[InstCombine] fold zexts and constants into a phi (PR24766)
[oota-llvm.git] / lib / Transforms / InstCombine / InstCombinePHI.cpp
1 //===- InstCombinePHI.cpp -------------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visitPHINode function.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/Analysis/InstructionSimplify.h"
18 #include "llvm/Transforms/Utils/Local.h"
19 using namespace llvm;
20
21 #define DEBUG_TYPE "instcombine"
22
23 /// If we have something like phi [add (a,b), add(a,c)] and if a/b/c and the
24 /// adds all have a single use, turn this into a phi and a single binop.
25 Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
26   Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
27   assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst));
28   unsigned Opc = FirstInst->getOpcode();
29   Value *LHSVal = FirstInst->getOperand(0);
30   Value *RHSVal = FirstInst->getOperand(1);
31
32   Type *LHSType = LHSVal->getType();
33   Type *RHSType = RHSVal->getType();
34
35   bool isNUW = false, isNSW = false, isExact = false;
36   if (OverflowingBinaryOperator *BO =
37         dyn_cast<OverflowingBinaryOperator>(FirstInst)) {
38     isNUW = BO->hasNoUnsignedWrap();
39     isNSW = BO->hasNoSignedWrap();
40   } else if (PossiblyExactOperator *PEO =
41                dyn_cast<PossiblyExactOperator>(FirstInst))
42     isExact = PEO->isExact();
43
44   // Scan to see if all operands are the same opcode, and all have one use.
45   for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
46     Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
47     if (!I || I->getOpcode() != Opc || !I->hasOneUse() ||
48         // Verify type of the LHS matches so we don't fold cmp's of different
49         // types.
50         I->getOperand(0)->getType() != LHSType ||
51         I->getOperand(1)->getType() != RHSType)
52       return nullptr;
53
54     // If they are CmpInst instructions, check their predicates
55     if (CmpInst *CI = dyn_cast<CmpInst>(I))
56       if (CI->getPredicate() != cast<CmpInst>(FirstInst)->getPredicate())
57         return nullptr;
58
59     if (isNUW)
60       isNUW = cast<OverflowingBinaryOperator>(I)->hasNoUnsignedWrap();
61     if (isNSW)
62       isNSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
63     if (isExact)
64       isExact = cast<PossiblyExactOperator>(I)->isExact();
65
66     // Keep track of which operand needs a phi node.
67     if (I->getOperand(0) != LHSVal) LHSVal = nullptr;
68     if (I->getOperand(1) != RHSVal) RHSVal = nullptr;
69   }
70
71   // If both LHS and RHS would need a PHI, don't do this transformation,
72   // because it would increase the number of PHIs entering the block,
73   // which leads to higher register pressure. This is especially
74   // bad when the PHIs are in the header of a loop.
75   if (!LHSVal && !RHSVal)
76     return nullptr;
77
78   // Otherwise, this is safe to transform!
79
80   Value *InLHS = FirstInst->getOperand(0);
81   Value *InRHS = FirstInst->getOperand(1);
82   PHINode *NewLHS = nullptr, *NewRHS = nullptr;
83   if (!LHSVal) {
84     NewLHS = PHINode::Create(LHSType, PN.getNumIncomingValues(),
85                              FirstInst->getOperand(0)->getName() + ".pn");
86     NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
87     InsertNewInstBefore(NewLHS, PN);
88     LHSVal = NewLHS;
89   }
90
91   if (!RHSVal) {
92     NewRHS = PHINode::Create(RHSType, PN.getNumIncomingValues(),
93                              FirstInst->getOperand(1)->getName() + ".pn");
94     NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
95     InsertNewInstBefore(NewRHS, PN);
96     RHSVal = NewRHS;
97   }
98
99   // Add all operands to the new PHIs.
100   if (NewLHS || NewRHS) {
101     for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
102       Instruction *InInst = cast<Instruction>(PN.getIncomingValue(i));
103       if (NewLHS) {
104         Value *NewInLHS = InInst->getOperand(0);
105         NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i));
106       }
107       if (NewRHS) {
108         Value *NewInRHS = InInst->getOperand(1);
109         NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i));
110       }
111     }
112   }
113
114   if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst)) {
115     CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
116                                      LHSVal, RHSVal);
117     NewCI->setDebugLoc(FirstInst->getDebugLoc());
118     return NewCI;
119   }
120
121   BinaryOperator *BinOp = cast<BinaryOperator>(FirstInst);
122   BinaryOperator *NewBinOp =
123     BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal);
124   if (isNUW) NewBinOp->setHasNoUnsignedWrap();
125   if (isNSW) NewBinOp->setHasNoSignedWrap();
126   if (isExact) NewBinOp->setIsExact();
127   NewBinOp->setDebugLoc(FirstInst->getDebugLoc());
128   return NewBinOp;
129 }
130
131 Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) {
132   GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(PN.getIncomingValue(0));
133
134   SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(),
135                                         FirstInst->op_end());
136   // This is true if all GEP bases are allocas and if all indices into them are
137   // constants.
138   bool AllBasePointersAreAllocas = true;
139
140   // We don't want to replace this phi if the replacement would require
141   // more than one phi, which leads to higher register pressure. This is
142   // especially bad when the PHIs are in the header of a loop.
143   bool NeededPhi = false;
144
145   bool AllInBounds = true;
146
147   // Scan to see if all operands are the same opcode, and all have one use.
148   for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
149     GetElementPtrInst *GEP= dyn_cast<GetElementPtrInst>(PN.getIncomingValue(i));
150     if (!GEP || !GEP->hasOneUse() || GEP->getType() != FirstInst->getType() ||
151       GEP->getNumOperands() != FirstInst->getNumOperands())
152       return nullptr;
153
154     AllInBounds &= GEP->isInBounds();
155
156     // Keep track of whether or not all GEPs are of alloca pointers.
157     if (AllBasePointersAreAllocas &&
158         (!isa<AllocaInst>(GEP->getOperand(0)) ||
159          !GEP->hasAllConstantIndices()))
160       AllBasePointersAreAllocas = false;
161
162     // Compare the operand lists.
163     for (unsigned op = 0, e = FirstInst->getNumOperands(); op != e; ++op) {
164       if (FirstInst->getOperand(op) == GEP->getOperand(op))
165         continue;
166
167       // Don't merge two GEPs when two operands differ (introducing phi nodes)
168       // if one of the PHIs has a constant for the index.  The index may be
169       // substantially cheaper to compute for the constants, so making it a
170       // variable index could pessimize the path.  This also handles the case
171       // for struct indices, which must always be constant.
172       if (isa<ConstantInt>(FirstInst->getOperand(op)) ||
173           isa<ConstantInt>(GEP->getOperand(op)))
174         return nullptr;
175
176       if (FirstInst->getOperand(op)->getType() !=GEP->getOperand(op)->getType())
177         return nullptr;
178
179       // If we already needed a PHI for an earlier operand, and another operand
180       // also requires a PHI, we'd be introducing more PHIs than we're
181       // eliminating, which increases register pressure on entry to the PHI's
182       // block.
183       if (NeededPhi)
184         return nullptr;
185
186       FixedOperands[op] = nullptr;  // Needs a PHI.
187       NeededPhi = true;
188     }
189   }
190
191   // If all of the base pointers of the PHI'd GEPs are from allocas, don't
192   // bother doing this transformation.  At best, this will just save a bit of
193   // offset calculation, but all the predecessors will have to materialize the
194   // stack address into a register anyway.  We'd actually rather *clone* the
195   // load up into the predecessors so that we have a load of a gep of an alloca,
196   // which can usually all be folded into the load.
197   if (AllBasePointersAreAllocas)
198     return nullptr;
199
200   // Otherwise, this is safe to transform.  Insert PHI nodes for each operand
201   // that is variable.
202   SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size());
203
204   bool HasAnyPHIs = false;
205   for (unsigned i = 0, e = FixedOperands.size(); i != e; ++i) {
206     if (FixedOperands[i]) continue;  // operand doesn't need a phi.
207     Value *FirstOp = FirstInst->getOperand(i);
208     PHINode *NewPN = PHINode::Create(FirstOp->getType(), e,
209                                      FirstOp->getName()+".pn");
210     InsertNewInstBefore(NewPN, PN);
211
212     NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0));
213     OperandPhis[i] = NewPN;
214     FixedOperands[i] = NewPN;
215     HasAnyPHIs = true;
216   }
217
218
219   // Add all operands to the new PHIs.
220   if (HasAnyPHIs) {
221     for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
222       GetElementPtrInst *InGEP =cast<GetElementPtrInst>(PN.getIncomingValue(i));
223       BasicBlock *InBB = PN.getIncomingBlock(i);
224
225       for (unsigned op = 0, e = OperandPhis.size(); op != e; ++op)
226         if (PHINode *OpPhi = OperandPhis[op])
227           OpPhi->addIncoming(InGEP->getOperand(op), InBB);
228     }
229   }
230
231   Value *Base = FixedOperands[0];
232   GetElementPtrInst *NewGEP =
233       GetElementPtrInst::Create(FirstInst->getSourceElementType(), Base,
234                                 makeArrayRef(FixedOperands).slice(1));
235   if (AllInBounds) NewGEP->setIsInBounds();
236   NewGEP->setDebugLoc(FirstInst->getDebugLoc());
237   return NewGEP;
238 }
239
240
241 /// Return true if we know that it is safe to sink the load out of the block
242 /// that defines it. This means that it must be obvious the value of the load is
243 /// not changed from the point of the load to the end of the block it is in.
244 ///
245 /// Finally, it is safe, but not profitable, to sink a load targeting a
246 /// non-address-taken alloca.  Doing so will cause us to not promote the alloca
247 /// to a register.
248 static bool isSafeAndProfitableToSinkLoad(LoadInst *L) {
249   BasicBlock::iterator BBI = L, E = L->getParent()->end();
250
251   for (++BBI; BBI != E; ++BBI)
252     if (BBI->mayWriteToMemory())
253       return false;
254
255   // Check for non-address taken alloca.  If not address-taken already, it isn't
256   // profitable to do this xform.
257   if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
258     bool isAddressTaken = false;
259     for (User *U : AI->users()) {
260       if (isa<LoadInst>(U)) continue;
261       if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
262         // If storing TO the alloca, then the address isn't taken.
263         if (SI->getOperand(1) == AI) continue;
264       }
265       isAddressTaken = true;
266       break;
267     }
268
269     if (!isAddressTaken && AI->isStaticAlloca())
270       return false;
271   }
272
273   // If this load is a load from a GEP with a constant offset from an alloca,
274   // then we don't want to sink it.  In its present form, it will be
275   // load [constant stack offset].  Sinking it will cause us to have to
276   // materialize the stack addresses in each predecessor in a register only to
277   // do a shared load from register in the successor.
278   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(L->getOperand(0)))
279     if (AllocaInst *AI = dyn_cast<AllocaInst>(GEP->getOperand(0)))
280       if (AI->isStaticAlloca() && GEP->hasAllConstantIndices())
281         return false;
282
283   return true;
284 }
285
286 Instruction *InstCombiner::FoldPHIArgLoadIntoPHI(PHINode &PN) {
287   LoadInst *FirstLI = cast<LoadInst>(PN.getIncomingValue(0));
288
289   // FIXME: This is overconservative; this transform is allowed in some cases
290   // for atomic operations.
291   if (FirstLI->isAtomic())
292     return nullptr;
293
294   // When processing loads, we need to propagate two bits of information to the
295   // sunk load: whether it is volatile, and what its alignment is.  We currently
296   // don't sink loads when some have their alignment specified and some don't.
297   // visitLoadInst will propagate an alignment onto the load when TD is around,
298   // and if TD isn't around, we can't handle the mixed case.
299   bool isVolatile = FirstLI->isVolatile();
300   unsigned LoadAlignment = FirstLI->getAlignment();
301   unsigned LoadAddrSpace = FirstLI->getPointerAddressSpace();
302
303   // We can't sink the load if the loaded value could be modified between the
304   // load and the PHI.
305   if (FirstLI->getParent() != PN.getIncomingBlock(0) ||
306       !isSafeAndProfitableToSinkLoad(FirstLI))
307     return nullptr;
308
309   // If the PHI is of volatile loads and the load block has multiple
310   // successors, sinking it would remove a load of the volatile value from
311   // the path through the other successor.
312   if (isVolatile &&
313       FirstLI->getParent()->getTerminator()->getNumSuccessors() != 1)
314     return nullptr;
315
316   // Check to see if all arguments are the same operation.
317   for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
318     LoadInst *LI = dyn_cast<LoadInst>(PN.getIncomingValue(i));
319     if (!LI || !LI->hasOneUse())
320       return nullptr;
321
322     // We can't sink the load if the loaded value could be modified between
323     // the load and the PHI.
324     if (LI->isVolatile() != isVolatile ||
325         LI->getParent() != PN.getIncomingBlock(i) ||
326         LI->getPointerAddressSpace() != LoadAddrSpace ||
327         !isSafeAndProfitableToSinkLoad(LI))
328       return nullptr;
329
330     // If some of the loads have an alignment specified but not all of them,
331     // we can't do the transformation.
332     if ((LoadAlignment != 0) != (LI->getAlignment() != 0))
333       return nullptr;
334
335     LoadAlignment = std::min(LoadAlignment, LI->getAlignment());
336
337     // If the PHI is of volatile loads and the load block has multiple
338     // successors, sinking it would remove a load of the volatile value from
339     // the path through the other successor.
340     if (isVolatile &&
341         LI->getParent()->getTerminator()->getNumSuccessors() != 1)
342       return nullptr;
343   }
344
345   // Okay, they are all the same operation.  Create a new PHI node of the
346   // correct type, and PHI together all of the LHS's of the instructions.
347   PHINode *NewPN = PHINode::Create(FirstLI->getOperand(0)->getType(),
348                                    PN.getNumIncomingValues(),
349                                    PN.getName()+".in");
350
351   Value *InVal = FirstLI->getOperand(0);
352   NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
353   LoadInst *NewLI = new LoadInst(NewPN, "", isVolatile, LoadAlignment);
354
355   unsigned KnownIDs[] = {
356     LLVMContext::MD_tbaa,
357     LLVMContext::MD_range,
358     LLVMContext::MD_invariant_load,
359     LLVMContext::MD_alias_scope,
360     LLVMContext::MD_noalias,
361     LLVMContext::MD_nonnull
362   };
363
364   for (unsigned ID : KnownIDs)
365     NewLI->setMetadata(ID, FirstLI->getMetadata(ID));
366
367   // Add all operands to the new PHI and combine TBAA metadata.
368   for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
369     LoadInst *LI = cast<LoadInst>(PN.getIncomingValue(i));
370     combineMetadata(NewLI, LI, KnownIDs);
371     Value *NewInVal = LI->getOperand(0);
372     if (NewInVal != InVal)
373       InVal = nullptr;
374     NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
375   }
376
377   if (InVal) {
378     // The new PHI unions all of the same values together.  This is really
379     // common, so we handle it intelligently here for compile-time speed.
380     NewLI->setOperand(0, InVal);
381     delete NewPN;
382   } else {
383     InsertNewInstBefore(NewPN, PN);
384   }
385
386   // If this was a volatile load that we are merging, make sure to loop through
387   // and mark all the input loads as non-volatile.  If we don't do this, we will
388   // insert a new volatile load and the old ones will not be deletable.
389   if (isVolatile)
390     for (Value *IncValue : PN.incoming_values())
391       cast<LoadInst>(IncValue)->setVolatile(false);
392
393   NewLI->setDebugLoc(FirstLI->getDebugLoc());
394   return NewLI;
395 }
396
397 /// TODO: This function could handle other cast types, but then it might
398 /// require special-casing a cast from the 'i1' type. See the comment in
399 /// FoldPHIArgOpIntoPHI() about pessimizing illegal integer types.
400 Instruction *InstCombiner::FoldPHIArgZextsIntoPHI(PHINode &Phi) {
401   // Early exit for the common case of a phi with two operands. These are
402   // handled elsewhere. See the comment below where we check the count of zexts
403   // and constants for more details.
404   unsigned NumIncomingValues = Phi.getNumIncomingValues();
405   if (NumIncomingValues < 3)
406     return nullptr;
407
408   // Find the narrower type specified by the first zext.
409   Type *NarrowType = nullptr;
410   for (Value *V : Phi.incoming_values()) {
411     if (auto *Zext = dyn_cast<ZExtInst>(V)) {
412       NarrowType = Zext->getSrcTy();
413       break;
414     }
415   }
416   if (!NarrowType)
417     return nullptr;
418
419   // Walk the phi operands checking that we only have zexts or constants that
420   // we can shrink for free. Store the new operands for the new phi.
421   SmallVector<Value *, 4> NewIncoming;
422   unsigned NumZexts = 0;
423   unsigned NumConsts = 0;
424   for (Value *V : Phi.incoming_values()) {
425     if (auto *Zext = dyn_cast<ZExtInst>(V)) {
426       // All zexts must be identical and have one use.
427       if (Zext->getSrcTy() != NarrowType || !Zext->hasOneUse())
428         return nullptr;
429       NewIncoming.push_back(Zext->getOperand(0));
430       NumZexts++;
431     } else if (auto *C = dyn_cast<Constant>(V)) {
432       // Make sure that constants can fit in the new type.
433       Constant *Trunc = ConstantExpr::getTrunc(C, NarrowType);
434       if (ConstantExpr::getZExt(Trunc, C->getType()) != C)
435         return nullptr;
436       NewIncoming.push_back(Trunc);
437       NumConsts++;
438     } else {
439       // If it's not a cast or a constant, bail out.
440       return nullptr;
441     }
442   }
443
444   // The more common cases of a phi with no constant operands or just one
445   // variable operand are handled by FoldPHIArgOpIntoPHI() and FoldOpIntoPhi()
446   // respectively. FoldOpIntoPhi() wants to do the opposite transform that is
447   // performed here. It tries to replicate a cast in the phi operand's basic
448   // block to expose other folding opportunities. Thus, InstCombine will
449   // infinite loop without this check.
450   if (NumConsts == 0 || NumZexts < 2)
451     return nullptr;
452
453   // All incoming values are zexts or constants that are safe to truncate.
454   // Create a new phi node of the narrow type, phi together all of the new
455   // operands, and zext the result back to the original type.
456   PHINode *NewPhi = PHINode::Create(NarrowType, NumIncomingValues,
457                                     Phi.getName() + ".shrunk");
458   for (unsigned i = 0; i != NumIncomingValues; ++i)
459     NewPhi->addIncoming(NewIncoming[i], Phi.getIncomingBlock(i));
460
461   InsertNewInstBefore(NewPhi, Phi);
462   return CastInst::CreateZExtOrBitCast(NewPhi, Phi.getType());
463 }
464
465 /// If all operands to a PHI node are the same "unary" operator and they all are
466 /// only used by the PHI, PHI together their inputs, and do the operation once,
467 /// to the result of the PHI.
468 Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
469   Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
470
471   if (isa<GetElementPtrInst>(FirstInst))
472     return FoldPHIArgGEPIntoPHI(PN);
473   if (isa<LoadInst>(FirstInst))
474     return FoldPHIArgLoadIntoPHI(PN);
475
476   // Scan the instruction, looking for input operations that can be folded away.
477   // If all input operands to the phi are the same instruction (e.g. a cast from
478   // the same type or "+42") we can pull the operation through the PHI, reducing
479   // code size and simplifying code.
480   Constant *ConstantOp = nullptr;
481   Type *CastSrcTy = nullptr;
482   bool isNUW = false, isNSW = false, isExact = false;
483
484   if (isa<CastInst>(FirstInst)) {
485     CastSrcTy = FirstInst->getOperand(0)->getType();
486
487     // Be careful about transforming integer PHIs.  We don't want to pessimize
488     // the code by turning an i32 into an i1293.
489     if (PN.getType()->isIntegerTy() && CastSrcTy->isIntegerTy()) {
490       if (!ShouldChangeType(PN.getType(), CastSrcTy))
491         return nullptr;
492     }
493   } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
494     // Can fold binop, compare or shift here if the RHS is a constant,
495     // otherwise call FoldPHIArgBinOpIntoPHI.
496     ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
497     if (!ConstantOp)
498       return FoldPHIArgBinOpIntoPHI(PN);
499
500     if (OverflowingBinaryOperator *BO =
501         dyn_cast<OverflowingBinaryOperator>(FirstInst)) {
502       isNUW = BO->hasNoUnsignedWrap();
503       isNSW = BO->hasNoSignedWrap();
504     } else if (PossiblyExactOperator *PEO =
505                dyn_cast<PossiblyExactOperator>(FirstInst))
506       isExact = PEO->isExact();
507   } else {
508     return nullptr;  // Cannot fold this operation.
509   }
510
511   // Check to see if all arguments are the same operation.
512   for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
513     Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
514     if (!I || !I->hasOneUse() || !I->isSameOperationAs(FirstInst))
515       return nullptr;
516     if (CastSrcTy) {
517       if (I->getOperand(0)->getType() != CastSrcTy)
518         return nullptr;  // Cast operation must match.
519     } else if (I->getOperand(1) != ConstantOp) {
520       return nullptr;
521     }
522
523     if (isNUW)
524       isNUW = cast<OverflowingBinaryOperator>(I)->hasNoUnsignedWrap();
525     if (isNSW)
526       isNSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
527     if (isExact)
528       isExact = cast<PossiblyExactOperator>(I)->isExact();
529   }
530
531   // Okay, they are all the same operation.  Create a new PHI node of the
532   // correct type, and PHI together all of the LHS's of the instructions.
533   PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(),
534                                    PN.getNumIncomingValues(),
535                                    PN.getName()+".in");
536
537   Value *InVal = FirstInst->getOperand(0);
538   NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
539
540   // Add all operands to the new PHI.
541   for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
542     Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
543     if (NewInVal != InVal)
544       InVal = nullptr;
545     NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
546   }
547
548   Value *PhiVal;
549   if (InVal) {
550     // The new PHI unions all of the same values together.  This is really
551     // common, so we handle it intelligently here for compile-time speed.
552     PhiVal = InVal;
553     delete NewPN;
554   } else {
555     InsertNewInstBefore(NewPN, PN);
556     PhiVal = NewPN;
557   }
558
559   // Insert and return the new operation.
560   if (CastInst *FirstCI = dyn_cast<CastInst>(FirstInst)) {
561     CastInst *NewCI = CastInst::Create(FirstCI->getOpcode(), PhiVal,
562                                        PN.getType());
563     NewCI->setDebugLoc(FirstInst->getDebugLoc());
564     return NewCI;
565   }
566
567   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst)) {
568     BinOp = BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp);
569     if (isNUW) BinOp->setHasNoUnsignedWrap();
570     if (isNSW) BinOp->setHasNoSignedWrap();
571     if (isExact) BinOp->setIsExact();
572     BinOp->setDebugLoc(FirstInst->getDebugLoc());
573     return BinOp;
574   }
575
576   CmpInst *CIOp = cast<CmpInst>(FirstInst);
577   CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
578                                    PhiVal, ConstantOp);
579   NewCI->setDebugLoc(FirstInst->getDebugLoc());
580   return NewCI;
581 }
582
583 /// Return true if this PHI node is only used by a PHI node cycle that is dead.
584 static bool DeadPHICycle(PHINode *PN,
585                          SmallPtrSetImpl<PHINode*> &PotentiallyDeadPHIs) {
586   if (PN->use_empty()) return true;
587   if (!PN->hasOneUse()) return false;
588
589   // Remember this node, and if we find the cycle, return.
590   if (!PotentiallyDeadPHIs.insert(PN).second)
591     return true;
592
593   // Don't scan crazily complex things.
594   if (PotentiallyDeadPHIs.size() == 16)
595     return false;
596
597   if (PHINode *PU = dyn_cast<PHINode>(PN->user_back()))
598     return DeadPHICycle(PU, PotentiallyDeadPHIs);
599
600   return false;
601 }
602
603 /// Return true if this phi node is always equal to NonPhiInVal.
604 /// This happens with mutually cyclic phi nodes like:
605 ///   z = some value; x = phi (y, z); y = phi (x, z)
606 static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal,
607                            SmallPtrSetImpl<PHINode*> &ValueEqualPHIs) {
608   // See if we already saw this PHI node.
609   if (!ValueEqualPHIs.insert(PN).second)
610     return true;
611
612   // Don't scan crazily complex things.
613   if (ValueEqualPHIs.size() == 16)
614     return false;
615
616   // Scan the operands to see if they are either phi nodes or are equal to
617   // the value.
618   for (Value *Op : PN->incoming_values()) {
619     if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
620       if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs))
621         return false;
622     } else if (Op != NonPhiInVal)
623       return false;
624   }
625
626   return true;
627 }
628
629
630 namespace {
631 struct PHIUsageRecord {
632   unsigned PHIId;     // The ID # of the PHI (something determinstic to sort on)
633   unsigned Shift;     // The amount shifted.
634   Instruction *Inst;  // The trunc instruction.
635
636   PHIUsageRecord(unsigned pn, unsigned Sh, Instruction *User)
637     : PHIId(pn), Shift(Sh), Inst(User) {}
638
639   bool operator<(const PHIUsageRecord &RHS) const {
640     if (PHIId < RHS.PHIId) return true;
641     if (PHIId > RHS.PHIId) return false;
642     if (Shift < RHS.Shift) return true;
643     if (Shift > RHS.Shift) return false;
644     return Inst->getType()->getPrimitiveSizeInBits() <
645            RHS.Inst->getType()->getPrimitiveSizeInBits();
646   }
647 };
648
649 struct LoweredPHIRecord {
650   PHINode *PN;        // The PHI that was lowered.
651   unsigned Shift;     // The amount shifted.
652   unsigned Width;     // The width extracted.
653
654   LoweredPHIRecord(PHINode *pn, unsigned Sh, Type *Ty)
655     : PN(pn), Shift(Sh), Width(Ty->getPrimitiveSizeInBits()) {}
656
657   // Ctor form used by DenseMap.
658   LoweredPHIRecord(PHINode *pn, unsigned Sh)
659     : PN(pn), Shift(Sh), Width(0) {}
660 };
661 }
662
663 namespace llvm {
664   template<>
665   struct DenseMapInfo<LoweredPHIRecord> {
666     static inline LoweredPHIRecord getEmptyKey() {
667       return LoweredPHIRecord(nullptr, 0);
668     }
669     static inline LoweredPHIRecord getTombstoneKey() {
670       return LoweredPHIRecord(nullptr, 1);
671     }
672     static unsigned getHashValue(const LoweredPHIRecord &Val) {
673       return DenseMapInfo<PHINode*>::getHashValue(Val.PN) ^ (Val.Shift>>3) ^
674              (Val.Width>>3);
675     }
676     static bool isEqual(const LoweredPHIRecord &LHS,
677                         const LoweredPHIRecord &RHS) {
678       return LHS.PN == RHS.PN && LHS.Shift == RHS.Shift &&
679              LHS.Width == RHS.Width;
680     }
681   };
682 }
683
684
685 /// This is an integer PHI and we know that it has an illegal type: see if it is
686 /// only used by trunc or trunc(lshr) operations. If so, we split the PHI into
687 /// the various pieces being extracted. This sort of thing is introduced when
688 /// SROA promotes an aggregate to large integer values.
689 ///
690 /// TODO: The user of the trunc may be an bitcast to float/double/vector or an
691 /// inttoptr.  We should produce new PHIs in the right type.
692 ///
693 Instruction *InstCombiner::SliceUpIllegalIntegerPHI(PHINode &FirstPhi) {
694   // PHIUsers - Keep track of all of the truncated values extracted from a set
695   // of PHIs, along with their offset.  These are the things we want to rewrite.
696   SmallVector<PHIUsageRecord, 16> PHIUsers;
697
698   // PHIs are often mutually cyclic, so we keep track of a whole set of PHI
699   // nodes which are extracted from. PHIsToSlice is a set we use to avoid
700   // revisiting PHIs, PHIsInspected is a ordered list of PHIs that we need to
701   // check the uses of (to ensure they are all extracts).
702   SmallVector<PHINode*, 8> PHIsToSlice;
703   SmallPtrSet<PHINode*, 8> PHIsInspected;
704
705   PHIsToSlice.push_back(&FirstPhi);
706   PHIsInspected.insert(&FirstPhi);
707
708   for (unsigned PHIId = 0; PHIId != PHIsToSlice.size(); ++PHIId) {
709     PHINode *PN = PHIsToSlice[PHIId];
710
711     // Scan the input list of the PHI.  If any input is an invoke, and if the
712     // input is defined in the predecessor, then we won't be split the critical
713     // edge which is required to insert a truncate.  Because of this, we have to
714     // bail out.
715     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
716       InvokeInst *II = dyn_cast<InvokeInst>(PN->getIncomingValue(i));
717       if (!II) continue;
718       if (II->getParent() != PN->getIncomingBlock(i))
719         continue;
720
721       // If we have a phi, and if it's directly in the predecessor, then we have
722       // a critical edge where we need to put the truncate.  Since we can't
723       // split the edge in instcombine, we have to bail out.
724       return nullptr;
725     }
726
727     for (User *U : PN->users()) {
728       Instruction *UserI = cast<Instruction>(U);
729
730       // If the user is a PHI, inspect its uses recursively.
731       if (PHINode *UserPN = dyn_cast<PHINode>(UserI)) {
732         if (PHIsInspected.insert(UserPN).second)
733           PHIsToSlice.push_back(UserPN);
734         continue;
735       }
736
737       // Truncates are always ok.
738       if (isa<TruncInst>(UserI)) {
739         PHIUsers.push_back(PHIUsageRecord(PHIId, 0, UserI));
740         continue;
741       }
742
743       // Otherwise it must be a lshr which can only be used by one trunc.
744       if (UserI->getOpcode() != Instruction::LShr ||
745           !UserI->hasOneUse() || !isa<TruncInst>(UserI->user_back()) ||
746           !isa<ConstantInt>(UserI->getOperand(1)))
747         return nullptr;
748
749       unsigned Shift = cast<ConstantInt>(UserI->getOperand(1))->getZExtValue();
750       PHIUsers.push_back(PHIUsageRecord(PHIId, Shift, UserI->user_back()));
751     }
752   }
753
754   // If we have no users, they must be all self uses, just nuke the PHI.
755   if (PHIUsers.empty())
756     return ReplaceInstUsesWith(FirstPhi, UndefValue::get(FirstPhi.getType()));
757
758   // If this phi node is transformable, create new PHIs for all the pieces
759   // extracted out of it.  First, sort the users by their offset and size.
760   array_pod_sort(PHIUsers.begin(), PHIUsers.end());
761
762   DEBUG(dbgs() << "SLICING UP PHI: " << FirstPhi << '\n';
763         for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i)
764           dbgs() << "AND USER PHI #" << i << ": " << *PHIsToSlice[i] << '\n';
765     );
766
767   // PredValues - This is a temporary used when rewriting PHI nodes.  It is
768   // hoisted out here to avoid construction/destruction thrashing.
769   DenseMap<BasicBlock*, Value*> PredValues;
770
771   // ExtractedVals - Each new PHI we introduce is saved here so we don't
772   // introduce redundant PHIs.
773   DenseMap<LoweredPHIRecord, PHINode*> ExtractedVals;
774
775   for (unsigned UserI = 0, UserE = PHIUsers.size(); UserI != UserE; ++UserI) {
776     unsigned PHIId = PHIUsers[UserI].PHIId;
777     PHINode *PN = PHIsToSlice[PHIId];
778     unsigned Offset = PHIUsers[UserI].Shift;
779     Type *Ty = PHIUsers[UserI].Inst->getType();
780
781     PHINode *EltPHI;
782
783     // If we've already lowered a user like this, reuse the previously lowered
784     // value.
785     if ((EltPHI = ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)]) == nullptr) {
786
787       // Otherwise, Create the new PHI node for this user.
788       EltPHI = PHINode::Create(Ty, PN->getNumIncomingValues(),
789                                PN->getName()+".off"+Twine(Offset), PN);
790       assert(EltPHI->getType() != PN->getType() &&
791              "Truncate didn't shrink phi?");
792
793       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
794         BasicBlock *Pred = PN->getIncomingBlock(i);
795         Value *&PredVal = PredValues[Pred];
796
797         // If we already have a value for this predecessor, reuse it.
798         if (PredVal) {
799           EltPHI->addIncoming(PredVal, Pred);
800           continue;
801         }
802
803         // Handle the PHI self-reuse case.
804         Value *InVal = PN->getIncomingValue(i);
805         if (InVal == PN) {
806           PredVal = EltPHI;
807           EltPHI->addIncoming(PredVal, Pred);
808           continue;
809         }
810
811         if (PHINode *InPHI = dyn_cast<PHINode>(PN)) {
812           // If the incoming value was a PHI, and if it was one of the PHIs we
813           // already rewrote it, just use the lowered value.
814           if (Value *Res = ExtractedVals[LoweredPHIRecord(InPHI, Offset, Ty)]) {
815             PredVal = Res;
816             EltPHI->addIncoming(PredVal, Pred);
817             continue;
818           }
819         }
820
821         // Otherwise, do an extract in the predecessor.
822         Builder->SetInsertPoint(Pred, Pred->getTerminator());
823         Value *Res = InVal;
824         if (Offset)
825           Res = Builder->CreateLShr(Res, ConstantInt::get(InVal->getType(),
826                                                           Offset), "extract");
827         Res = Builder->CreateTrunc(Res, Ty, "extract.t");
828         PredVal = Res;
829         EltPHI->addIncoming(Res, Pred);
830
831         // If the incoming value was a PHI, and if it was one of the PHIs we are
832         // rewriting, we will ultimately delete the code we inserted.  This
833         // means we need to revisit that PHI to make sure we extract out the
834         // needed piece.
835         if (PHINode *OldInVal = dyn_cast<PHINode>(PN->getIncomingValue(i)))
836           if (PHIsInspected.count(OldInVal)) {
837             unsigned RefPHIId = std::find(PHIsToSlice.begin(),PHIsToSlice.end(),
838                                           OldInVal)-PHIsToSlice.begin();
839             PHIUsers.push_back(PHIUsageRecord(RefPHIId, Offset,
840                                               cast<Instruction>(Res)));
841             ++UserE;
842           }
843       }
844       PredValues.clear();
845
846       DEBUG(dbgs() << "  Made element PHI for offset " << Offset << ": "
847                    << *EltPHI << '\n');
848       ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)] = EltPHI;
849     }
850
851     // Replace the use of this piece with the PHI node.
852     ReplaceInstUsesWith(*PHIUsers[UserI].Inst, EltPHI);
853   }
854
855   // Replace all the remaining uses of the PHI nodes (self uses and the lshrs)
856   // with undefs.
857   Value *Undef = UndefValue::get(FirstPhi.getType());
858   for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i)
859     ReplaceInstUsesWith(*PHIsToSlice[i], Undef);
860   return ReplaceInstUsesWith(FirstPhi, Undef);
861 }
862
863 // PHINode simplification
864 //
865 Instruction *InstCombiner::visitPHINode(PHINode &PN) {
866   if (Value *V = SimplifyInstruction(&PN, DL, TLI, DT, AC))
867     return ReplaceInstUsesWith(PN, V);
868
869   if (Instruction *Result = FoldPHIArgZextsIntoPHI(PN))
870     return Result;
871
872   // If all PHI operands are the same operation, pull them through the PHI,
873   // reducing code size.
874   if (isa<Instruction>(PN.getIncomingValue(0)) &&
875       isa<Instruction>(PN.getIncomingValue(1)) &&
876       cast<Instruction>(PN.getIncomingValue(0))->getOpcode() ==
877       cast<Instruction>(PN.getIncomingValue(1))->getOpcode() &&
878       // FIXME: The hasOneUse check will fail for PHIs that use the value more
879       // than themselves more than once.
880       PN.getIncomingValue(0)->hasOneUse())
881     if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
882       return Result;
883
884   // If this is a trivial cycle in the PHI node graph, remove it.  Basically, if
885   // this PHI only has a single use (a PHI), and if that PHI only has one use (a
886   // PHI)... break the cycle.
887   if (PN.hasOneUse()) {
888     Instruction *PHIUser = cast<Instruction>(PN.user_back());
889     if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
890       SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
891       PotentiallyDeadPHIs.insert(&PN);
892       if (DeadPHICycle(PU, PotentiallyDeadPHIs))
893         return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
894     }
895
896     // If this phi has a single use, and if that use just computes a value for
897     // the next iteration of a loop, delete the phi.  This occurs with unused
898     // induction variables, e.g. "for (int j = 0; ; ++j);".  Detecting this
899     // common case here is good because the only other things that catch this
900     // are induction variable analysis (sometimes) and ADCE, which is only run
901     // late.
902     if (PHIUser->hasOneUse() &&
903         (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
904         PHIUser->user_back() == &PN) {
905       return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
906     }
907   }
908
909   // We sometimes end up with phi cycles that non-obviously end up being the
910   // same value, for example:
911   //   z = some value; x = phi (y, z); y = phi (x, z)
912   // where the phi nodes don't necessarily need to be in the same block.  Do a
913   // quick check to see if the PHI node only contains a single non-phi value, if
914   // so, scan to see if the phi cycle is actually equal to that value.
915   {
916     unsigned InValNo = 0, NumIncomingVals = PN.getNumIncomingValues();
917     // Scan for the first non-phi operand.
918     while (InValNo != NumIncomingVals &&
919            isa<PHINode>(PN.getIncomingValue(InValNo)))
920       ++InValNo;
921
922     if (InValNo != NumIncomingVals) {
923       Value *NonPhiInVal = PN.getIncomingValue(InValNo);
924
925       // Scan the rest of the operands to see if there are any conflicts, if so
926       // there is no need to recursively scan other phis.
927       for (++InValNo; InValNo != NumIncomingVals; ++InValNo) {
928         Value *OpVal = PN.getIncomingValue(InValNo);
929         if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
930           break;
931       }
932
933       // If we scanned over all operands, then we have one unique value plus
934       // phi values.  Scan PHI nodes to see if they all merge in each other or
935       // the value.
936       if (InValNo == NumIncomingVals) {
937         SmallPtrSet<PHINode*, 16> ValueEqualPHIs;
938         if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
939           return ReplaceInstUsesWith(PN, NonPhiInVal);
940       }
941     }
942   }
943
944   // If there are multiple PHIs, sort their operands so that they all list
945   // the blocks in the same order. This will help identical PHIs be eliminated
946   // by other passes. Other passes shouldn't depend on this for correctness
947   // however.
948   PHINode *FirstPN = cast<PHINode>(PN.getParent()->begin());
949   if (&PN != FirstPN)
950     for (unsigned i = 0, e = FirstPN->getNumIncomingValues(); i != e; ++i) {
951       BasicBlock *BBA = PN.getIncomingBlock(i);
952       BasicBlock *BBB = FirstPN->getIncomingBlock(i);
953       if (BBA != BBB) {
954         Value *VA = PN.getIncomingValue(i);
955         unsigned j = PN.getBasicBlockIndex(BBB);
956         Value *VB = PN.getIncomingValue(j);
957         PN.setIncomingBlock(i, BBB);
958         PN.setIncomingValue(i, VB);
959         PN.setIncomingBlock(j, BBA);
960         PN.setIncomingValue(j, VA);
961         // NOTE: Instcombine normally would want us to "return &PN" if we
962         // modified any of the operands of an instruction.  However, since we
963         // aren't adding or removing uses (just rearranging them) we don't do
964         // this in this case.
965       }
966     }
967
968   // If this is an integer PHI and we know that it has an illegal type, see if
969   // it is only used by trunc or trunc(lshr) operations.  If so, we split the
970   // PHI into the various pieces being extracted.  This sort of thing is
971   // introduced when SROA promotes an aggregate to a single large integer type.
972   if (PN.getType()->isIntegerTy() &&
973       !DL.isLegalInteger(PN.getType()->getPrimitiveSizeInBits()))
974     if (Instruction *Res = SliceUpIllegalIntegerPHI(PN))
975       return Res;
976
977   return nullptr;
978 }