     }
728   }
729
730   // ABS(ABS(X)) -> ABS(X)
731   // NABS(NABS(X)) -> NABS(X)
732   if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) {
733     return ReplaceInstUsesWith(Outer, Inner);
734   }
735
736   // TODO: ABS(NABS(X)) -> ABS(X)
737   // TODO: NABS(ABS(X)) -> NABS(X)
738   return nullptr;
739 }
740
741 /// foldSelectICmpAnd - If one of the constants is zero (we know they can't
742 /// both be) and we have an icmp instruction with zero, and we have an 'and'
743 /// with the non-constant value and a power of two we can turn the select
744 /// into a shift on the result of the 'and'.
745 static Value *foldSelectICmpAnd(const SelectInst &SI, ConstantInt *TrueVal,
746                                 ConstantInt *FalseVal,
747                                 InstCombiner::BuilderTy *Builder) {
748   const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition());
749   if (!IC || !IC->isEquality() || !SI.getType()->isIntegerTy())
750     return nullptr;
751
752   if (!match(IC->getOperand(1), m_Zero()))
753     return nullptr;
754
755   ConstantInt *AndRHS;
756   Value *LHS = IC->getOperand(0);
757   if (!match(LHS, m_And(m_Value(), m_ConstantInt(AndRHS))))
758     return nullptr;
759
760   // If both select arms are non-zero see if we have a select of the form
761   // 'x ? 2^n + C : C'. Then we can offset both arms by C, use the logic
762   // for 'x ? 2^n : 0' and fix the thing up at the end.
763   ConstantInt *Offset = nullptr;
764   if (!TrueVal->isZero() && !FalseVal->isZero()) {
765     if ((TrueVal->getValue() - FalseVal->getValue()).isPowerOf2())
766       Offset = FalseVal;
767     else if ((FalseVal->getValue() - TrueVal->getValue()).isPowerOf2())
768       Offset = TrueVal;
769     else
770       return nullptr;
771
772     // Adjust TrueVal and FalseVal to the offset.
773     TrueVal = ConstantInt::get(Builder->getContext(),
774                                TrueVal->getValue() - Offset->getValue());
775     FalseVal = ConstantInt::get(Builder->getContext(),
776                                 FalseVal->getValue() - Offset->getValue());
777   }
778
779   // Make sure the mask in the 'and' and one of the select arms is a power of 2.
780   if (!AndRHS->getValue().isPowerOf2() ||
781       (!TrueVal->getValue().isPowerOf2() &&
782        !FalseVal->getValue().isPowerOf2()))
783     return nullptr;
784
785   // Determine which shift is needed to transform result of the 'and' into the
786   // desired result.
787   ConstantInt *ValC = !TrueVal->isZero() ? TrueVal : FalseVal;
788   unsigned ValZeros = ValC->getValue().logBase2();
789   unsigned AndZeros = AndRHS->getValue().logBase2();
790
791   // If types don't match we can still convert the select by introducing a zext
792   // or a trunc of the 'and'. The trunc case requires that all of the truncated
793   // bits are zero, we can figure that out by looking at the 'and' mask.
794   if (AndZeros >= ValC->getBitWidth())
795     return nullptr;
796
797   Value *V = Builder->CreateZExtOrTrunc(LHS, SI.getType());
798   if (ValZeros > AndZeros)
799     V = Builder->CreateShl(V, ValZeros - AndZeros);
800   else if (ValZeros < AndZeros)
801     V = Builder->CreateLShr(V, AndZeros - ValZeros);
802
803   // Okay, now we know that everything is set up, we just don't know whether we
804   // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
805   bool ShouldNotVal = !TrueVal->isZero();
806   ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
807   if (ShouldNotVal)
808     V = Builder->CreateXor(V, ValC);
809
810   // Apply an offset if needed.
811   if (Offset)
812     V = Builder->CreateAdd(V, Offset);
813   return V;
814 }
815
816 Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
817   Value *CondVal = SI.getCondition();
818   Value *TrueVal = SI.getTrueValue();
819   Value *FalseVal = SI.getFalseValue();
820
821   if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, DL))
822     return ReplaceInstUsesWith(SI, V);
823
824   if (SI.getType()->isIntegerTy(1)) {
825     if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
826       if (C->getZExtValue()) {
827         // Change: A = select B, true, C --> A = or B, C
828         return BinaryOperator::CreateOr(CondVal, FalseVal);
829       }
830       // Change: A = select B, false, C --> A = and !B, C
831       Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
832       return BinaryOperator::CreateAnd(NotCond, FalseVal);
833     }
834     if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
835       if (C->getZExtValue() == false) {
836         // Change: A = select B, C, false --> A = and B, C
837         return BinaryOperator::CreateAnd(CondVal, TrueVal);
838       }
839       // Change: A = select B, C, true --> A = or !B, C
840       Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
841       return BinaryOperator::CreateOr(NotCond, TrueVal);
842     }
843
844     // select a, b, a  -> a&b
845     // select a, a, b  -> a|b
846     if (CondVal == TrueVal)
847       return BinaryOperator::CreateOr(CondVal, FalseVal);
848     if (CondVal == FalseVal)
849       return BinaryOperator::CreateAnd(CondVal, TrueVal);
850
851     // select a, ~a, b -> (~a)&b
852     // select a, b, ~a -> (~a)|b
853     if (match(TrueVal, m_Not(m_Specific(CondVal))))
854       return BinaryOperator::CreateAnd(TrueVal, FalseVal);
855     if (match(FalseVal, m_Not(m_Specific(CondVal))))
856       return BinaryOperator::CreateOr(TrueVal, FalseVal);
857   }
858
859   // Selecting between two integer constants?
860   if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
861     if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
862       // select C, 1, 0 -> zext C to int
863       if (FalseValC->isZero() && TrueValC->getValue() == 1)
864         return new ZExtInst(CondVal, SI.getType());
865
866       // select C, -1, 0 -> sext C to int
867       if (FalseValC->isZero() && TrueValC->isAllOnesValue())
868         return new SExtInst(CondVal, SI.getType());
869
870       // select C, 0, 1 -> zext !C to int
871       if (TrueValC->isZero() && FalseValC->getValue() == 1) {
872         Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
873         return new ZExtInst(NotCond, SI.getType());
874       }
875
876       // select C, 0, -1 -> sext !C to int
877       if (TrueValC->isZero() && FalseValC->isAllOnesValue()) {
878         Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
879         return new SExtInst(NotCond, SI.getType());
880       }
881
882       if (Value *V = foldSelectICmpAnd(SI, TrueValC, FalseValC, Builder))
883         return ReplaceInstUsesWith(SI, V);
884     }
885
886   // See if we are selecting two values based on a comparison of the two values.
887   if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
888     if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
889       // Transform (X == Y) ? X : Y  -> Y
890       if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
891         // This is not safe in general for floating point:
892         // consider X== -0, Y== +0.
893         // It becomes safe if either operand is a nonzero constant.
894         ConstantFP *CFPt, *CFPf;
895         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
896               !CFPt->getValueAPF().isZero()) ||
897             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
898              !CFPf->getValueAPF().isZero()))
899         return ReplaceInstUsesWith(SI, FalseVal);
900       }
901       // Transform (X une Y) ? X : Y  -> X
902       if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
903         // This is not safe in general for floating point:
904         // consider X== -0, Y== +0.
905         // It becomes safe if either operand is a nonzero constant.
906         ConstantFP *CFPt, *CFPf;
907         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
908               !CFPt->getValueAPF().isZero()) ||
909             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
910              !CFPf->getValueAPF().isZero()))
911         return ReplaceInstUsesWith(SI, TrueVal);
912       }
913       // NOTE: if we wanted to, this is where to detect MIN/MAX
914
915     } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
916       // Transform (X == Y) ? Y : X  -> X
917       if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
918         // This is not safe in general for floating point:
919         // consider X== -0, Y== +0.
920         // It becomes safe if either operand is a nonzero constant.
921         ConstantFP *CFPt, *CFPf;
922         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
923               !CFPt->getValueAPF().isZero()) ||
924             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
925              !CFPf->getValueAPF().isZero()))
926           return ReplaceInstUsesWith(SI, FalseVal);
927       }
928       // Transform (X une Y) ? Y : X  -> Y
929       if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
930         // This is not safe in general for floating point:
931         // consider X== -0, Y== +0.
932         // It becomes safe if either operand is a nonzero constant.
933         ConstantFP *CFPt, *CFPf;
934         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
935               !CFPt->getValueAPF().isZero()) ||
936             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
937              !CFPf->getValueAPF().isZero()))
938           return ReplaceInstUsesWith(SI, TrueVal);
939       }
940       // NOTE: if we wanted to, this is where to detect MIN/MAX
941     }
942     // NOTE: if we wanted to, this is where to detect ABS
943   }
944
945   // See if we are selecting two values based on a comparison of the two values.
946   if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
947     if (Instruction *Result = visitSelectInstWithICmp(SI, ICI))
948       return Result;
949
950   if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
951     if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
952       if (TI->hasOneUse() && FI->hasOneUse()) {
953         Instruction *AddOp = nullptr, *SubOp = nullptr;
954
955         // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
956         if (TI->getOpcode() == FI->getOpcode())
957           if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
958             return IV;
959
960         // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))).  This is
961         // even legal for FP.
962         if ((TI->getOpcode() == Instruction::Sub &&
963              FI->getOpcode() == Instruction::Add) ||
964             (TI->getOpcode() == Instruction::FSub &&
965              FI->getOpcode() == Instruction::FAdd)) {
966           AddOp = FI; SubOp = TI;
967         } else if ((FI->getOpcode() == Instruction::Sub &&
968                     TI->getOpcode() == Instruction::Add) ||
969                    (FI->getOpcode() == Instruction::FSub &&
970                     TI->getOpcode() == Instruction::FAdd)) {
971           AddOp = TI; SubOp = FI;
972         }
973
974         if (AddOp) {
975           Value *OtherAddOp = nullptr;
976           if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
977             OtherAddOp = AddOp->getOperand(1);
978           } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
979             OtherAddOp = AddOp->getOperand(0);
980           }
981
982           if (OtherAddOp) {
983             // So at this point we know we have (Y -> OtherAddOp):
984             //        select C, (add X, Y), (sub X, Z)
985             Value *NegVal;  // Compute -Z
986             if (SI.getType()->isFPOrFPVectorTy()) {
987               NegVal = Builder->CreateFNeg(SubOp->getOperand(1));
988               if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
989                 FastMathFlags Flags = AddOp->getFastMathFlags();
990                 Flags &= SubOp->getFastMathFlags();
991                 NegInst->setFastMathFlags(Flags);
992               }
993             } else {
994               NegVal = Builder->CreateNeg(SubOp->getOperand(1));
995             }
996
997             Value *NewTrueOp = OtherAddOp;
998             Value *NewFalseOp = NegVal;
999             if (AddOp != TI)
1000               std::swap(NewTrueOp, NewFalseOp);
1001             Value *NewSel =
1002               Builder->CreateSelect(CondVal, NewTrueOp,
1003                                     NewFalseOp, SI.getName() + ".p");
1004
1005             if (SI.getType()->isFPOrFPVectorTy()) {
1006               Instruction *RI =
1007                 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
1008
1009               FastMathFlags Flags = AddOp->getFastMathFlags();
1010               Flags &= SubOp->getFastMathFlags();
1011               RI->setFastMathFlags(Flags);
1012               return RI;
1013             } else
1014               return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
1015           }
1016         }
1017       }
1018
1019   // See if we can fold the select into one of our operands.
1020   if (SI.getType()->isIntegerTy()) {
1021     if (Instruction *FoldI = FoldSelectIntoOp(SI, TrueVal, FalseVal))
1022       return FoldI;
1023
1024     // MAX(MAX(a, b), a) -> MAX(a, b)
1025     // MIN(MIN(a, b), a) -> MIN(a, b)
1026     // MAX(MIN(a, b), a) -> a
1027     // MIN(MAX(a, b), a) -> a
1028     Value *LHS, *RHS, *LHS2, *RHS2;
1029     if (SelectPatternFlavor SPF = MatchSelectPattern(&SI, LHS, RHS)) {
1030       if (SelectPatternFlavor SPF2 = MatchSelectPattern(LHS, LHS2, RHS2))
1031         if (Instruction *R = FoldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2,
1032                                           SI, SPF, RHS))
1033           return R;
1034       if (SelectPatternFlavor SPF2 = MatchSelectPattern(RHS, LHS2, RHS2))
1035         if (Instruction *R = FoldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2,
1036                                           SI, SPF, LHS))
1037           return R;
1038     }
1039
1040     // TODO.
1041     // ABS(-X) -> ABS(X)
1042   }
1043
1044   // See if we can fold the select into a phi node if the condition is a select.
1045   if (isa<PHINode>(SI.getCondition()))
1046     // The true/false values have to be live in the PHI predecessor's blocks.
1047     if (CanSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
1048         CanSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
1049       if (Instruction *NV = FoldOpIntoPhi(SI))
1050         return NV;
1051
1052   if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
1053     if (TrueSI->getCondition() == CondVal) {
1054       if (SI.getTrueValue() == TrueSI->getTrueValue())
1055         return nullptr;
1056       SI.setOperand(1, TrueSI->getTrueValue());
1057       return &SI;
1058     }
1059   }
1060   if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
1061     if (FalseSI->getCondition() == CondVal) {
1062       if (SI.getFalseValue() == FalseSI->getFalseValue())
1063         return nullptr;
1064       SI.setOperand(2, FalseSI->getFalseValue());
1065       return &SI;
1066     }
1067   }
1068
1069   if (BinaryOperator::isNot(CondVal)) {
1070     SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
1071     SI.setOperand(1, FalseVal);
1072     SI.setOperand(2, TrueVal);
1073     return &SI;
1074   }
1075
1076   if (VectorType* VecTy = dyn_cast<VectorType>(SI.getType())) {
1077     unsigned VWidth = VecTy->getNumElements();
1078     APInt UndefElts(VWidth, 0);
1079     APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1080     if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) {
1081       if (V != &SI)
1082         return ReplaceInstUsesWith(SI, V);
1083       return &SI;
1084     }
1085
1086     if (isa<ConstantAggregateZero>(CondVal)) {
1087       return ReplaceInstUsesWith(SI, FalseVal);
1088     }
1089   }
1090
1091   return nullptr;
1092 }