[bpf] fix build
[oota-llvm.git] / lib / Target / X86 / X86TargetTransformInfo.cpp
1 //===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 /// This file implements a TargetTransformInfo analysis pass specific to the
11 /// X86 target machine. It uses the target's detailed information to provide
12 /// more precise answers to certain TTI queries, while letting the target
13 /// independent and default TTI implementations handle the rest.
14 ///
15 //===----------------------------------------------------------------------===//
16
17 #include "X86TargetTransformInfo.h"
18 #include "llvm/Analysis/TargetTransformInfo.h"
19 #include "llvm/CodeGen/BasicTTIImpl.h"
20 #include "llvm/IR/IntrinsicInst.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Target/CostTable.h"
23 #include "llvm/Target/TargetLowering.h"
24 using namespace llvm;
25
26 #define DEBUG_TYPE "x86tti"
27
28 //===----------------------------------------------------------------------===//
29 //
30 // X86 cost model.
31 //
32 //===----------------------------------------------------------------------===//
33
34 TargetTransformInfo::PopcntSupportKind
35 X86TTIImpl::getPopcntSupport(unsigned TyWidth) {
36   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
37   // TODO: Currently the __builtin_popcount() implementation using SSE3
38   //   instructions is inefficient. Once the problem is fixed, we should
39   //   call ST->hasSSE3() instead of ST->hasPOPCNT().
40   return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software;
41 }
42
43 unsigned X86TTIImpl::getNumberOfRegisters(bool Vector) {
44   if (Vector && !ST->hasSSE1())
45     return 0;
46
47   if (ST->is64Bit()) {
48     if (Vector && ST->hasAVX512())
49       return 32;
50     return 16;
51   }
52   return 8;
53 }
54
55 unsigned X86TTIImpl::getRegisterBitWidth(bool Vector) {
56   if (Vector) {
57     if (ST->hasAVX512()) return 512;
58     if (ST->hasAVX()) return 256;
59     if (ST->hasSSE1()) return 128;
60     return 0;
61   }
62
63   if (ST->is64Bit())
64     return 64;
65   return 32;
66
67 }
68
69 unsigned X86TTIImpl::getMaxInterleaveFactor() {
70   if (ST->isAtom())
71     return 1;
72
73   // Sandybridge and Haswell have multiple execution ports and pipelined
74   // vector units.
75   if (ST->hasAVX())
76     return 4;
77
78   return 2;
79 }
80
81 unsigned X86TTIImpl::getArithmeticInstrCost(
82     unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info,
83     TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo,
84     TTI::OperandValueProperties Opd2PropInfo) {
85   // Legalize the type.
86   std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
87
88   int ISD = TLI->InstructionOpcodeToISD(Opcode);
89   assert(ISD && "Invalid opcode");
90
91   if (ISD == ISD::SDIV &&
92       Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
93       Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
94     // On X86, vector signed division by constants power-of-two are
95     // normally expanded to the sequence SRA + SRL + ADD + SRA.
96     // The OperandValue properties many not be same as that of previous
97     // operation;conservatively assume OP_None.
98     unsigned Cost =
99         2 * getArithmeticInstrCost(Instruction::AShr, Ty, Op1Info, Op2Info,
100                                    TargetTransformInfo::OP_None,
101                                    TargetTransformInfo::OP_None);
102     Cost += getArithmeticInstrCost(Instruction::LShr, Ty, Op1Info, Op2Info,
103                                    TargetTransformInfo::OP_None,
104                                    TargetTransformInfo::OP_None);
105     Cost += getArithmeticInstrCost(Instruction::Add, Ty, Op1Info, Op2Info,
106                                    TargetTransformInfo::OP_None,
107                                    TargetTransformInfo::OP_None);
108
109     return Cost;
110   }
111
112   static const CostTblEntry<MVT::SimpleValueType>
113   AVX2UniformConstCostTable[] = {
114     { ISD::SDIV, MVT::v16i16,  6 }, // vpmulhw sequence
115     { ISD::UDIV, MVT::v16i16,  6 }, // vpmulhuw sequence
116     { ISD::SDIV, MVT::v8i32,  15 }, // vpmuldq sequence
117     { ISD::UDIV, MVT::v8i32,  15 }, // vpmuludq sequence
118   };
119
120   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
121       ST->hasAVX2()) {
122     int Idx = CostTableLookup(AVX2UniformConstCostTable, ISD, LT.second);
123     if (Idx != -1)
124       return LT.first * AVX2UniformConstCostTable[Idx].Cost;
125   }
126
127   static const CostTblEntry<MVT::SimpleValueType> AVX512CostTable[] = {
128     { ISD::SHL,     MVT::v16i32,    1 },
129     { ISD::SRL,     MVT::v16i32,    1 },
130     { ISD::SRA,     MVT::v16i32,    1 },
131     { ISD::SHL,     MVT::v8i64,    1 },
132     { ISD::SRL,     MVT::v8i64,    1 },
133     { ISD::SRA,     MVT::v8i64,    1 },
134   };
135
136   static const CostTblEntry<MVT::SimpleValueType> AVX2CostTable[] = {
137     // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
138     // customize them to detect the cases where shift amount is a scalar one.
139     { ISD::SHL,     MVT::v4i32,    1 },
140     { ISD::SRL,     MVT::v4i32,    1 },
141     { ISD::SRA,     MVT::v4i32,    1 },
142     { ISD::SHL,     MVT::v8i32,    1 },
143     { ISD::SRL,     MVT::v8i32,    1 },
144     { ISD::SRA,     MVT::v8i32,    1 },
145     { ISD::SHL,     MVT::v2i64,    1 },
146     { ISD::SRL,     MVT::v2i64,    1 },
147     { ISD::SHL,     MVT::v4i64,    1 },
148     { ISD::SRL,     MVT::v4i64,    1 },
149
150     { ISD::SHL,  MVT::v32i8,  42 }, // cmpeqb sequence.
151     { ISD::SHL,  MVT::v16i16,  16*10 }, // Scalarized.
152
153     { ISD::SRL,  MVT::v32i8,  32*10 }, // Scalarized.
154     { ISD::SRL,  MVT::v16i16,  8*10 }, // Scalarized.
155
156     { ISD::SRA,  MVT::v32i8,  32*10 }, // Scalarized.
157     { ISD::SRA,  MVT::v16i16,  16*10 }, // Scalarized.
158     { ISD::SRA,  MVT::v4i64,  4*10 }, // Scalarized.
159
160     // Vectorizing division is a bad idea. See the SSE2 table for more comments.
161     { ISD::SDIV,  MVT::v32i8,  32*20 },
162     { ISD::SDIV,  MVT::v16i16, 16*20 },
163     { ISD::SDIV,  MVT::v8i32,  8*20 },
164     { ISD::SDIV,  MVT::v4i64,  4*20 },
165     { ISD::UDIV,  MVT::v32i8,  32*20 },
166     { ISD::UDIV,  MVT::v16i16, 16*20 },
167     { ISD::UDIV,  MVT::v8i32,  8*20 },
168     { ISD::UDIV,  MVT::v4i64,  4*20 },
169   };
170
171   if (ST->hasAVX512()) {
172     int Idx = CostTableLookup(AVX512CostTable, ISD, LT.second);
173     if (Idx != -1)
174       return LT.first * AVX512CostTable[Idx].Cost;
175   }
176   // Look for AVX2 lowering tricks.
177   if (ST->hasAVX2()) {
178     if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
179         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
180          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
181       // On AVX2, a packed v16i16 shift left by a constant build_vector
182       // is lowered into a vector multiply (vpmullw).
183       return LT.first;
184
185     int Idx = CostTableLookup(AVX2CostTable, ISD, LT.second);
186     if (Idx != -1)
187       return LT.first * AVX2CostTable[Idx].Cost;
188   }
189
190   static const CostTblEntry<MVT::SimpleValueType>
191   SSE2UniformConstCostTable[] = {
192     // We don't correctly identify costs of casts because they are marked as
193     // custom.
194     // Constant splats are cheaper for the following instructions.
195     { ISD::SHL,  MVT::v16i8,  1 }, // psllw.
196     { ISD::SHL,  MVT::v8i16,  1 }, // psllw.
197     { ISD::SHL,  MVT::v4i32,  1 }, // pslld
198     { ISD::SHL,  MVT::v2i64,  1 }, // psllq.
199
200     { ISD::SRL,  MVT::v16i8,  1 }, // psrlw.
201     { ISD::SRL,  MVT::v8i16,  1 }, // psrlw.
202     { ISD::SRL,  MVT::v4i32,  1 }, // psrld.
203     { ISD::SRL,  MVT::v2i64,  1 }, // psrlq.
204
205     { ISD::SRA,  MVT::v16i8,  4 }, // psrlw, pand, pxor, psubb.
206     { ISD::SRA,  MVT::v8i16,  1 }, // psraw.
207     { ISD::SRA,  MVT::v4i32,  1 }, // psrad.
208
209     { ISD::SDIV, MVT::v8i16,  6 }, // pmulhw sequence
210     { ISD::UDIV, MVT::v8i16,  6 }, // pmulhuw sequence
211     { ISD::SDIV, MVT::v4i32, 19 }, // pmuludq sequence
212     { ISD::UDIV, MVT::v4i32, 15 }, // pmuludq sequence
213   };
214
215   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
216       ST->hasSSE2()) {
217     // pmuldq sequence.
218     if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
219       return LT.first * 15;
220
221     int Idx = CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second);
222     if (Idx != -1)
223       return LT.first * SSE2UniformConstCostTable[Idx].Cost;
224   }
225
226   if (ISD == ISD::SHL &&
227       Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
228     EVT VT = LT.second;
229     if ((VT == MVT::v8i16 && ST->hasSSE2()) ||
230         (VT == MVT::v4i32 && ST->hasSSE41()))
231       // Vector shift left by non uniform constant can be lowered
232       // into vector multiply (pmullw/pmulld).
233       return LT.first;
234     if (VT == MVT::v4i32 && ST->hasSSE2())
235       // A vector shift left by non uniform constant is converted
236       // into a vector multiply; the new multiply is eventually
237       // lowered into a sequence of shuffles and 2 x pmuludq.
238       ISD = ISD::MUL;
239   }
240
241   static const CostTblEntry<MVT::SimpleValueType> SSE2CostTable[] = {
242     // We don't correctly identify costs of casts because they are marked as
243     // custom.
244     // For some cases, where the shift amount is a scalar we would be able
245     // to generate better code. Unfortunately, when this is the case the value
246     // (the splat) will get hoisted out of the loop, thereby making it invisible
247     // to ISel. The cost model must return worst case assumptions because it is
248     // used for vectorization and we don't want to make vectorized code worse
249     // than scalar code.
250     { ISD::SHL,  MVT::v16i8,  30 }, // cmpeqb sequence.
251     { ISD::SHL,  MVT::v8i16,  8*10 }, // Scalarized.
252     { ISD::SHL,  MVT::v4i32,  2*5 }, // We optimized this using mul.
253     { ISD::SHL,  MVT::v2i64,  2*10 }, // Scalarized.
254     { ISD::SHL,  MVT::v4i64,  4*10 }, // Scalarized.
255
256     { ISD::SRL,  MVT::v16i8,  16*10 }, // Scalarized.
257     { ISD::SRL,  MVT::v8i16,  8*10 }, // Scalarized.
258     { ISD::SRL,  MVT::v4i32,  4*10 }, // Scalarized.
259     { ISD::SRL,  MVT::v2i64,  2*10 }, // Scalarized.
260
261     { ISD::SRA,  MVT::v16i8,  16*10 }, // Scalarized.
262     { ISD::SRA,  MVT::v8i16,  8*10 }, // Scalarized.
263     { ISD::SRA,  MVT::v4i32,  4*10 }, // Scalarized.
264     { ISD::SRA,  MVT::v2i64,  2*10 }, // Scalarized.
265
266     // It is not a good idea to vectorize division. We have to scalarize it and
267     // in the process we will often end up having to spilling regular
268     // registers. The overhead of division is going to dominate most kernels
269     // anyways so try hard to prevent vectorization of division - it is
270     // generally a bad idea. Assume somewhat arbitrarily that we have to be able
271     // to hide "20 cycles" for each lane.
272     { ISD::SDIV,  MVT::v16i8,  16*20 },
273     { ISD::SDIV,  MVT::v8i16,  8*20 },
274     { ISD::SDIV,  MVT::v4i32,  4*20 },
275     { ISD::SDIV,  MVT::v2i64,  2*20 },
276     { ISD::UDIV,  MVT::v16i8,  16*20 },
277     { ISD::UDIV,  MVT::v8i16,  8*20 },
278     { ISD::UDIV,  MVT::v4i32,  4*20 },
279     { ISD::UDIV,  MVT::v2i64,  2*20 },
280   };
281
282   if (ST->hasSSE2()) {
283     int Idx = CostTableLookup(SSE2CostTable, ISD, LT.second);
284     if (Idx != -1)
285       return LT.first * SSE2CostTable[Idx].Cost;
286   }
287
288   static const CostTblEntry<MVT::SimpleValueType> AVX1CostTable[] = {
289     // We don't have to scalarize unsupported ops. We can issue two half-sized
290     // operations and we only need to extract the upper YMM half.
291     // Two ops + 1 extract + 1 insert = 4.
292     { ISD::MUL,     MVT::v16i16,   4 },
293     { ISD::MUL,     MVT::v8i32,    4 },
294     { ISD::SUB,     MVT::v8i32,    4 },
295     { ISD::ADD,     MVT::v8i32,    4 },
296     { ISD::SUB,     MVT::v4i64,    4 },
297     { ISD::ADD,     MVT::v4i64,    4 },
298     // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
299     // are lowered as a series of long multiplies(3), shifts(4) and adds(2)
300     // Because we believe v4i64 to be a legal type, we must also include the
301     // split factor of two in the cost table. Therefore, the cost here is 18
302     // instead of 9.
303     { ISD::MUL,     MVT::v4i64,    18 },
304   };
305
306   // Look for AVX1 lowering tricks.
307   if (ST->hasAVX() && !ST->hasAVX2()) {
308     EVT VT = LT.second;
309
310     // v16i16 and v8i32 shifts by non-uniform constants are lowered into a
311     // sequence of extract + two vector multiply + insert.
312     if (ISD == ISD::SHL && (VT == MVT::v8i32 || VT == MVT::v16i16) &&
313         Op2Info == TargetTransformInfo::OK_NonUniformConstantValue)
314       ISD = ISD::MUL;
315
316     int Idx = CostTableLookup(AVX1CostTable, ISD, VT);
317     if (Idx != -1)
318       return LT.first * AVX1CostTable[Idx].Cost;
319   }
320
321   // Custom lowering of vectors.
322   static const CostTblEntry<MVT::SimpleValueType> CustomLowered[] = {
323     // A v2i64/v4i64 and multiply is custom lowered as a series of long
324     // multiplies(3), shifts(4) and adds(2).
325     { ISD::MUL,     MVT::v2i64,    9 },
326     { ISD::MUL,     MVT::v4i64,    9 },
327   };
328   int Idx = CostTableLookup(CustomLowered, ISD, LT.second);
329   if (Idx != -1)
330     return LT.first * CustomLowered[Idx].Cost;
331
332   // Special lowering of v4i32 mul on sse2, sse3: Lower v4i32 mul as 2x shuffle,
333   // 2x pmuludq, 2x shuffle.
334   if (ISD == ISD::MUL && LT.second == MVT::v4i32 && ST->hasSSE2() &&
335       !ST->hasSSE41())
336     return LT.first * 6;
337
338   // Fallback to the default implementation.
339   return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info);
340 }
341
342 unsigned X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
343                                     Type *SubTp) {
344   // We only estimate the cost of reverse and alternate shuffles.
345   if (Kind != TTI::SK_Reverse && Kind != TTI::SK_Alternate)
346     return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
347
348   if (Kind == TTI::SK_Reverse) {
349     std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp);
350     unsigned Cost = 1;
351     if (LT.second.getSizeInBits() > 128)
352       Cost = 3; // Extract + insert + copy.
353
354     // Multiple by the number of parts.
355     return Cost * LT.first;
356   }
357
358   if (Kind == TTI::SK_Alternate) {
359     // 64-bit packed float vectors (v2f32) are widened to type v4f32.
360     // 64-bit packed integer vectors (v2i32) are promoted to type v2i64.
361     std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp);
362
363     // The backend knows how to generate a single VEX.256 version of
364     // instruction VPBLENDW if the target supports AVX2.
365     if (ST->hasAVX2() && LT.second == MVT::v16i16)
366       return LT.first;
367
368     static const CostTblEntry<MVT::SimpleValueType> AVXAltShuffleTbl[] = {
369       {ISD::VECTOR_SHUFFLE, MVT::v4i64, 1},  // vblendpd
370       {ISD::VECTOR_SHUFFLE, MVT::v4f64, 1},  // vblendpd
371
372       {ISD::VECTOR_SHUFFLE, MVT::v8i32, 1},  // vblendps
373       {ISD::VECTOR_SHUFFLE, MVT::v8f32, 1},  // vblendps
374
375       // This shuffle is custom lowered into a sequence of:
376       //  2x  vextractf128 , 2x vpblendw , 1x vinsertf128
377       {ISD::VECTOR_SHUFFLE, MVT::v16i16, 5},
378
379       // This shuffle is custom lowered into a long sequence of:
380       //  2x vextractf128 , 4x vpshufb , 2x vpor ,  1x vinsertf128
381       {ISD::VECTOR_SHUFFLE, MVT::v32i8, 9}
382     };
383
384     if (ST->hasAVX()) {
385       int Idx = CostTableLookup(AVXAltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
386       if (Idx != -1)
387         return LT.first * AVXAltShuffleTbl[Idx].Cost;
388     }
389
390     static const CostTblEntry<MVT::SimpleValueType> SSE41AltShuffleTbl[] = {
391       // These are lowered into movsd.
392       {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
393       {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
394
395       // packed float vectors with four elements are lowered into BLENDI dag
396       // nodes. A v4i32/v4f32 BLENDI generates a single 'blendps'/'blendpd'.
397       {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1},
398       {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1},
399
400       // This shuffle generates a single pshufw.
401       {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1},
402
403       // There is no instruction that matches a v16i8 alternate shuffle.
404       // The backend will expand it into the sequence 'pshufb + pshufb + or'.
405       {ISD::VECTOR_SHUFFLE, MVT::v16i8, 3}
406     };
407
408     if (ST->hasSSE41()) {
409       int Idx = CostTableLookup(SSE41AltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
410       if (Idx != -1)
411         return LT.first * SSE41AltShuffleTbl[Idx].Cost;
412     }
413
414     static const CostTblEntry<MVT::SimpleValueType> SSSE3AltShuffleTbl[] = {
415       {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},  // movsd
416       {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},  // movsd
417
418       // SSE3 doesn't have 'blendps'. The following shuffles are expanded into
419       // the sequence 'shufps + pshufd'
420       {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
421       {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
422
423       {ISD::VECTOR_SHUFFLE, MVT::v8i16, 3}, // pshufb + pshufb + or
424       {ISD::VECTOR_SHUFFLE, MVT::v16i8, 3}  // pshufb + pshufb + or
425     };
426
427     if (ST->hasSSSE3()) {
428       int Idx = CostTableLookup(SSSE3AltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
429       if (Idx != -1)
430         return LT.first * SSSE3AltShuffleTbl[Idx].Cost;
431     }
432
433     static const CostTblEntry<MVT::SimpleValueType> SSEAltShuffleTbl[] = {
434       {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},  // movsd
435       {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},  // movsd
436
437       {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, // shufps + pshufd
438       {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, // shufps + pshufd
439
440       // This is expanded into a long sequence of four extract + four insert.
441       {ISD::VECTOR_SHUFFLE, MVT::v8i16, 8}, // 4 x pextrw + 4 pinsrw.
442
443       // 8 x (pinsrw + pextrw + and + movb + movzb + or)
444       {ISD::VECTOR_SHUFFLE, MVT::v16i8, 48}
445     };
446
447     // Fall-back (SSE3 and SSE2).
448     int Idx = CostTableLookup(SSEAltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
449     if (Idx != -1)
450       return LT.first * SSEAltShuffleTbl[Idx].Cost;
451     return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
452   }
453
454   return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
455 }
456
457 unsigned X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) {
458   int ISD = TLI->InstructionOpcodeToISD(Opcode);
459   assert(ISD && "Invalid opcode");
460
461   std::pair<unsigned, MVT> LTSrc = TLI->getTypeLegalizationCost(Src);
462   std::pair<unsigned, MVT> LTDest = TLI->getTypeLegalizationCost(Dst);
463
464   static const TypeConversionCostTblEntry<MVT::SimpleValueType>
465   SSE2ConvTbl[] = {
466     // These are somewhat magic numbers justified by looking at the output of
467     // Intel's IACA, running some kernels and making sure when we take
468     // legalization into account the throughput will be overestimated.
469     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
470     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
471     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
472     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
473     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
474     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
475     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
476     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
477     // There are faster sequences for float conversions.
478     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
479     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 8 },
480     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
481     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
482     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
483     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 15 },
484     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
485     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
486   };
487
488   if (ST->hasSSE2() && !ST->hasAVX()) {
489     int Idx =
490         ConvertCostTableLookup(SSE2ConvTbl, ISD, LTDest.second, LTSrc.second);
491     if (Idx != -1)
492       return LTSrc.first * SSE2ConvTbl[Idx].Cost;
493   }
494
495   static const TypeConversionCostTblEntry<MVT::SimpleValueType>
496   AVX512ConversionTbl[] = {
497     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v8f32,  1 },
498     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v16f32, 3 },
499     { ISD::FP_ROUND,  MVT::v8f32,   MVT::v8f64,  1 },
500     { ISD::FP_ROUND,  MVT::v16f32,  MVT::v8f64,  3 },
501
502     { ISD::TRUNCATE,  MVT::v16i8,   MVT::v16i32, 1 },
503     { ISD::TRUNCATE,  MVT::v16i16,  MVT::v16i32, 1 },
504     { ISD::TRUNCATE,  MVT::v8i16,   MVT::v8i64,  1 },
505     { ISD::TRUNCATE,  MVT::v8i32,   MVT::v8i64,  1 },
506     { ISD::TRUNCATE,  MVT::v16i32,  MVT::v8i64,  4 },
507
508     // v16i1 -> v16i32 - load + broadcast
509     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1,  2 },
510     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1,  2 },
511
512     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
513     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
514     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
515     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
516     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v16i32, 3 },
517     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v16i32, 3 },
518
519     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
520     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i8,  2 },
521     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i16, 2 },
522     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
523     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
524     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
525     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
526   };
527
528   if (ST->hasAVX512()) {
529     int Idx = ConvertCostTableLookup(AVX512ConversionTbl, ISD, LTDest.second,
530                                      LTSrc.second);
531     if (Idx != -1)
532       return AVX512ConversionTbl[Idx].Cost;
533   }
534   EVT SrcTy = TLI->getValueType(Src);
535   EVT DstTy = TLI->getValueType(Dst);
536
537   // The function getSimpleVT only handles simple value types.
538   if (!SrcTy.isSimple() || !DstTy.isSimple())
539     return BaseT::getCastInstrCost(Opcode, Dst, Src);
540
541   static const TypeConversionCostTblEntry<MVT::SimpleValueType>
542   AVX2ConversionTbl[] = {
543     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
544     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
545     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
546     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
547     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   3 },
548     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   3 },
549     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
550     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
551     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
552     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
553     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,   3 },
554     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,   3 },
555     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16,  3 },
556     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16,  3 },
557     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
558     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
559
560     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i64,  2 },
561     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i64,  2 },
562     { ISD::TRUNCATE,    MVT::v4i32,  MVT::v4i64,  2 },
563     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  2 },
564     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  2 },
565     { ISD::TRUNCATE,    MVT::v8i32,  MVT::v8i64,  4 },
566
567     { ISD::FP_EXTEND,   MVT::v8f64,  MVT::v8f32,  3 },
568     { ISD::FP_ROUND,    MVT::v8f32,  MVT::v8f64,  3 },
569
570     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  8 },
571   };
572
573   static const TypeConversionCostTblEntry<MVT::SimpleValueType>
574   AVXConversionTbl[] = {
575     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
576     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
577     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,  7 },
578     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,  4 },
579     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,  7 },
580     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,  4 },
581     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16, 4 },
582     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16, 4 },
583     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,  6 },
584     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,  4 },
585     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,  6 },
586     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,  4 },
587     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16, 6 },
588     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
589     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32, 4 },
590     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32, 4 },
591
592     { ISD::TRUNCATE,    MVT::v4i8,  MVT::v4i64,  4 },
593     { ISD::TRUNCATE,    MVT::v4i16, MVT::v4i64,  4 },
594     { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64,  4 },
595     { ISD::TRUNCATE,    MVT::v8i8,  MVT::v8i32,  4 },
596     { ISD::TRUNCATE,    MVT::v8i16, MVT::v8i32,  5 },
597     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i16, 4 },
598     { ISD::TRUNCATE,    MVT::v8i32, MVT::v8i64,  9 },
599
600     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i1,  8 },
601     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i8,  8 },
602     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
603     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 1 },
604     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1,  3 },
605     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8,  3 },
606     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 3 },
607     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
608     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i1,  3 },
609     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i8,  3 },
610     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i16, 3 },
611     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i32, 1 },
612
613     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i1,  6 },
614     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i8,  5 },
615     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
616     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 9 },
617     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1,  7 },
618     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8,  2 },
619     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
620     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 6 },
621     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i1,  7 },
622     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i8,  2 },
623     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i16, 2 },
624     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i32, 6 },
625     // The generic code to compute the scalar overhead is currently broken.
626     // Workaround this limitation by estimating the scalarization overhead
627     // here. We have roughly 10 instructions per scalar element.
628     // Multiply that by the vector width.
629     // FIXME: remove that when PR19268 is fixed.
630     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i64, 2*10 },
631     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i64, 4*10 },
632
633     { ISD::FP_TO_SINT,  MVT::v8i8,  MVT::v8f32, 7 },
634     { ISD::FP_TO_SINT,  MVT::v4i8,  MVT::v4f32, 1 },
635     // This node is expanded into scalarized operations but BasicTTI is overly
636     // optimistic estimating its cost.  It computes 3 per element (one
637     // vector-extract, one scalar conversion and one vector-insert).  The
638     // problem is that the inserts form a read-modify-write chain so latency
639     // should be factored in too.  Inflating the cost per element by 1.
640     { ISD::FP_TO_UINT,  MVT::v8i32, MVT::v8f32, 8*4 },
641     { ISD::FP_TO_UINT,  MVT::v4i32, MVT::v4f64, 4*4 },
642   };
643
644   if (ST->hasAVX2()) {
645     int Idx = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
646                                      DstTy.getSimpleVT(), SrcTy.getSimpleVT());
647     if (Idx != -1)
648       return AVX2ConversionTbl[Idx].Cost;
649   }
650
651   if (ST->hasAVX()) {
652     int Idx = ConvertCostTableLookup(AVXConversionTbl, ISD, DstTy.getSimpleVT(),
653                                      SrcTy.getSimpleVT());
654     if (Idx != -1)
655       return AVXConversionTbl[Idx].Cost;
656   }
657
658   return BaseT::getCastInstrCost(Opcode, Dst, Src);
659 }
660
661 unsigned X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
662                                         Type *CondTy) {
663   // Legalize the type.
664   std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
665
666   MVT MTy = LT.second;
667
668   int ISD = TLI->InstructionOpcodeToISD(Opcode);
669   assert(ISD && "Invalid opcode");
670
671   static const CostTblEntry<MVT::SimpleValueType> SSE42CostTbl[] = {
672     { ISD::SETCC,   MVT::v2f64,   1 },
673     { ISD::SETCC,   MVT::v4f32,   1 },
674     { ISD::SETCC,   MVT::v2i64,   1 },
675     { ISD::SETCC,   MVT::v4i32,   1 },
676     { ISD::SETCC,   MVT::v8i16,   1 },
677     { ISD::SETCC,   MVT::v16i8,   1 },
678   };
679
680   static const CostTblEntry<MVT::SimpleValueType> AVX1CostTbl[] = {
681     { ISD::SETCC,   MVT::v4f64,   1 },
682     { ISD::SETCC,   MVT::v8f32,   1 },
683     // AVX1 does not support 8-wide integer compare.
684     { ISD::SETCC,   MVT::v4i64,   4 },
685     { ISD::SETCC,   MVT::v8i32,   4 },
686     { ISD::SETCC,   MVT::v16i16,  4 },
687     { ISD::SETCC,   MVT::v32i8,   4 },
688   };
689
690   static const CostTblEntry<MVT::SimpleValueType> AVX2CostTbl[] = {
691     { ISD::SETCC,   MVT::v4i64,   1 },
692     { ISD::SETCC,   MVT::v8i32,   1 },
693     { ISD::SETCC,   MVT::v16i16,  1 },
694     { ISD::SETCC,   MVT::v32i8,   1 },
695   };
696
697   static const CostTblEntry<MVT::SimpleValueType> AVX512CostTbl[] = {
698     { ISD::SETCC,   MVT::v8i64,   1 },
699     { ISD::SETCC,   MVT::v16i32,  1 },
700     { ISD::SETCC,   MVT::v8f64,   1 },
701     { ISD::SETCC,   MVT::v16f32,  1 },
702   };
703
704   if (ST->hasAVX512()) {
705     int Idx = CostTableLookup(AVX512CostTbl, ISD, MTy);
706     if (Idx != -1)
707       return LT.first * AVX512CostTbl[Idx].Cost;
708   }
709
710   if (ST->hasAVX2()) {
711     int Idx = CostTableLookup(AVX2CostTbl, ISD, MTy);
712     if (Idx != -1)
713       return LT.first * AVX2CostTbl[Idx].Cost;
714   }
715
716   if (ST->hasAVX()) {
717     int Idx = CostTableLookup(AVX1CostTbl, ISD, MTy);
718     if (Idx != -1)
719       return LT.first * AVX1CostTbl[Idx].Cost;
720   }
721
722   if (ST->hasSSE42()) {
723     int Idx = CostTableLookup(SSE42CostTbl, ISD, MTy);
724     if (Idx != -1)
725       return LT.first * SSE42CostTbl[Idx].Cost;
726   }
727
728   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy);
729 }
730
731 unsigned X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
732                                         unsigned Index) {
733   assert(Val->isVectorTy() && "This must be a vector type");
734
735   if (Index != -1U) {
736     // Legalize the type.
737     std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Val);
738
739     // This type is legalized to a scalar type.
740     if (!LT.second.isVector())
741       return 0;
742
743     // The type may be split. Normalize the index to the new type.
744     unsigned Width = LT.second.getVectorNumElements();
745     Index = Index % Width;
746
747     // Floating point scalars are already located in index #0.
748     if (Val->getScalarType()->isFloatingPointTy() && Index == 0)
749       return 0;
750   }
751
752   return BaseT::getVectorInstrCost(Opcode, Val, Index);
753 }
754
755 unsigned X86TTIImpl::getScalarizationOverhead(Type *Ty, bool Insert,
756                                               bool Extract) {
757   assert (Ty->isVectorTy() && "Can only scalarize vectors");
758   unsigned Cost = 0;
759
760   for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
761     if (Insert)
762       Cost += getVectorInstrCost(Instruction::InsertElement, Ty, i);
763     if (Extract)
764       Cost += getVectorInstrCost(Instruction::ExtractElement, Ty, i);
765   }
766
767   return Cost;
768 }
769
770 unsigned X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
771                                      unsigned Alignment,
772                                      unsigned AddressSpace) {
773   // Handle non-power-of-two vectors such as <3 x float>
774   if (VectorType *VTy = dyn_cast<VectorType>(Src)) {
775     unsigned NumElem = VTy->getVectorNumElements();
776
777     // Handle a few common cases:
778     // <3 x float>
779     if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
780       // Cost = 64 bit store + extract + 32 bit store.
781       return 3;
782
783     // <3 x double>
784     if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
785       // Cost = 128 bit store + unpack + 64 bit store.
786       return 3;
787
788     // Assume that all other non-power-of-two numbers are scalarized.
789     if (!isPowerOf2_32(NumElem)) {
790       unsigned Cost = BaseT::getMemoryOpCost(Opcode, VTy->getScalarType(),
791                                              Alignment, AddressSpace);
792       unsigned SplitCost = getScalarizationOverhead(Src,
793                                                     Opcode == Instruction::Load,
794                                                     Opcode==Instruction::Store);
795       return NumElem * Cost + SplitCost;
796     }
797   }
798
799   // Legalize the type.
800   std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
801   assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
802          "Invalid Opcode");
803
804   // Each load/store unit costs 1.
805   unsigned Cost = LT.first * 1;
806
807   // On Sandybridge 256bit load/stores are double pumped
808   // (but not on Haswell).
809   if (LT.second.getSizeInBits() > 128 && !ST->hasAVX2())
810     Cost*=2;
811
812   return Cost;
813 }
814
815 unsigned X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy,
816                                            unsigned Alignment,
817                                            unsigned AddressSpace) {
818   VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy);
819   if (!SrcVTy)
820     // To calculate scalar take the regular cost, without mask
821     return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace);
822
823   unsigned NumElem = SrcVTy->getVectorNumElements();
824   VectorType *MaskTy =
825     VectorType::get(Type::getInt8Ty(getGlobalContext()), NumElem);
826   if ((Opcode == Instruction::Load && !isLegalMaskedLoad(SrcVTy, 1)) ||
827       (Opcode == Instruction::Store && !isLegalMaskedStore(SrcVTy, 1)) ||
828       !isPowerOf2_32(NumElem)) {
829     // Scalarization
830     unsigned MaskSplitCost = getScalarizationOverhead(MaskTy, false, true);
831     unsigned ScalarCompareCost =
832       getCmpSelInstrCost(Instruction::ICmp,
833                          Type::getInt8Ty(getGlobalContext()), NULL);
834     unsigned BranchCost = getCFInstrCost(Instruction::Br);
835     unsigned MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
836
837     unsigned ValueSplitCost =
838       getScalarizationOverhead(SrcVTy, Opcode == Instruction::Load,
839                                Opcode == Instruction::Store);
840     unsigned MemopCost =
841         NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
842                                          Alignment, AddressSpace);
843     return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
844   }
845
846   // Legalize the type.
847   std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(SrcVTy);
848   unsigned Cost = 0;
849   if (LT.second != TLI->getValueType(SrcVTy).getSimpleVT() &&
850       LT.second.getVectorNumElements() == NumElem)
851     // Promotion requires expand/truncate for data and a shuffle for mask.
852     Cost += getShuffleCost(TTI::SK_Alternate, SrcVTy, 0, 0) +
853             getShuffleCost(TTI::SK_Alternate, MaskTy, 0, 0);
854
855   else if (LT.second.getVectorNumElements() > NumElem) {
856     VectorType *NewMaskTy = VectorType::get(MaskTy->getVectorElementType(),
857                                             LT.second.getVectorNumElements());
858     // Expanding requires fill mask with zeroes
859     Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, 0, MaskTy);
860   }
861   if (!ST->hasAVX512())
862     return Cost + LT.first*4; // Each maskmov costs 4
863
864   // AVX-512 masked load/store is cheapper
865   return Cost+LT.first;
866 }
867
868 unsigned X86TTIImpl::getAddressComputationCost(Type *Ty, bool IsComplex) {
869   // Address computations in vectorized code with non-consecutive addresses will
870   // likely result in more instructions compared to scalar code where the
871   // computation can more often be merged into the index mode. The resulting
872   // extra micro-ops can significantly decrease throughput.
873   unsigned NumVectorInstToHideOverhead = 10;
874
875   if (Ty->isVectorTy() && IsComplex)
876     return NumVectorInstToHideOverhead;
877
878   return BaseT::getAddressComputationCost(Ty, IsComplex);
879 }
880
881 unsigned X86TTIImpl::getReductionCost(unsigned Opcode, Type *ValTy,
882                                       bool IsPairwise) {
883
884   std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
885
886   MVT MTy = LT.second;
887
888   int ISD = TLI->InstructionOpcodeToISD(Opcode);
889   assert(ISD && "Invalid opcode");
890
891   // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
892   // and make it as the cost.
893
894   static const CostTblEntry<MVT::SimpleValueType> SSE42CostTblPairWise[] = {
895     { ISD::FADD,  MVT::v2f64,   2 },
896     { ISD::FADD,  MVT::v4f32,   4 },
897     { ISD::ADD,   MVT::v2i64,   2 },      // The data reported by the IACA tool is "1.6".
898     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.5".
899     { ISD::ADD,   MVT::v8i16,   5 },
900   };
901
902   static const CostTblEntry<MVT::SimpleValueType> AVX1CostTblPairWise[] = {
903     { ISD::FADD,  MVT::v4f32,   4 },
904     { ISD::FADD,  MVT::v4f64,   5 },
905     { ISD::FADD,  MVT::v8f32,   7 },
906     { ISD::ADD,   MVT::v2i64,   1 },      // The data reported by the IACA tool is "1.5".
907     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.5".
908     { ISD::ADD,   MVT::v4i64,   5 },      // The data reported by the IACA tool is "4.8".
909     { ISD::ADD,   MVT::v8i16,   5 },
910     { ISD::ADD,   MVT::v8i32,   5 },
911   };
912
913   static const CostTblEntry<MVT::SimpleValueType> SSE42CostTblNoPairWise[] = {
914     { ISD::FADD,  MVT::v2f64,   2 },
915     { ISD::FADD,  MVT::v4f32,   4 },
916     { ISD::ADD,   MVT::v2i64,   2 },      // The data reported by the IACA tool is "1.6".
917     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.3".
918     { ISD::ADD,   MVT::v8i16,   4 },      // The data reported by the IACA tool is "4.3".
919   };
920
921   static const CostTblEntry<MVT::SimpleValueType> AVX1CostTblNoPairWise[] = {
922     { ISD::FADD,  MVT::v4f32,   3 },
923     { ISD::FADD,  MVT::v4f64,   3 },
924     { ISD::FADD,  MVT::v8f32,   4 },
925     { ISD::ADD,   MVT::v2i64,   1 },      // The data reported by the IACA tool is "1.5".
926     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "2.8".
927     { ISD::ADD,   MVT::v4i64,   3 },
928     { ISD::ADD,   MVT::v8i16,   4 },
929     { ISD::ADD,   MVT::v8i32,   5 },
930   };
931
932   if (IsPairwise) {
933     if (ST->hasAVX()) {
934       int Idx = CostTableLookup(AVX1CostTblPairWise, ISD, MTy);
935       if (Idx != -1)
936         return LT.first * AVX1CostTblPairWise[Idx].Cost;
937     }
938
939     if (ST->hasSSE42()) {
940       int Idx = CostTableLookup(SSE42CostTblPairWise, ISD, MTy);
941       if (Idx != -1)
942         return LT.first * SSE42CostTblPairWise[Idx].Cost;
943     }
944   } else {
945     if (ST->hasAVX()) {
946       int Idx = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy);
947       if (Idx != -1)
948         return LT.first * AVX1CostTblNoPairWise[Idx].Cost;
949     }
950
951     if (ST->hasSSE42()) {
952       int Idx = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy);
953       if (Idx != -1)
954         return LT.first * SSE42CostTblNoPairWise[Idx].Cost;
955     }
956   }
957
958   return BaseT::getReductionCost(Opcode, ValTy, IsPairwise);
959 }
960
961 /// \brief Calculate the cost of materializing a 64-bit value. This helper
962 /// method might only calculate a fraction of a larger immediate. Therefore it
963 /// is valid to return a cost of ZERO.
964 unsigned X86TTIImpl::getIntImmCost(int64_t Val) {
965   if (Val == 0)
966     return TTI::TCC_Free;
967
968   if (isInt<32>(Val))
969     return TTI::TCC_Basic;
970
971   return 2 * TTI::TCC_Basic;
972 }
973
974 unsigned X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
975   assert(Ty->isIntegerTy());
976
977   unsigned BitSize = Ty->getPrimitiveSizeInBits();
978   if (BitSize == 0)
979     return ~0U;
980
981   // Never hoist constants larger than 128bit, because this might lead to
982   // incorrect code generation or assertions in codegen.
983   // Fixme: Create a cost model for types larger than i128 once the codegen
984   // issues have been fixed.
985   if (BitSize > 128)
986     return TTI::TCC_Free;
987
988   if (Imm == 0)
989     return TTI::TCC_Free;
990
991   // Sign-extend all constants to a multiple of 64-bit.
992   APInt ImmVal = Imm;
993   if (BitSize & 0x3f)
994     ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
995
996   // Split the constant into 64-bit chunks and calculate the cost for each
997   // chunk.
998   unsigned Cost = 0;
999   for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
1000     APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
1001     int64_t Val = Tmp.getSExtValue();
1002     Cost += getIntImmCost(Val);
1003   }
1004   // We need at least one instruction to materialze the constant.
1005   return std::max(1U, Cost);
1006 }
1007
1008 unsigned X86TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx,
1009                                    const APInt &Imm, Type *Ty) {
1010   assert(Ty->isIntegerTy());
1011
1012   unsigned BitSize = Ty->getPrimitiveSizeInBits();
1013   // There is no cost model for constants with a bit size of 0. Return TCC_Free
1014   // here, so that constant hoisting will ignore this constant.
1015   if (BitSize == 0)
1016     return TTI::TCC_Free;
1017
1018   unsigned ImmIdx = ~0U;
1019   switch (Opcode) {
1020   default:
1021     return TTI::TCC_Free;
1022   case Instruction::GetElementPtr:
1023     // Always hoist the base address of a GetElementPtr. This prevents the
1024     // creation of new constants for every base constant that gets constant
1025     // folded with the offset.
1026     if (Idx == 0)
1027       return 2 * TTI::TCC_Basic;
1028     return TTI::TCC_Free;
1029   case Instruction::Store:
1030     ImmIdx = 0;
1031     break;
1032   case Instruction::Add:
1033   case Instruction::Sub:
1034   case Instruction::Mul:
1035   case Instruction::UDiv:
1036   case Instruction::SDiv:
1037   case Instruction::URem:
1038   case Instruction::SRem:
1039   case Instruction::And:
1040   case Instruction::Or:
1041   case Instruction::Xor:
1042   case Instruction::ICmp:
1043     ImmIdx = 1;
1044     break;
1045   // Always return TCC_Free for the shift value of a shift instruction.
1046   case Instruction::Shl:
1047   case Instruction::LShr:
1048   case Instruction::AShr:
1049     if (Idx == 1)
1050       return TTI::TCC_Free;
1051     break;
1052   case Instruction::Trunc:
1053   case Instruction::ZExt:
1054   case Instruction::SExt:
1055   case Instruction::IntToPtr:
1056   case Instruction::PtrToInt:
1057   case Instruction::BitCast:
1058   case Instruction::PHI:
1059   case Instruction::Call:
1060   case Instruction::Select:
1061   case Instruction::Ret:
1062   case Instruction::Load:
1063     break;
1064   }
1065
1066   if (Idx == ImmIdx) {
1067     unsigned NumConstants = (BitSize + 63) / 64;
1068     unsigned Cost = X86TTIImpl::getIntImmCost(Imm, Ty);
1069     return (Cost <= NumConstants * TTI::TCC_Basic)
1070                ? static_cast<unsigned>(TTI::TCC_Free)
1071                : Cost;
1072   }
1073
1074   return X86TTIImpl::getIntImmCost(Imm, Ty);
1075 }
1076
1077 unsigned X86TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
1078                                    const APInt &Imm, Type *Ty) {
1079   assert(Ty->isIntegerTy());
1080
1081   unsigned BitSize = Ty->getPrimitiveSizeInBits();
1082   // There is no cost model for constants with a bit size of 0. Return TCC_Free
1083   // here, so that constant hoisting will ignore this constant.
1084   if (BitSize == 0)
1085     return TTI::TCC_Free;
1086
1087   switch (IID) {
1088   default:
1089     return TTI::TCC_Free;
1090   case Intrinsic::sadd_with_overflow:
1091   case Intrinsic::uadd_with_overflow:
1092   case Intrinsic::ssub_with_overflow:
1093   case Intrinsic::usub_with_overflow:
1094   case Intrinsic::smul_with_overflow:
1095   case Intrinsic::umul_with_overflow:
1096     if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
1097       return TTI::TCC_Free;
1098     break;
1099   case Intrinsic::experimental_stackmap:
1100     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
1101       return TTI::TCC_Free;
1102     break;
1103   case Intrinsic::experimental_patchpoint_void:
1104   case Intrinsic::experimental_patchpoint_i64:
1105     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
1106       return TTI::TCC_Free;
1107     break;
1108   }
1109   return X86TTIImpl::getIntImmCost(Imm, Ty);
1110 }
1111
1112 bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy, int Consecutive) {
1113   int DataWidth = DataTy->getPrimitiveSizeInBits();
1114   
1115   // Todo: AVX512 allows gather/scatter, works with strided and random as well
1116   if ((DataWidth < 32) || (Consecutive == 0))
1117     return false;
1118   if (ST->hasAVX512() || ST->hasAVX2()) 
1119     return true;
1120   return false;
1121 }
1122
1123 bool X86TTIImpl::isLegalMaskedStore(Type *DataType, int Consecutive) {
1124   return isLegalMaskedLoad(DataType, Consecutive);
1125 }
1126