AsmMatcher/X86: Mark _REV instructions as "code gen only", they aren't expected
[oota-llvm.git] / lib / Target / X86 / X86Instr64bit.td
1 //====- X86Instr64bit.td - Describe X86-64 Instructions ----*- tablegen -*-===//
2 // 
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 // 
8 //===----------------------------------------------------------------------===//
9 //
10 // This file describes the X86-64 instruction set, defining the instructions,
11 // and properties of the instructions which are needed for code generation,
12 // machine code emission, and analysis.
13 //
14 //===----------------------------------------------------------------------===//
15
16 //===----------------------------------------------------------------------===//
17 // Operand Definitions.
18 //
19
20 // 64-bits but only 32 bits are significant.
21 def i64i32imm  : Operand<i64> {
22   let ParserMatchClass = ImmSExti64i32AsmOperand;
23 }
24
25 // 64-bits but only 32 bits are significant, and those bits are treated as being
26 // pc relative.
27 def i64i32imm_pcrel : Operand<i64> {
28   let PrintMethod = "print_pcrel_imm";
29   let ParserMatchClass = X86AbsMemAsmOperand;
30 }
31
32
33 // 64-bits but only 8 bits are significant.
34 def i64i8imm   : Operand<i64> {
35   let ParserMatchClass = ImmSExti64i8AsmOperand;
36 }
37
38 // Special i64mem for addresses of load folding tail calls. These are not
39 // allowed to use callee-saved registers since they must be scheduled
40 // after callee-saved register are popped.
41 def i64mem_TC : Operand<i64> {
42   let PrintMethod = "printi64mem";
43   let MIOperandInfo = (ops GR64_TC, i8imm, GR64_TC, i32imm, i8imm);
44   let ParserMatchClass = X86MemAsmOperand;
45 }
46
47 def lea64mem : Operand<i64> {
48   let PrintMethod = "printlea64mem";
49   let MIOperandInfo = (ops GR64, i8imm, GR64_NOSP, i32imm);
50   let ParserMatchClass = X86NoSegMemAsmOperand;
51 }
52
53 def lea64_32mem : Operand<i32> {
54   let PrintMethod = "printlea64_32mem";
55   let AsmOperandLowerMethod = "lower_lea64_32mem";
56   let MIOperandInfo = (ops GR32, i8imm, GR32_NOSP, i32imm);
57   let ParserMatchClass = X86NoSegMemAsmOperand;
58 }
59
60 //===----------------------------------------------------------------------===//
61 // Complex Pattern Definitions.
62 //
63 def lea64addr : ComplexPattern<i64, 4, "SelectLEAAddr",
64                         [add, sub, mul, X86mul_imm, shl, or, frameindex,
65                          X86WrapperRIP], []>;
66
67 def tls64addr : ComplexPattern<i64, 4, "SelectTLSADDRAddr",
68                                [tglobaltlsaddr], []>;
69
70 //===----------------------------------------------------------------------===//
71 // Pattern fragments.
72 //
73
74 def i64immSExt8  : PatLeaf<(i64 immSext8)>;
75
76 def GetLo32XForm : SDNodeXForm<imm, [{
77   // Transformation function: get the low 32 bits.
78   return getI32Imm((unsigned)N->getZExtValue());
79 }]>;
80
81 def i64immSExt32  : PatLeaf<(i64 imm), [{
82   // i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit
83   // sign extended field.
84   return (int64_t)N->getZExtValue() == (int32_t)N->getZExtValue();
85 }]>;
86
87
88 def i64immZExt32  : PatLeaf<(i64 imm), [{
89   // i64immZExt32 predicate - True if the 64-bit immediate fits in a 32-bit
90   // unsignedsign extended field.
91   return (uint64_t)N->getZExtValue() == (uint32_t)N->getZExtValue();
92 }]>;
93
94 def sextloadi64i8  : PatFrag<(ops node:$ptr), (i64 (sextloadi8 node:$ptr))>;
95 def sextloadi64i16 : PatFrag<(ops node:$ptr), (i64 (sextloadi16 node:$ptr))>;
96 def sextloadi64i32 : PatFrag<(ops node:$ptr), (i64 (sextloadi32 node:$ptr))>;
97
98 def zextloadi64i1  : PatFrag<(ops node:$ptr), (i64 (zextloadi1 node:$ptr))>;
99 def zextloadi64i8  : PatFrag<(ops node:$ptr), (i64 (zextloadi8 node:$ptr))>;
100 def zextloadi64i16 : PatFrag<(ops node:$ptr), (i64 (zextloadi16 node:$ptr))>;
101 def zextloadi64i32 : PatFrag<(ops node:$ptr), (i64 (zextloadi32 node:$ptr))>;
102
103 def extloadi64i1   : PatFrag<(ops node:$ptr), (i64 (extloadi1 node:$ptr))>;
104 def extloadi64i8   : PatFrag<(ops node:$ptr), (i64 (extloadi8 node:$ptr))>;
105 def extloadi64i16  : PatFrag<(ops node:$ptr), (i64 (extloadi16 node:$ptr))>;
106 def extloadi64i32  : PatFrag<(ops node:$ptr), (i64 (extloadi32 node:$ptr))>;
107
108 //===----------------------------------------------------------------------===//
109 // Instruction list...
110 //
111
112 // ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
113 // a stack adjustment and the codegen must know that they may modify the stack
114 // pointer before prolog-epilog rewriting occurs.
115 // Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
116 // sub / add which can clobber EFLAGS.
117 let Defs = [RSP, EFLAGS], Uses = [RSP] in {
118 def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), (ins i32imm:$amt),
119                            "#ADJCALLSTACKDOWN",
120                            [(X86callseq_start timm:$amt)]>,
121                           Requires<[In64BitMode]>;
122 def ADJCALLSTACKUP64   : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
123                            "#ADJCALLSTACKUP",
124                            [(X86callseq_end timm:$amt1, timm:$amt2)]>,
125                           Requires<[In64BitMode]>;
126 }
127
128 // Interrupt Instructions
129 def IRET64 : RI<0xcf, RawFrm, (outs), (ins), "iret{q}", []>;
130
131 //===----------------------------------------------------------------------===//
132 //  Call Instructions...
133 //
134 let isCall = 1 in
135   // All calls clobber the non-callee saved registers. RSP is marked as
136   // a use to prevent stack-pointer assignments that appear immediately
137   // before calls from potentially appearing dead. Uses for argument
138   // registers are added manually.
139   let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
140               FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, ST1,
141               MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
142               XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
143               XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
144       Uses = [RSP] in {
145       
146     // NOTE: this pattern doesn't match "X86call imm", because we do not know
147     // that the offset between an arbitrary immediate and the call will fit in
148     // the 32-bit pcrel field that we have.
149     def CALL64pcrel32 : Ii32PCRel<0xE8, RawFrm,
150                           (outs), (ins i64i32imm_pcrel:$dst, variable_ops),
151                           "call{q}\t$dst", []>,
152                         Requires<[In64BitMode, NotWin64]>;
153     def CALL64r       : I<0xFF, MRM2r, (outs), (ins GR64:$dst, variable_ops),
154                           "call{q}\t{*}$dst", [(X86call GR64:$dst)]>,
155                         Requires<[NotWin64]>;
156     def CALL64m       : I<0xFF, MRM2m, (outs), (ins i64mem:$dst, variable_ops),
157                           "call{q}\t{*}$dst", [(X86call (loadi64 addr:$dst))]>,
158                         Requires<[NotWin64]>;
159                         
160     def FARCALL64   : RI<0xFF, MRM3m, (outs), (ins opaque80mem:$dst),
161                          "lcall{q}\t{*}$dst", []>;
162   }
163
164   // FIXME: We need to teach codegen about single list of call-clobbered 
165   // registers.
166 let isCall = 1 in
167   // All calls clobber the non-callee saved registers. RSP is marked as
168   // a use to prevent stack-pointer assignments that appear immediately
169   // before calls from potentially appearing dead. Uses for argument
170   // registers are added manually.
171   let Defs = [RAX, RCX, RDX, R8, R9, R10, R11,
172               FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, ST1,
173               MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
174               XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, EFLAGS],
175       Uses = [RSP] in {
176     def WINCALL64pcrel32 : I<0xE8, RawFrm,
177                              (outs), (ins i64i32imm_pcrel:$dst, variable_ops),
178                              "call\t$dst", []>,
179                            Requires<[IsWin64]>;
180     def WINCALL64r       : I<0xFF, MRM2r, (outs), (ins GR64:$dst, variable_ops),
181                              "call\t{*}$dst",
182                              [(X86call GR64:$dst)]>, Requires<[IsWin64]>;
183     def WINCALL64m       : I<0xFF, MRM2m, (outs), 
184                              (ins i64mem:$dst, variable_ops), "call\t{*}$dst",
185                              [(X86call (loadi64 addr:$dst))]>, 
186                            Requires<[IsWin64]>;
187   }
188
189
190 let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in
191   let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
192               FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, ST1,
193               MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
194               XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
195               XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
196       Uses = [RSP] in {
197   def TCRETURNdi64 : I<0, Pseudo, (outs),
198                          (ins i64i32imm_pcrel:$dst, i32imm:$offset, variable_ops),
199                        "#TC_RETURN $dst $offset", []>;
200   def TCRETURNri64 : I<0, Pseudo, (outs), (ins GR64_TC:$dst, i32imm:$offset,
201                                            variable_ops),
202                        "#TC_RETURN $dst $offset", []>;
203   let mayLoad = 1 in
204   def TCRETURNmi64 : I<0, Pseudo, (outs), 
205                        (ins i64mem_TC:$dst, i32imm:$offset, variable_ops),
206                        "#TC_RETURN $dst $offset", []>;
207
208   def TAILJMPd64 : Ii32PCRel<0xE9, RawFrm, (outs),
209                                       (ins i64i32imm_pcrel:$dst, variable_ops),
210                    "jmp\t$dst  # TAILCALL", []>;
211   def TAILJMPr64 : I<0xFF, MRM4r, (outs), (ins GR64_TC:$dst, variable_ops),
212                      "jmp{q}\t{*}$dst  # TAILCALL", []>;
213
214   let mayLoad = 1 in
215   def TAILJMPm64 : I<0xFF, MRM4m, (outs), (ins i64mem_TC:$dst, variable_ops),
216                      "jmp{q}\t{*}$dst  # TAILCALL", []>;
217 }
218
219 // Branches
220 let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
221   def JMP64pcrel32 : I<0xE9, RawFrm, (outs), (ins brtarget:$dst), 
222                        "jmp{q}\t$dst", []>;
223   def JMP64r     : I<0xFF, MRM4r, (outs), (ins GR64:$dst), "jmp{q}\t{*}$dst",
224                      [(brind GR64:$dst)]>;
225   def JMP64m     : I<0xFF, MRM4m, (outs), (ins i64mem:$dst), "jmp{q}\t{*}$dst",
226                      [(brind (loadi64 addr:$dst))]>;
227   def FARJMP64   : RI<0xFF, MRM5m, (outs), (ins opaque80mem:$dst),
228                       "ljmp{q}\t{*}$dst", []>;
229 }
230
231 //===----------------------------------------------------------------------===//
232 // EH Pseudo Instructions
233 //
234 let isTerminator = 1, isReturn = 1, isBarrier = 1,
235     hasCtrlDep = 1, isCodeGenOnly = 1 in {
236 def EH_RETURN64   : I<0xC3, RawFrm, (outs), (ins GR64:$addr),
237                      "ret\t#eh_return, addr: $addr",
238                      [(X86ehret GR64:$addr)]>;
239
240 }
241
242 //===----------------------------------------------------------------------===//
243 //  Miscellaneous Instructions...
244 //
245
246 def POPCNT64rr : RI<0xB8, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src),
247                     "popcnt{q}\t{$src, $dst|$dst, $src}", []>, XS;
248 let mayLoad = 1 in
249 def POPCNT64rm : RI<0xB8, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
250                     "popcnt{q}\t{$src, $dst|$dst, $src}", []>, XS;
251
252 let Defs = [RBP,RSP], Uses = [RBP,RSP], mayLoad = 1, neverHasSideEffects = 1 in
253 def LEAVE64  : I<0xC9, RawFrm,
254                  (outs), (ins), "leave", []>;
255 let Defs = [RSP], Uses = [RSP], neverHasSideEffects=1 in {
256 let mayLoad = 1 in {
257 def POP64r   : I<0x58, AddRegFrm,
258                  (outs GR64:$reg), (ins), "pop{q}\t$reg", []>;
259 def POP64rmr: I<0x8F, MRM0r, (outs GR64:$reg), (ins), "pop{q}\t$reg", []>;
260 def POP64rmm: I<0x8F, MRM0m, (outs i64mem:$dst), (ins), "pop{q}\t$dst", []>;
261 }
262 let mayStore = 1 in {
263 def PUSH64r  : I<0x50, AddRegFrm,
264                  (outs), (ins GR64:$reg), "push{q}\t$reg", []>;
265 def PUSH64rmr: I<0xFF, MRM6r, (outs), (ins GR64:$reg), "push{q}\t$reg", []>;
266 def PUSH64rmm: I<0xFF, MRM6m, (outs), (ins i64mem:$src), "push{q}\t$src", []>;
267 }
268 }
269
270 let Defs = [RSP], Uses = [RSP], neverHasSideEffects = 1, mayStore = 1 in {
271 def PUSH64i8   : Ii8<0x6a, RawFrm, (outs), (ins i8imm:$imm), 
272                      "push{q}\t$imm", []>;
273 def PUSH64i16  : Ii16<0x68, RawFrm, (outs), (ins i16imm:$imm), 
274                       "push{q}\t$imm", []>;
275 def PUSH64i32  : Ii32<0x68, RawFrm, (outs), (ins i64i32imm:$imm),
276                       "push{q}\t$imm", []>;
277 }
278
279 let Defs = [RSP, EFLAGS], Uses = [RSP], mayLoad = 1, neverHasSideEffects=1 in
280 def POPF64   : I<0x9D, RawFrm, (outs), (ins), "popfq", []>,
281                Requires<[In64BitMode]>;
282 let Defs = [RSP], Uses = [RSP, EFLAGS], mayStore = 1, neverHasSideEffects=1 in
283 def PUSHF64    : I<0x9C, RawFrm, (outs), (ins), "pushfq", []>,
284                  Requires<[In64BitMode]>;
285
286 def LEA64_32r : I<0x8D, MRMSrcMem,
287                   (outs GR32:$dst), (ins lea64_32mem:$src),
288                   "lea{l}\t{$src|$dst}, {$dst|$src}",
289                   [(set GR32:$dst, lea32addr:$src)]>, Requires<[In64BitMode]>;
290
291 let isReMaterializable = 1 in
292 def LEA64r   : RI<0x8D, MRMSrcMem, (outs GR64:$dst), (ins lea64mem:$src),
293                   "lea{q}\t{$src|$dst}, {$dst|$src}",
294                   [(set GR64:$dst, lea64addr:$src)]>;
295
296 let isTwoAddress = 1 in
297 def BSWAP64r : RI<0xC8, AddRegFrm, (outs GR64:$dst), (ins GR64:$src),
298                   "bswap{q}\t$dst", 
299                   [(set GR64:$dst, (bswap GR64:$src))]>, TB;
300
301 // Bit scan instructions.
302 let Defs = [EFLAGS] in {
303 def BSF64rr  : RI<0xBC, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src),
304                   "bsf{q}\t{$src, $dst|$dst, $src}",
305                   [(set GR64:$dst, EFLAGS, (X86bsf GR64:$src))]>, TB;
306 def BSF64rm  : RI<0xBC, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
307                   "bsf{q}\t{$src, $dst|$dst, $src}",
308                   [(set GR64:$dst, EFLAGS, (X86bsf (loadi64 addr:$src)))]>, TB;
309
310 def BSR64rr  : RI<0xBD, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src),
311                   "bsr{q}\t{$src, $dst|$dst, $src}",
312                   [(set GR64:$dst, EFLAGS, (X86bsr GR64:$src))]>, TB;
313 def BSR64rm  : RI<0xBD, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
314                   "bsr{q}\t{$src, $dst|$dst, $src}",
315                   [(set GR64:$dst, EFLAGS, (X86bsr (loadi64 addr:$src)))]>, TB;
316 } // Defs = [EFLAGS]
317
318 // Repeat string ops
319 let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in
320 def REP_MOVSQ : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}",
321                    [(X86rep_movs i64)]>, REP;
322 let Defs = [RCX,RDI], Uses = [RAX,RCX,RDI], isCodeGenOnly = 1 in
323 def REP_STOSQ : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}",
324                    [(X86rep_stos i64)]>, REP;
325
326 let Defs = [EDI,ESI], Uses = [EDI,ESI,EFLAGS] in
327 def MOVSQ : RI<0xA5, RawFrm, (outs), (ins), "movsq", []>;
328
329 let Defs = [RCX,RDI], Uses = [RAX,RCX,RDI,EFLAGS] in
330 def STOSQ : RI<0xAB, RawFrm, (outs), (ins), "stosq", []>;
331
332 def SCAS64 : RI<0xAF, RawFrm, (outs), (ins), "scasq", []>;
333
334 def CMPS64 : RI<0xA7, RawFrm, (outs), (ins), "cmpsq", []>;
335
336 // Fast system-call instructions
337 def SYSEXIT64 : RI<0x35, RawFrm,
338                    (outs), (ins), "sysexit", []>, TB;
339
340 //===----------------------------------------------------------------------===//
341 //  Move Instructions...
342 //
343
344 let neverHasSideEffects = 1 in
345 def MOV64rr : RI<0x89, MRMDestReg, (outs GR64:$dst), (ins GR64:$src),
346                  "mov{q}\t{$src, $dst|$dst, $src}", []>;
347
348 let isReMaterializable = 1, isAsCheapAsAMove = 1  in {
349 def MOV64ri : RIi64<0xB8, AddRegFrm, (outs GR64:$dst), (ins i64imm:$src),
350                     "movabs{q}\t{$src, $dst|$dst, $src}",
351                     [(set GR64:$dst, imm:$src)]>;
352 def MOV64ri32 : RIi32<0xC7, MRM0r, (outs GR64:$dst), (ins i64i32imm:$src),
353                       "mov{q}\t{$src, $dst|$dst, $src}",
354                       [(set GR64:$dst, i64immSExt32:$src)]>;
355 }
356
357 // The assembler accepts movq of a 64-bit immediate as an alternate spelling of
358 // movabsq.
359 let isAsmParserOnly = 1 in {
360 def MOV64ri_alt : RIi64<0xB8, AddRegFrm, (outs GR64:$dst), (ins i64imm:$src),
361                     "mov{q}\t{$src, $dst|$dst, $src}", []>;
362 }
363
364 let isCodeGenOnly = 1 in {
365 def MOV64rr_REV : RI<0x8B, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src),
366                      "mov{q}\t{$src, $dst|$dst, $src}", []>;
367 }
368
369 let canFoldAsLoad = 1, isReMaterializable = 1 in
370 def MOV64rm : RI<0x8B, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
371                  "mov{q}\t{$src, $dst|$dst, $src}",
372                  [(set GR64:$dst, (load addr:$src))]>;
373
374 def MOV64mr : RI<0x89, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src),
375                  "mov{q}\t{$src, $dst|$dst, $src}",
376                  [(store GR64:$src, addr:$dst)]>;
377 def MOV64mi32 : RIi32<0xC7, MRM0m, (outs), (ins i64mem:$dst, i64i32imm:$src),
378                       "mov{q}\t{$src, $dst|$dst, $src}",
379                       [(store i64immSExt32:$src, addr:$dst)]>;
380
381 /// Versions of MOV64rr, MOV64rm, and MOV64mr for i64mem_TC and GR64_TC.
382 let neverHasSideEffects = 1 in
383 def MOV64rr_TC : RI<0x89, MRMDestReg, (outs GR64_TC:$dst), (ins GR64_TC:$src),
384                 "mov{q}\t{$src, $dst|$dst, $src}", []>;
385
386 let mayLoad = 1,
387     canFoldAsLoad = 1, isReMaterializable = 1 in
388 def MOV64rm_TC : RI<0x8B, MRMSrcMem, (outs GR64_TC:$dst), (ins i64mem_TC:$src),
389                 "mov{q}\t{$src, $dst|$dst, $src}",
390                 []>;
391
392 let mayStore = 1 in
393 def MOV64mr_TC : RI<0x89, MRMDestMem, (outs), (ins i64mem_TC:$dst, GR64_TC:$src),
394                 "mov{q}\t{$src, $dst|$dst, $src}",
395                 []>;
396
397 def MOV64o8a : RIi8<0xA0, RawFrm, (outs), (ins offset8:$src),
398                       "mov{q}\t{$src, %rax|%rax, $src}", []>;
399 def MOV64o64a : RIi32<0xA1, RawFrm, (outs), (ins offset64:$src),
400                        "mov{q}\t{$src, %rax|%rax, $src}", []>;
401 def MOV64ao8 : RIi8<0xA2, RawFrm, (outs offset8:$dst), (ins),
402                        "mov{q}\t{%rax, $dst|$dst, %rax}", []>;
403 def MOV64ao64 : RIi32<0xA3, RawFrm, (outs offset64:$dst), (ins),
404                        "mov{q}\t{%rax, $dst|$dst, %rax}", []>;
405
406 // Moves to and from segment registers
407 def MOV64rs : RI<0x8C, MRMDestReg, (outs GR64:$dst), (ins SEGMENT_REG:$src),
408                  "mov{q}\t{$src, $dst|$dst, $src}", []>;
409 def MOV64ms : RI<0x8C, MRMDestMem, (outs i64mem:$dst), (ins SEGMENT_REG:$src),
410                  "mov{q}\t{$src, $dst|$dst, $src}", []>;
411 def MOV64sr : RI<0x8E, MRMSrcReg, (outs SEGMENT_REG:$dst), (ins GR64:$src),
412                  "mov{q}\t{$src, $dst|$dst, $src}", []>;
413 def MOV64sm : RI<0x8E, MRMSrcMem, (outs SEGMENT_REG:$dst), (ins i64mem:$src),
414                  "mov{q}\t{$src, $dst|$dst, $src}", []>;
415
416 // Moves to and from debug registers
417 def MOV64rd : I<0x21, MRMDestReg, (outs GR64:$dst), (ins DEBUG_REG:$src),
418                 "mov{q}\t{$src, $dst|$dst, $src}", []>, TB;
419 def MOV64dr : I<0x23, MRMSrcReg, (outs DEBUG_REG:$dst), (ins GR64:$src),
420                 "mov{q}\t{$src, $dst|$dst, $src}", []>, TB;
421
422 // Moves to and from control registers
423 def MOV64rc : I<0x20, MRMDestReg, (outs GR64:$dst), (ins CONTROL_REG:$src),
424                 "mov{q}\t{$src, $dst|$dst, $src}", []>, TB;
425 def MOV64cr : I<0x22, MRMSrcReg, (outs CONTROL_REG:$dst), (ins GR64:$src),
426                 "mov{q}\t{$src, $dst|$dst, $src}", []>, TB;
427
428 // Sign/Zero extenders
429
430 // MOVSX64rr8 always has a REX prefix and it has an 8-bit register
431 // operand, which makes it a rare instruction with an 8-bit register
432 // operand that can never access an h register. If support for h registers
433 // were generalized, this would require a special register class.
434 def MOVSX64rr8 : RI<0xBE, MRMSrcReg, (outs GR64:$dst), (ins GR8 :$src),
435                     "movs{bq|x}\t{$src, $dst|$dst, $src}",
436                     [(set GR64:$dst, (sext GR8:$src))]>, TB;
437 def MOVSX64rm8 : RI<0xBE, MRMSrcMem, (outs GR64:$dst), (ins i8mem :$src),
438                     "movs{bq|x}\t{$src, $dst|$dst, $src}",
439                     [(set GR64:$dst, (sextloadi64i8 addr:$src))]>, TB;
440 def MOVSX64rr16: RI<0xBF, MRMSrcReg, (outs GR64:$dst), (ins GR16:$src),
441                     "movs{wq|x}\t{$src, $dst|$dst, $src}",
442                     [(set GR64:$dst, (sext GR16:$src))]>, TB;
443 def MOVSX64rm16: RI<0xBF, MRMSrcMem, (outs GR64:$dst), (ins i16mem:$src),
444                     "movs{wq|x}\t{$src, $dst|$dst, $src}",
445                     [(set GR64:$dst, (sextloadi64i16 addr:$src))]>, TB;
446 def MOVSX64rr32: RI<0x63, MRMSrcReg, (outs GR64:$dst), (ins GR32:$src),
447                     "movs{lq|xd}\t{$src, $dst|$dst, $src}",
448                     [(set GR64:$dst, (sext GR32:$src))]>;
449 def MOVSX64rm32: RI<0x63, MRMSrcMem, (outs GR64:$dst), (ins i32mem:$src),
450                     "movs{lq|xd}\t{$src, $dst|$dst, $src}",
451                     [(set GR64:$dst, (sextloadi64i32 addr:$src))]>;
452
453 // movzbq and movzwq encodings for the disassembler
454 def MOVZX64rr8_Q : RI<0xB6, MRMSrcReg, (outs GR64:$dst), (ins GR8:$src),
455                        "movz{bq|x}\t{$src, $dst|$dst, $src}", []>, TB;
456 def MOVZX64rm8_Q : RI<0xB6, MRMSrcMem, (outs GR64:$dst), (ins i8mem:$src),
457                        "movz{bq|x}\t{$src, $dst|$dst, $src}", []>, TB;
458 def MOVZX64rr16_Q : RI<0xB7, MRMSrcReg, (outs GR64:$dst), (ins GR16:$src),
459                        "movz{wq|x}\t{$src, $dst|$dst, $src}", []>, TB;
460 def MOVZX64rm16_Q : RI<0xB7, MRMSrcMem, (outs GR64:$dst), (ins i16mem:$src),
461                        "movz{wq|x}\t{$src, $dst|$dst, $src}", []>, TB;
462
463 // Use movzbl instead of movzbq when the destination is a register; it's
464 // equivalent due to implicit zero-extending, and it has a smaller encoding.
465 def MOVZX64rr8 : I<0xB6, MRMSrcReg, (outs GR64:$dst), (ins GR8 :$src),
466                    "", [(set GR64:$dst, (zext GR8:$src))]>, TB;
467 def MOVZX64rm8 : I<0xB6, MRMSrcMem, (outs GR64:$dst), (ins i8mem :$src),
468                    "", [(set GR64:$dst, (zextloadi64i8 addr:$src))]>, TB;
469 // Use movzwl instead of movzwq when the destination is a register; it's
470 // equivalent due to implicit zero-extending, and it has a smaller encoding.
471 def MOVZX64rr16: I<0xB7, MRMSrcReg, (outs GR64:$dst), (ins GR16:$src),
472                    "", [(set GR64:$dst, (zext GR16:$src))]>, TB;
473 def MOVZX64rm16: I<0xB7, MRMSrcMem, (outs GR64:$dst), (ins i16mem:$src),
474                    "", [(set GR64:$dst, (zextloadi64i16 addr:$src))]>, TB;
475
476 // There's no movzlq instruction, but movl can be used for this purpose, using
477 // implicit zero-extension. The preferred way to do 32-bit-to-64-bit zero
478 // extension on x86-64 is to use a SUBREG_TO_REG to utilize implicit
479 // zero-extension, however this isn't possible when the 32-bit value is
480 // defined by a truncate or is copied from something where the high bits aren't
481 // necessarily all zero. In such cases, we fall back to these explicit zext
482 // instructions.
483 def MOVZX64rr32 : I<0x89, MRMDestReg, (outs GR64:$dst), (ins GR32:$src),
484                     "", [(set GR64:$dst, (zext GR32:$src))]>;
485 def MOVZX64rm32 : I<0x8B, MRMSrcMem, (outs GR64:$dst), (ins i32mem:$src),
486                     "", [(set GR64:$dst, (zextloadi64i32 addr:$src))]>;
487
488 // Any instruction that defines a 32-bit result leaves the high half of the
489 // register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
490 // be copying from a truncate. And x86's cmov doesn't do anything if the
491 // condition is false. But any other 32-bit operation will zero-extend
492 // up to 64 bits.
493 def def32 : PatLeaf<(i32 GR32:$src), [{
494   return N->getOpcode() != ISD::TRUNCATE &&
495          N->getOpcode() != TargetOpcode::EXTRACT_SUBREG &&
496          N->getOpcode() != ISD::CopyFromReg &&
497          N->getOpcode() != X86ISD::CMOV;
498 }]>;
499
500 // In the case of a 32-bit def that is known to implicitly zero-extend,
501 // we can use a SUBREG_TO_REG.
502 def : Pat<(i64 (zext def32:$src)),
503           (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
504
505 let neverHasSideEffects = 1 in {
506   let Defs = [RAX], Uses = [EAX] in
507   def CDQE : RI<0x98, RawFrm, (outs), (ins),
508                "{cltq|cdqe}", []>;     // RAX = signext(EAX)
509
510   let Defs = [RAX,RDX], Uses = [RAX] in
511   def CQO  : RI<0x99, RawFrm, (outs), (ins),
512                 "{cqto|cqo}", []>; // RDX:RAX = signext(RAX)
513 }
514
515 //===----------------------------------------------------------------------===//
516 //  Arithmetic Instructions...
517 //
518
519 let Defs = [EFLAGS] in {
520
521 def ADD64i32 : RIi32<0x05, RawFrm, (outs), (ins i64i32imm:$src),
522                      "add{q}\t{$src, %rax|%rax, $src}", []>;
523
524 let isTwoAddress = 1 in {
525 let isConvertibleToThreeAddress = 1 in {
526 let isCommutable = 1 in
527 // Register-Register Addition
528 def ADD64rr    : RI<0x01, MRMDestReg, (outs GR64:$dst), 
529                     (ins GR64:$src1, GR64:$src2),
530                     "add{q}\t{$src2, $dst|$dst, $src2}",
531                     [(set GR64:$dst, EFLAGS,
532                           (X86add_flag GR64:$src1, GR64:$src2))]>;
533
534 // These are alternate spellings for use by the disassembler, we mark them as
535 // code gen only to ensure they aren't matched by the assembler.
536 let isCodeGenOnly = 1 in {
537   def ADD64rr_alt  : RI<0x03, MRMSrcReg, (outs GR64:$dst), 
538                        (ins GR64:$src1, GR64:$src2),
539                        "add{l}\t{$src2, $dst|$dst, $src2}", []>;
540 }
541
542 // Register-Integer Addition
543 def ADD64ri8  : RIi8<0x83, MRM0r, (outs GR64:$dst), 
544                      (ins GR64:$src1, i64i8imm:$src2),
545                      "add{q}\t{$src2, $dst|$dst, $src2}",
546                      [(set GR64:$dst, EFLAGS,
547                            (X86add_flag GR64:$src1, i64immSExt8:$src2))]>;
548 def ADD64ri32 : RIi32<0x81, MRM0r, (outs GR64:$dst), 
549                       (ins GR64:$src1, i64i32imm:$src2),
550                       "add{q}\t{$src2, $dst|$dst, $src2}",
551                       [(set GR64:$dst, EFLAGS,
552                             (X86add_flag GR64:$src1, i64immSExt32:$src2))]>;
553 } // isConvertibleToThreeAddress
554
555 // Register-Memory Addition
556 def ADD64rm     : RI<0x03, MRMSrcMem, (outs GR64:$dst), 
557                      (ins GR64:$src1, i64mem:$src2),
558                      "add{q}\t{$src2, $dst|$dst, $src2}",
559                      [(set GR64:$dst, EFLAGS,
560                            (X86add_flag GR64:$src1, (load addr:$src2)))]>;
561
562 } // isTwoAddress
563
564 // Memory-Register Addition
565 def ADD64mr  : RI<0x01, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
566                   "add{q}\t{$src2, $dst|$dst, $src2}",
567                   [(store (add (load addr:$dst), GR64:$src2), addr:$dst),
568                    (implicit EFLAGS)]>;
569 def ADD64mi8 : RIi8<0x83, MRM0m, (outs), (ins i64mem:$dst, i64i8imm :$src2),
570                     "add{q}\t{$src2, $dst|$dst, $src2}",
571                 [(store (add (load addr:$dst), i64immSExt8:$src2), addr:$dst),
572                  (implicit EFLAGS)]>;
573 def ADD64mi32 : RIi32<0x81, MRM0m, (outs), (ins i64mem:$dst, i64i32imm :$src2),
574                       "add{q}\t{$src2, $dst|$dst, $src2}",
575                [(store (add (load addr:$dst), i64immSExt32:$src2), addr:$dst),
576                 (implicit EFLAGS)]>;
577
578 let Uses = [EFLAGS] in {
579
580 def ADC64i32 : RIi32<0x15, RawFrm, (outs), (ins i64i32imm:$src),
581                      "adc{q}\t{$src, %rax|%rax, $src}", []>;
582
583 let isTwoAddress = 1 in {
584 let isCommutable = 1 in
585 def ADC64rr  : RI<0x11, MRMDestReg, (outs GR64:$dst), 
586                   (ins GR64:$src1, GR64:$src2),
587                   "adc{q}\t{$src2, $dst|$dst, $src2}",
588                   [(set GR64:$dst, (adde GR64:$src1, GR64:$src2))]>;
589
590 let isCodeGenOnly = 1 in {
591 def ADC64rr_REV : RI<0x13, MRMSrcReg , (outs GR32:$dst), 
592                      (ins GR64:$src1, GR64:$src2),
593                     "adc{q}\t{$src2, $dst|$dst, $src2}", []>;
594 }
595
596 def ADC64rm  : RI<0x13, MRMSrcMem , (outs GR64:$dst), 
597                   (ins GR64:$src1, i64mem:$src2),
598                   "adc{q}\t{$src2, $dst|$dst, $src2}",
599                   [(set GR64:$dst, (adde GR64:$src1, (load addr:$src2)))]>;
600
601 def ADC64ri8 : RIi8<0x83, MRM2r, (outs GR64:$dst), 
602                     (ins GR64:$src1, i64i8imm:$src2),
603                     "adc{q}\t{$src2, $dst|$dst, $src2}",
604                     [(set GR64:$dst, (adde GR64:$src1, i64immSExt8:$src2))]>;
605 def ADC64ri32 : RIi32<0x81, MRM2r, (outs GR64:$dst), 
606                       (ins GR64:$src1, i64i32imm:$src2),
607                       "adc{q}\t{$src2, $dst|$dst, $src2}",
608                       [(set GR64:$dst, (adde GR64:$src1, i64immSExt32:$src2))]>;
609 } // isTwoAddress
610
611 def ADC64mr  : RI<0x11, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
612                   "adc{q}\t{$src2, $dst|$dst, $src2}",
613                   [(store (adde (load addr:$dst), GR64:$src2), addr:$dst)]>;
614 def ADC64mi8 : RIi8<0x83, MRM2m, (outs), (ins i64mem:$dst, i64i8imm :$src2),
615                     "adc{q}\t{$src2, $dst|$dst, $src2}",
616                  [(store (adde (load addr:$dst), i64immSExt8:$src2), 
617                   addr:$dst)]>;
618 def ADC64mi32 : RIi32<0x81, MRM2m, (outs), (ins i64mem:$dst, i64i32imm:$src2),
619                       "adc{q}\t{$src2, $dst|$dst, $src2}",
620                  [(store (adde (load addr:$dst), i64immSExt32:$src2), 
621                   addr:$dst)]>;
622 } // Uses = [EFLAGS]
623
624 let isTwoAddress = 1 in {
625 // Register-Register Subtraction
626 def SUB64rr  : RI<0x29, MRMDestReg, (outs GR64:$dst), 
627                   (ins GR64:$src1, GR64:$src2),
628                   "sub{q}\t{$src2, $dst|$dst, $src2}",
629                   [(set GR64:$dst, EFLAGS,
630                         (X86sub_flag GR64:$src1, GR64:$src2))]>;
631
632 let isCodeGenOnly = 1 in {
633 def SUB64rr_REV : RI<0x2B, MRMSrcReg, (outs GR64:$dst), 
634                      (ins GR64:$src1, GR64:$src2),
635                      "sub{q}\t{$src2, $dst|$dst, $src2}", []>;
636 }
637
638 // Register-Memory Subtraction
639 def SUB64rm  : RI<0x2B, MRMSrcMem, (outs GR64:$dst), 
640                   (ins GR64:$src1, i64mem:$src2),
641                   "sub{q}\t{$src2, $dst|$dst, $src2}",
642                   [(set GR64:$dst, EFLAGS, 
643                         (X86sub_flag GR64:$src1, (load addr:$src2)))]>;
644
645 // Register-Integer Subtraction
646 def SUB64ri8 : RIi8<0x83, MRM5r, (outs GR64:$dst),
647                                  (ins GR64:$src1, i64i8imm:$src2),
648                     "sub{q}\t{$src2, $dst|$dst, $src2}",
649                     [(set GR64:$dst, EFLAGS,
650                           (X86sub_flag GR64:$src1, i64immSExt8:$src2))]>;
651 def SUB64ri32 : RIi32<0x81, MRM5r, (outs GR64:$dst),
652                                    (ins GR64:$src1, i64i32imm:$src2),
653                       "sub{q}\t{$src2, $dst|$dst, $src2}",
654                       [(set GR64:$dst, EFLAGS,
655                             (X86sub_flag GR64:$src1, i64immSExt32:$src2))]>;
656 } // isTwoAddress
657
658 def SUB64i32 : RIi32<0x2D, RawFrm, (outs), (ins i64i32imm:$src),
659                      "sub{q}\t{$src, %rax|%rax, $src}", []>;
660
661 // Memory-Register Subtraction
662 def SUB64mr  : RI<0x29, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2), 
663                   "sub{q}\t{$src2, $dst|$dst, $src2}",
664                   [(store (sub (load addr:$dst), GR64:$src2), addr:$dst),
665                    (implicit EFLAGS)]>;
666
667 // Memory-Integer Subtraction
668 def SUB64mi8 : RIi8<0x83, MRM5m, (outs), (ins i64mem:$dst, i64i8imm :$src2), 
669                     "sub{q}\t{$src2, $dst|$dst, $src2}",
670                     [(store (sub (load addr:$dst), i64immSExt8:$src2),
671                             addr:$dst),
672                      (implicit EFLAGS)]>;
673 def SUB64mi32 : RIi32<0x81, MRM5m, (outs), (ins i64mem:$dst, i64i32imm:$src2),
674                       "sub{q}\t{$src2, $dst|$dst, $src2}",
675                       [(store (sub (load addr:$dst), i64immSExt32:$src2),
676                               addr:$dst),
677                        (implicit EFLAGS)]>;
678
679 let Uses = [EFLAGS] in {
680 let isTwoAddress = 1 in {
681 def SBB64rr    : RI<0x19, MRMDestReg, (outs GR64:$dst), 
682                     (ins GR64:$src1, GR64:$src2),
683                     "sbb{q}\t{$src2, $dst|$dst, $src2}",
684                     [(set GR64:$dst, (sube GR64:$src1, GR64:$src2))]>;
685
686 let isCodeGenOnly = 1 in {
687 def SBB64rr_REV : RI<0x1B, MRMSrcReg, (outs GR64:$dst), 
688                      (ins GR64:$src1, GR64:$src2),
689                      "sbb{q}\t{$src2, $dst|$dst, $src2}", []>;
690 }
691                      
692 def SBB64rm  : RI<0x1B, MRMSrcMem, (outs GR64:$dst), 
693                   (ins GR64:$src1, i64mem:$src2),
694                   "sbb{q}\t{$src2, $dst|$dst, $src2}",
695                   [(set GR64:$dst, (sube GR64:$src1, (load addr:$src2)))]>;
696
697 def SBB64ri8 : RIi8<0x83, MRM3r, (outs GR64:$dst), 
698                     (ins GR64:$src1, i64i8imm:$src2),
699                     "sbb{q}\t{$src2, $dst|$dst, $src2}",
700                     [(set GR64:$dst, (sube GR64:$src1, i64immSExt8:$src2))]>;
701 def SBB64ri32 : RIi32<0x81, MRM3r, (outs GR64:$dst), 
702                       (ins GR64:$src1, i64i32imm:$src2),
703                       "sbb{q}\t{$src2, $dst|$dst, $src2}",
704                       [(set GR64:$dst, (sube GR64:$src1, i64immSExt32:$src2))]>;
705 } // isTwoAddress
706
707 def SBB64i32 : RIi32<0x1D, RawFrm, (outs), (ins i64i32imm:$src),
708                      "sbb{q}\t{$src, %rax|%rax, $src}", []>;
709
710 def SBB64mr  : RI<0x19, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2), 
711                   "sbb{q}\t{$src2, $dst|$dst, $src2}",
712                   [(store (sube (load addr:$dst), GR64:$src2), addr:$dst)]>;
713 def SBB64mi8 : RIi8<0x83, MRM3m, (outs), (ins i64mem:$dst, i64i8imm :$src2), 
714                     "sbb{q}\t{$src2, $dst|$dst, $src2}",
715                [(store (sube (load addr:$dst), i64immSExt8:$src2), addr:$dst)]>;
716 def SBB64mi32 : RIi32<0x81, MRM3m, (outs), (ins i64mem:$dst, i64i32imm:$src2), 
717                       "sbb{q}\t{$src2, $dst|$dst, $src2}",
718               [(store (sube (load addr:$dst), i64immSExt32:$src2), addr:$dst)]>;
719 } // Uses = [EFLAGS]
720 } // Defs = [EFLAGS]
721
722 // Unsigned multiplication
723 let Defs = [RAX,RDX,EFLAGS], Uses = [RAX], neverHasSideEffects = 1 in {
724 def MUL64r : RI<0xF7, MRM4r, (outs), (ins GR64:$src),
725                 "mul{q}\t$src", []>;         // RAX,RDX = RAX*GR64
726 let mayLoad = 1 in
727 def MUL64m : RI<0xF7, MRM4m, (outs), (ins i64mem:$src),
728                 "mul{q}\t$src", []>;         // RAX,RDX = RAX*[mem64]
729
730 // Signed multiplication
731 def IMUL64r : RI<0xF7, MRM5r, (outs), (ins GR64:$src),
732                  "imul{q}\t$src", []>;         // RAX,RDX = RAX*GR64
733 let mayLoad = 1 in
734 def IMUL64m : RI<0xF7, MRM5m, (outs), (ins i64mem:$src),
735                  "imul{q}\t$src", []>;         // RAX,RDX = RAX*[mem64]
736 }
737
738 let Defs = [EFLAGS] in {
739 let isTwoAddress = 1 in {
740 let isCommutable = 1 in
741 // Register-Register Signed Integer Multiplication
742 def IMUL64rr : RI<0xAF, MRMSrcReg, (outs GR64:$dst),
743                                    (ins GR64:$src1, GR64:$src2),
744                   "imul{q}\t{$src2, $dst|$dst, $src2}",
745                   [(set GR64:$dst, EFLAGS,
746                         (X86smul_flag GR64:$src1, GR64:$src2))]>, TB;
747
748 // Register-Memory Signed Integer Multiplication
749 def IMUL64rm : RI<0xAF, MRMSrcMem, (outs GR64:$dst),
750                                    (ins GR64:$src1, i64mem:$src2),
751                   "imul{q}\t{$src2, $dst|$dst, $src2}",
752                   [(set GR64:$dst, EFLAGS,
753                         (X86smul_flag GR64:$src1, (load addr:$src2)))]>, TB;
754 } // isTwoAddress
755
756 // Suprisingly enough, these are not two address instructions!
757
758 // Register-Integer Signed Integer Multiplication
759 def IMUL64rri8 : RIi8<0x6B, MRMSrcReg,                      // GR64 = GR64*I8
760                       (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
761                       "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
762                       [(set GR64:$dst, EFLAGS,
763                             (X86smul_flag GR64:$src1, i64immSExt8:$src2))]>;
764 def IMUL64rri32 : RIi32<0x69, MRMSrcReg,                    // GR64 = GR64*I32
765                         (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
766                         "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
767                        [(set GR64:$dst, EFLAGS,
768                              (X86smul_flag GR64:$src1, i64immSExt32:$src2))]>;
769
770 // Memory-Integer Signed Integer Multiplication
771 def IMUL64rmi8 : RIi8<0x6B, MRMSrcMem,                      // GR64 = [mem64]*I8
772                       (outs GR64:$dst), (ins i64mem:$src1, i64i8imm: $src2),
773                       "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
774                       [(set GR64:$dst, EFLAGS,
775                             (X86smul_flag (load addr:$src1),
776                                           i64immSExt8:$src2))]>;
777 def IMUL64rmi32 : RIi32<0x69, MRMSrcMem,                   // GR64 = [mem64]*I32
778                         (outs GR64:$dst), (ins i64mem:$src1, i64i32imm:$src2),
779                         "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
780                         [(set GR64:$dst, EFLAGS,
781                               (X86smul_flag (load addr:$src1),
782                                             i64immSExt32:$src2))]>;
783 } // Defs = [EFLAGS]
784
785 // Unsigned division / remainder
786 let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in {
787 // RDX:RAX/r64 = RAX,RDX
788 def DIV64r : RI<0xF7, MRM6r, (outs), (ins GR64:$src),
789                 "div{q}\t$src", []>;
790 // Signed division / remainder
791 // RDX:RAX/r64 = RAX,RDX
792 def IDIV64r: RI<0xF7, MRM7r, (outs), (ins GR64:$src),
793                 "idiv{q}\t$src", []>;
794 let mayLoad = 1 in {
795 // RDX:RAX/[mem64] = RAX,RDX
796 def DIV64m : RI<0xF7, MRM6m, (outs), (ins i64mem:$src),
797                 "div{q}\t$src", []>;
798 // RDX:RAX/[mem64] = RAX,RDX
799 def IDIV64m: RI<0xF7, MRM7m, (outs), (ins i64mem:$src),
800                 "idiv{q}\t$src", []>;
801 }
802 }
803
804 // Unary instructions
805 let Defs = [EFLAGS], CodeSize = 2 in {
806 let isTwoAddress = 1 in
807 def NEG64r : RI<0xF7, MRM3r, (outs GR64:$dst), (ins GR64:$src), "neg{q}\t$dst",
808                 [(set GR64:$dst, (ineg GR64:$src)),
809                  (implicit EFLAGS)]>;
810 def NEG64m : RI<0xF7, MRM3m, (outs), (ins i64mem:$dst), "neg{q}\t$dst",
811                 [(store (ineg (loadi64 addr:$dst)), addr:$dst),
812                  (implicit EFLAGS)]>;
813
814 let isTwoAddress = 1, isConvertibleToThreeAddress = 1 in
815 def INC64r : RI<0xFF, MRM0r, (outs GR64:$dst), (ins GR64:$src), "inc{q}\t$dst",
816                 [(set GR64:$dst, EFLAGS, (X86inc_flag GR64:$src))]>;
817 def INC64m : RI<0xFF, MRM0m, (outs), (ins i64mem:$dst), "inc{q}\t$dst",
818                 [(store (add (loadi64 addr:$dst), 1), addr:$dst),
819                  (implicit EFLAGS)]>;
820
821 let isTwoAddress = 1, isConvertibleToThreeAddress = 1 in
822 def DEC64r : RI<0xFF, MRM1r, (outs GR64:$dst), (ins GR64:$src), "dec{q}\t$dst",
823                 [(set GR64:$dst, EFLAGS, (X86dec_flag GR64:$src))]>;
824 def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
825                 [(store (add (loadi64 addr:$dst), -1), addr:$dst),
826                  (implicit EFLAGS)]>;
827
828 // In 64-bit mode, single byte INC and DEC cannot be encoded.
829 let isTwoAddress = 1, isConvertibleToThreeAddress = 1 in {
830 // Can transform into LEA.
831 def INC64_16r : I<0xFF, MRM0r, (outs GR16:$dst), (ins GR16:$src), 
832                   "inc{w}\t$dst",
833                   [(set GR16:$dst, EFLAGS, (X86inc_flag GR16:$src))]>,
834                 OpSize, Requires<[In64BitMode]>;
835 def INC64_32r : I<0xFF, MRM0r, (outs GR32:$dst), (ins GR32:$src), 
836                   "inc{l}\t$dst",
837                   [(set GR32:$dst, EFLAGS, (X86inc_flag GR32:$src))]>,
838                 Requires<[In64BitMode]>;
839 def DEC64_16r : I<0xFF, MRM1r, (outs GR16:$dst), (ins GR16:$src), 
840                   "dec{w}\t$dst",
841                   [(set GR16:$dst, EFLAGS, (X86dec_flag GR16:$src))]>,
842                 OpSize, Requires<[In64BitMode]>;
843 def DEC64_32r : I<0xFF, MRM1r, (outs GR32:$dst), (ins GR32:$src), 
844                   "dec{l}\t$dst",
845                   [(set GR32:$dst, EFLAGS, (X86dec_flag GR32:$src))]>,
846                 Requires<[In64BitMode]>;
847 } // isConvertibleToThreeAddress
848
849 // These are duplicates of their 32-bit counterparts. Only needed so X86 knows
850 // how to unfold them.
851 let isTwoAddress = 0, CodeSize = 2 in {
852   def INC64_16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst), "inc{w}\t$dst",
853                     [(store (add (loadi16 addr:$dst), 1), addr:$dst),
854                      (implicit EFLAGS)]>,
855                   OpSize, Requires<[In64BitMode]>;
856   def INC64_32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst), "inc{l}\t$dst",
857                     [(store (add (loadi32 addr:$dst), 1), addr:$dst),
858                      (implicit EFLAGS)]>,
859                   Requires<[In64BitMode]>;
860   def DEC64_16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst), "dec{w}\t$dst",
861                     [(store (add (loadi16 addr:$dst), -1), addr:$dst),
862                      (implicit EFLAGS)]>,
863                   OpSize, Requires<[In64BitMode]>;
864   def DEC64_32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst), "dec{l}\t$dst",
865                     [(store (add (loadi32 addr:$dst), -1), addr:$dst),
866                      (implicit EFLAGS)]>,
867                   Requires<[In64BitMode]>;
868 }
869 } // Defs = [EFLAGS], CodeSize
870
871
872 let Defs = [EFLAGS] in {
873 // Shift instructions
874 let isTwoAddress = 1 in {
875 let Uses = [CL] in
876 def SHL64rCL : RI<0xD3, MRM4r, (outs GR64:$dst), (ins GR64:$src),
877                   "shl{q}\t{%cl, $dst|$dst, %CL}",
878                   [(set GR64:$dst, (shl GR64:$src, CL))]>;
879 let isConvertibleToThreeAddress = 1 in   // Can transform into LEA.
880 def SHL64ri  : RIi8<0xC1, MRM4r, (outs GR64:$dst), 
881                     (ins GR64:$src1, i8imm:$src2),
882                     "shl{q}\t{$src2, $dst|$dst, $src2}",
883                     [(set GR64:$dst, (shl GR64:$src1, (i8 imm:$src2)))]>;
884 // NOTE: We don't include patterns for shifts of a register by one, because
885 // 'add reg,reg' is cheaper.
886 def SHL64r1  : RI<0xD1, MRM4r, (outs GR64:$dst), (ins GR64:$src1),
887                  "shl{q}\t$dst", []>;
888 } // isTwoAddress
889
890 let Uses = [CL] in
891 def SHL64mCL : RI<0xD3, MRM4m, (outs), (ins i64mem:$dst),
892                   "shl{q}\t{%cl, $dst|$dst, %CL}",
893                   [(store (shl (loadi64 addr:$dst), CL), addr:$dst)]>;
894 def SHL64mi : RIi8<0xC1, MRM4m, (outs), (ins i64mem:$dst, i8imm:$src),
895                   "shl{q}\t{$src, $dst|$dst, $src}",
896                  [(store (shl (loadi64 addr:$dst), (i8 imm:$src)), addr:$dst)]>;
897 def SHL64m1 : RI<0xD1, MRM4m, (outs), (ins i64mem:$dst),
898                   "shl{q}\t$dst",
899                  [(store (shl (loadi64 addr:$dst), (i8 1)), addr:$dst)]>;
900
901 let isTwoAddress = 1 in {
902 let Uses = [CL] in
903 def SHR64rCL : RI<0xD3, MRM5r, (outs GR64:$dst), (ins GR64:$src),
904                   "shr{q}\t{%cl, $dst|$dst, %CL}",
905                   [(set GR64:$dst, (srl GR64:$src, CL))]>;
906 def SHR64ri : RIi8<0xC1, MRM5r, (outs GR64:$dst), (ins GR64:$src1, i8imm:$src2),
907                   "shr{q}\t{$src2, $dst|$dst, $src2}",
908                   [(set GR64:$dst, (srl GR64:$src1, (i8 imm:$src2)))]>;
909 def SHR64r1  : RI<0xD1, MRM5r, (outs GR64:$dst), (ins GR64:$src1),
910                  "shr{q}\t$dst",
911                  [(set GR64:$dst, (srl GR64:$src1, (i8 1)))]>;
912 } // isTwoAddress
913
914 let Uses = [CL] in
915 def SHR64mCL : RI<0xD3, MRM5m, (outs), (ins i64mem:$dst),
916                   "shr{q}\t{%cl, $dst|$dst, %CL}",
917                   [(store (srl (loadi64 addr:$dst), CL), addr:$dst)]>;
918 def SHR64mi : RIi8<0xC1, MRM5m, (outs), (ins i64mem:$dst, i8imm:$src),
919                   "shr{q}\t{$src, $dst|$dst, $src}",
920                  [(store (srl (loadi64 addr:$dst), (i8 imm:$src)), addr:$dst)]>;
921 def SHR64m1 : RI<0xD1, MRM5m, (outs), (ins i64mem:$dst),
922                   "shr{q}\t$dst",
923                  [(store (srl (loadi64 addr:$dst), (i8 1)), addr:$dst)]>;
924
925 let isTwoAddress = 1 in {
926 let Uses = [CL] in
927 def SAR64rCL : RI<0xD3, MRM7r, (outs GR64:$dst), (ins GR64:$src),
928                  "sar{q}\t{%cl, $dst|$dst, %CL}",
929                  [(set GR64:$dst, (sra GR64:$src, CL))]>;
930 def SAR64ri  : RIi8<0xC1, MRM7r, (outs GR64:$dst),
931                     (ins GR64:$src1, i8imm:$src2),
932                     "sar{q}\t{$src2, $dst|$dst, $src2}",
933                     [(set GR64:$dst, (sra GR64:$src1, (i8 imm:$src2)))]>;
934 def SAR64r1  : RI<0xD1, MRM7r, (outs GR64:$dst), (ins GR64:$src1),
935                  "sar{q}\t$dst",
936                  [(set GR64:$dst, (sra GR64:$src1, (i8 1)))]>;
937 } // isTwoAddress
938
939 let Uses = [CL] in
940 def SAR64mCL : RI<0xD3, MRM7m, (outs), (ins i64mem:$dst), 
941                  "sar{q}\t{%cl, $dst|$dst, %CL}",
942                  [(store (sra (loadi64 addr:$dst), CL), addr:$dst)]>;
943 def SAR64mi  : RIi8<0xC1, MRM7m, (outs), (ins i64mem:$dst, i8imm:$src),
944                     "sar{q}\t{$src, $dst|$dst, $src}",
945                  [(store (sra (loadi64 addr:$dst), (i8 imm:$src)), addr:$dst)]>;
946 def SAR64m1 : RI<0xD1, MRM7m, (outs), (ins i64mem:$dst),
947                   "sar{q}\t$dst",
948                  [(store (sra (loadi64 addr:$dst), (i8 1)), addr:$dst)]>;
949
950 // Rotate instructions
951
952 let isTwoAddress = 1 in {
953 def RCL64r1 : RI<0xD1, MRM2r, (outs GR64:$dst), (ins GR64:$src),
954                  "rcl{q}\t{1, $dst|$dst, 1}", []>;
955 def RCL64ri : RIi8<0xC1, MRM2r, (outs GR64:$dst), (ins GR64:$src, i8imm:$cnt),
956                    "rcl{q}\t{$cnt, $dst|$dst, $cnt}", []>;
957
958 def RCR64r1 : RI<0xD1, MRM3r, (outs GR64:$dst), (ins GR64:$src),
959                  "rcr{q}\t{1, $dst|$dst, 1}", []>;
960 def RCR64ri : RIi8<0xC1, MRM3r, (outs GR64:$dst), (ins GR64:$src, i8imm:$cnt),
961                    "rcr{q}\t{$cnt, $dst|$dst, $cnt}", []>;
962
963 let Uses = [CL] in {
964 def RCL64rCL : RI<0xD3, MRM2r, (outs GR64:$dst), (ins GR64:$src),
965                   "rcl{q}\t{%cl, $dst|$dst, CL}", []>;
966 def RCR64rCL : RI<0xD3, MRM3r, (outs GR64:$dst), (ins GR64:$src),
967                   "rcr{q}\t{%cl, $dst|$dst, CL}", []>;
968 }
969 }
970
971 let isTwoAddress = 0 in {
972 def RCL64m1 : RI<0xD1, MRM2m, (outs), (ins i64mem:$dst),
973                  "rcl{q}\t{1, $dst|$dst, 1}", []>;
974 def RCL64mi : RIi8<0xC1, MRM2m, (outs), (ins i64mem:$dst, i8imm:$cnt),
975                    "rcl{q}\t{$cnt, $dst|$dst, $cnt}", []>;
976 def RCR64m1 : RI<0xD1, MRM3m, (outs), (ins i64mem:$dst),
977                  "rcr{q}\t{1, $dst|$dst, 1}", []>;
978 def RCR64mi : RIi8<0xC1, MRM3m, (outs), (ins i64mem:$dst, i8imm:$cnt),
979                    "rcr{q}\t{$cnt, $dst|$dst, $cnt}", []>;
980
981 let Uses = [CL] in {
982 def RCL64mCL : RI<0xD3, MRM2m, (outs), (ins i64mem:$dst),
983                   "rcl{q}\t{%cl, $dst|$dst, CL}", []>;
984 def RCR64mCL : RI<0xD3, MRM3m, (outs), (ins i64mem:$dst),
985                   "rcr{q}\t{%cl, $dst|$dst, CL}", []>;
986 }
987 }
988
989 let isTwoAddress = 1 in {
990 let Uses = [CL] in
991 def ROL64rCL : RI<0xD3, MRM0r, (outs GR64:$dst), (ins GR64:$src),
992                   "rol{q}\t{%cl, $dst|$dst, %CL}",
993                   [(set GR64:$dst, (rotl GR64:$src, CL))]>;
994 def ROL64ri  : RIi8<0xC1, MRM0r, (outs GR64:$dst), 
995                     (ins GR64:$src1, i8imm:$src2),
996                     "rol{q}\t{$src2, $dst|$dst, $src2}",
997                     [(set GR64:$dst, (rotl GR64:$src1, (i8 imm:$src2)))]>;
998 def ROL64r1  : RI<0xD1, MRM0r, (outs GR64:$dst), (ins GR64:$src1),
999                   "rol{q}\t$dst",
1000                   [(set GR64:$dst, (rotl GR64:$src1, (i8 1)))]>;
1001 } // isTwoAddress
1002
1003 let Uses = [CL] in
1004 def ROL64mCL :  RI<0xD3, MRM0m, (outs), (ins i64mem:$dst),
1005                    "rol{q}\t{%cl, $dst|$dst, %CL}",
1006                    [(store (rotl (loadi64 addr:$dst), CL), addr:$dst)]>;
1007 def ROL64mi  : RIi8<0xC1, MRM0m, (outs), (ins i64mem:$dst, i8imm:$src),
1008                     "rol{q}\t{$src, $dst|$dst, $src}",
1009                 [(store (rotl (loadi64 addr:$dst), (i8 imm:$src)), addr:$dst)]>;
1010 def ROL64m1  : RI<0xD1, MRM0m, (outs), (ins i64mem:$dst),
1011                  "rol{q}\t$dst",
1012                [(store (rotl (loadi64 addr:$dst), (i8 1)), addr:$dst)]>;
1013
1014 let isTwoAddress = 1 in {
1015 let Uses = [CL] in
1016 def ROR64rCL : RI<0xD3, MRM1r, (outs GR64:$dst), (ins GR64:$src),
1017                   "ror{q}\t{%cl, $dst|$dst, %CL}",
1018                   [(set GR64:$dst, (rotr GR64:$src, CL))]>;
1019 def ROR64ri  : RIi8<0xC1, MRM1r, (outs GR64:$dst), 
1020                     (ins GR64:$src1, i8imm:$src2),
1021                     "ror{q}\t{$src2, $dst|$dst, $src2}",
1022                     [(set GR64:$dst, (rotr GR64:$src1, (i8 imm:$src2)))]>;
1023 def ROR64r1  : RI<0xD1, MRM1r, (outs GR64:$dst), (ins GR64:$src1),
1024                   "ror{q}\t$dst",
1025                   [(set GR64:$dst, (rotr GR64:$src1, (i8 1)))]>;
1026 } // isTwoAddress
1027
1028 let Uses = [CL] in
1029 def ROR64mCL : RI<0xD3, MRM1m, (outs), (ins i64mem:$dst), 
1030                   "ror{q}\t{%cl, $dst|$dst, %CL}",
1031                   [(store (rotr (loadi64 addr:$dst), CL), addr:$dst)]>;
1032 def ROR64mi  : RIi8<0xC1, MRM1m, (outs), (ins i64mem:$dst, i8imm:$src),
1033                     "ror{q}\t{$src, $dst|$dst, $src}",
1034                 [(store (rotr (loadi64 addr:$dst), (i8 imm:$src)), addr:$dst)]>;
1035 def ROR64m1  : RI<0xD1, MRM1m, (outs), (ins i64mem:$dst),
1036                  "ror{q}\t$dst",
1037                [(store (rotr (loadi64 addr:$dst), (i8 1)), addr:$dst)]>;
1038
1039 // Double shift instructions (generalizations of rotate)
1040 let isTwoAddress = 1 in {
1041 let Uses = [CL] in {
1042 def SHLD64rrCL : RI<0xA5, MRMDestReg, (outs GR64:$dst), 
1043                     (ins GR64:$src1, GR64:$src2),
1044                     "shld{q}\t{%cl, $src2, $dst|$dst, $src2, %CL}",
1045                     [(set GR64:$dst, (X86shld GR64:$src1, GR64:$src2, CL))]>, 
1046                     TB;
1047 def SHRD64rrCL : RI<0xAD, MRMDestReg, (outs GR64:$dst), 
1048                     (ins GR64:$src1, GR64:$src2),
1049                     "shrd{q}\t{%cl, $src2, $dst|$dst, $src2, %CL}",
1050                     [(set GR64:$dst, (X86shrd GR64:$src1, GR64:$src2, CL))]>, 
1051                     TB;
1052 }
1053
1054 let isCommutable = 1 in {  // FIXME: Update X86InstrInfo::commuteInstruction
1055 def SHLD64rri8 : RIi8<0xA4, MRMDestReg,
1056                       (outs GR64:$dst), 
1057                       (ins GR64:$src1, GR64:$src2, i8imm:$src3),
1058                       "shld{q}\t{$src3, $src2, $dst|$dst, $src2, $src3}",
1059                       [(set GR64:$dst, (X86shld GR64:$src1, GR64:$src2,
1060                                        (i8 imm:$src3)))]>,
1061                  TB;
1062 def SHRD64rri8 : RIi8<0xAC, MRMDestReg,
1063                       (outs GR64:$dst), 
1064                       (ins GR64:$src1, GR64:$src2, i8imm:$src3),
1065                       "shrd{q}\t{$src3, $src2, $dst|$dst, $src2, $src3}",
1066                       [(set GR64:$dst, (X86shrd GR64:$src1, GR64:$src2,
1067                                        (i8 imm:$src3)))]>,
1068                  TB;
1069 } // isCommutable
1070 } // isTwoAddress
1071
1072 let Uses = [CL] in {
1073 def SHLD64mrCL : RI<0xA5, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
1074                     "shld{q}\t{%cl, $src2, $dst|$dst, $src2, %CL}",
1075                     [(store (X86shld (loadi64 addr:$dst), GR64:$src2, CL),
1076                       addr:$dst)]>, TB;
1077 def SHRD64mrCL : RI<0xAD, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
1078                     "shrd{q}\t{%cl, $src2, $dst|$dst, $src2, %CL}",
1079                     [(store (X86shrd (loadi64 addr:$dst), GR64:$src2, CL),
1080                       addr:$dst)]>, TB;
1081 }
1082 def SHLD64mri8 : RIi8<0xA4, MRMDestMem,
1083                       (outs), (ins i64mem:$dst, GR64:$src2, i8imm:$src3),
1084                       "shld{q}\t{$src3, $src2, $dst|$dst, $src2, $src3}",
1085                       [(store (X86shld (loadi64 addr:$dst), GR64:$src2,
1086                                        (i8 imm:$src3)), addr:$dst)]>,
1087                  TB;
1088 def SHRD64mri8 : RIi8<0xAC, MRMDestMem, 
1089                       (outs), (ins i64mem:$dst, GR64:$src2, i8imm:$src3),
1090                       "shrd{q}\t{$src3, $src2, $dst|$dst, $src2, $src3}",
1091                       [(store (X86shrd (loadi64 addr:$dst), GR64:$src2,
1092                                        (i8 imm:$src3)), addr:$dst)]>,
1093                  TB;
1094 } // Defs = [EFLAGS]
1095
1096 //===----------------------------------------------------------------------===//
1097 //  Logical Instructions...
1098 //
1099
1100 let isTwoAddress = 1 , AddedComplexity = 15 in
1101 def NOT64r : RI<0xF7, MRM2r, (outs GR64:$dst), (ins GR64:$src), "not{q}\t$dst",
1102                 [(set GR64:$dst, (not GR64:$src))]>;
1103 def NOT64m : RI<0xF7, MRM2m, (outs), (ins i64mem:$dst), "not{q}\t$dst",
1104                 [(store (not (loadi64 addr:$dst)), addr:$dst)]>;
1105
1106 let Defs = [EFLAGS] in {
1107 def AND64i32 : RIi32<0x25, RawFrm, (outs), (ins i64i32imm:$src),
1108                      "and{q}\t{$src, %rax|%rax, $src}", []>;
1109
1110 let isTwoAddress = 1 in {
1111 let isCommutable = 1 in
1112 def AND64rr  : RI<0x21, MRMDestReg, 
1113                   (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
1114                   "and{q}\t{$src2, $dst|$dst, $src2}",
1115                   [(set GR64:$dst, EFLAGS,
1116                         (X86and_flag GR64:$src1, GR64:$src2))]>;
1117 let isCodeGenOnly = 1 in {
1118 def AND64rr_REV : RI<0x23, MRMSrcReg, (outs GR64:$dst), 
1119                      (ins GR64:$src1, GR64:$src2),
1120                      "and{q}\t{$src2, $dst|$dst, $src2}", []>;
1121 }
1122 def AND64rm  : RI<0x23, MRMSrcMem,
1123                   (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
1124                   "and{q}\t{$src2, $dst|$dst, $src2}",
1125                   [(set GR64:$dst, EFLAGS,
1126                         (X86and_flag GR64:$src1, (load addr:$src2)))]>;
1127 def AND64ri8 : RIi8<0x83, MRM4r, 
1128                     (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
1129                     "and{q}\t{$src2, $dst|$dst, $src2}",
1130                     [(set GR64:$dst, EFLAGS,
1131                           (X86and_flag GR64:$src1, i64immSExt8:$src2))]>;
1132 def AND64ri32  : RIi32<0x81, MRM4r, 
1133                        (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
1134                        "and{q}\t{$src2, $dst|$dst, $src2}",
1135                        [(set GR64:$dst, EFLAGS,
1136                              (X86and_flag GR64:$src1, i64immSExt32:$src2))]>;
1137 } // isTwoAddress
1138
1139 def AND64mr  : RI<0x21, MRMDestMem,
1140                   (outs), (ins i64mem:$dst, GR64:$src),
1141                   "and{q}\t{$src, $dst|$dst, $src}",
1142                   [(store (and (load addr:$dst), GR64:$src), addr:$dst),
1143                    (implicit EFLAGS)]>;
1144 def AND64mi8 : RIi8<0x83, MRM4m,
1145                     (outs), (ins i64mem:$dst, i64i8imm :$src),
1146                     "and{q}\t{$src, $dst|$dst, $src}",
1147                  [(store (and (load addr:$dst), i64immSExt8:$src), addr:$dst),
1148                   (implicit EFLAGS)]>;
1149 def AND64mi32  : RIi32<0x81, MRM4m,
1150                        (outs), (ins i64mem:$dst, i64i32imm:$src),
1151                        "and{q}\t{$src, $dst|$dst, $src}",
1152              [(store (and (loadi64 addr:$dst), i64immSExt32:$src), addr:$dst),
1153               (implicit EFLAGS)]>;
1154
1155 let isTwoAddress = 1 in {
1156 let isCommutable = 1 in
1157 def OR64rr   : RI<0x09, MRMDestReg, (outs GR64:$dst), 
1158                   (ins GR64:$src1, GR64:$src2),
1159                   "or{q}\t{$src2, $dst|$dst, $src2}",
1160                   [(set GR64:$dst, EFLAGS,
1161                         (X86or_flag GR64:$src1, GR64:$src2))]>;
1162 let isCodeGenOnly = 1 in {
1163 def OR64rr_REV : RI<0x0B, MRMSrcReg, (outs GR64:$dst), 
1164                     (ins GR64:$src1, GR64:$src2),
1165                     "or{q}\t{$src2, $dst|$dst, $src2}", []>;
1166 }
1167 def OR64rm   : RI<0x0B, MRMSrcMem , (outs GR64:$dst),
1168                   (ins GR64:$src1, i64mem:$src2),
1169                   "or{q}\t{$src2, $dst|$dst, $src2}",
1170                   [(set GR64:$dst, EFLAGS,
1171                         (X86or_flag GR64:$src1, (load addr:$src2)))]>;
1172 def OR64ri8  : RIi8<0x83, MRM1r, (outs GR64:$dst),
1173                     (ins GR64:$src1, i64i8imm:$src2),
1174                     "or{q}\t{$src2, $dst|$dst, $src2}",
1175                    [(set GR64:$dst, EFLAGS,
1176                          (X86or_flag GR64:$src1, i64immSExt8:$src2))]>;
1177 def OR64ri32 : RIi32<0x81, MRM1r, (outs GR64:$dst),
1178                      (ins GR64:$src1, i64i32imm:$src2),
1179                      "or{q}\t{$src2, $dst|$dst, $src2}",
1180                   [(set GR64:$dst, EFLAGS,
1181                         (X86or_flag GR64:$src1, i64immSExt32:$src2))]>;
1182 } // isTwoAddress
1183
1184 def OR64mr : RI<0x09, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src),
1185                 "or{q}\t{$src, $dst|$dst, $src}",
1186                 [(store (or (load addr:$dst), GR64:$src), addr:$dst),
1187                  (implicit EFLAGS)]>;
1188 def OR64mi8  : RIi8<0x83, MRM1m, (outs), (ins i64mem:$dst, i64i8imm:$src),
1189                     "or{q}\t{$src, $dst|$dst, $src}",
1190                   [(store (or (load addr:$dst), i64immSExt8:$src), addr:$dst),
1191                    (implicit EFLAGS)]>;
1192 def OR64mi32 : RIi32<0x81, MRM1m, (outs), (ins i64mem:$dst, i64i32imm:$src),
1193                      "or{q}\t{$src, $dst|$dst, $src}",
1194               [(store (or (loadi64 addr:$dst), i64immSExt32:$src), addr:$dst),
1195                (implicit EFLAGS)]>;
1196
1197 def OR64i32 : RIi32<0x0D, RawFrm, (outs), (ins i64i32imm:$src),
1198                     "or{q}\t{$src, %rax|%rax, $src}", []>;
1199
1200 let isTwoAddress = 1 in {
1201 let isCommutable = 1 in
1202 def XOR64rr  : RI<0x31, MRMDestReg,  (outs GR64:$dst), 
1203                   (ins GR64:$src1, GR64:$src2), 
1204                   "xor{q}\t{$src2, $dst|$dst, $src2}",
1205                   [(set GR64:$dst, EFLAGS,
1206                         (X86xor_flag GR64:$src1, GR64:$src2))]>;
1207 let isCodeGenOnly = 1 in {
1208 def XOR64rr_REV : RI<0x33, MRMSrcReg, (outs GR64:$dst), 
1209                      (ins GR64:$src1, GR64:$src2),
1210                     "xor{q}\t{$src2, $dst|$dst, $src2}", []>;
1211 }
1212 def XOR64rm  : RI<0x33, MRMSrcMem, (outs GR64:$dst), 
1213                   (ins GR64:$src1, i64mem:$src2), 
1214                   "xor{q}\t{$src2, $dst|$dst, $src2}",
1215                   [(set GR64:$dst, EFLAGS,
1216                         (X86xor_flag GR64:$src1, (load addr:$src2)))]>;
1217 def XOR64ri8 : RIi8<0x83, MRM6r,  (outs GR64:$dst), 
1218                     (ins GR64:$src1, i64i8imm:$src2),
1219                     "xor{q}\t{$src2, $dst|$dst, $src2}",
1220                     [(set GR64:$dst, EFLAGS,
1221                           (X86xor_flag GR64:$src1, i64immSExt8:$src2))]>;
1222 def XOR64ri32 : RIi32<0x81, MRM6r, 
1223                       (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2), 
1224                       "xor{q}\t{$src2, $dst|$dst, $src2}",
1225                       [(set GR64:$dst, EFLAGS,
1226                             (X86xor_flag GR64:$src1, i64immSExt32:$src2))]>;
1227 } // isTwoAddress
1228
1229 def XOR64mr  : RI<0x31, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src),
1230                   "xor{q}\t{$src, $dst|$dst, $src}",
1231                   [(store (xor (load addr:$dst), GR64:$src), addr:$dst),
1232                    (implicit EFLAGS)]>;
1233 def XOR64mi8 : RIi8<0x83, MRM6m, (outs), (ins i64mem:$dst, i64i8imm :$src),
1234                     "xor{q}\t{$src, $dst|$dst, $src}",
1235                  [(store (xor (load addr:$dst), i64immSExt8:$src), addr:$dst),
1236                   (implicit EFLAGS)]>;
1237 def XOR64mi32 : RIi32<0x81, MRM6m, (outs), (ins i64mem:$dst, i64i32imm:$src),
1238                       "xor{q}\t{$src, $dst|$dst, $src}",
1239              [(store (xor (loadi64 addr:$dst), i64immSExt32:$src), addr:$dst),
1240               (implicit EFLAGS)]>;
1241               
1242 def XOR64i32 : RIi32<0x35, RawFrm, (outs), (ins i64i32imm:$src),
1243                      "xor{q}\t{$src, %rax|%rax, $src}", []>;
1244
1245 } // Defs = [EFLAGS]
1246
1247 //===----------------------------------------------------------------------===//
1248 //  Comparison Instructions...
1249 //
1250
1251 // Integer comparison
1252 let Defs = [EFLAGS] in {
1253 def TEST64i32 : RIi32<0xa9, RawFrm, (outs), (ins i64i32imm:$src),
1254                       "test{q}\t{$src, %rax|%rax, $src}", []>;
1255 let isCommutable = 1 in
1256 def TEST64rr : RI<0x85, MRMSrcReg, (outs), (ins GR64:$src1, GR64:$src2),
1257                   "test{q}\t{$src2, $src1|$src1, $src2}",
1258                   [(set EFLAGS, (X86cmp (and GR64:$src1, GR64:$src2), 0))]>;
1259 def TEST64rm : RI<0x85, MRMSrcMem, (outs), (ins GR64:$src1, i64mem:$src2),
1260                   "test{q}\t{$src2, $src1|$src1, $src2}",
1261                   [(set EFLAGS, (X86cmp (and GR64:$src1, (loadi64 addr:$src2)),
1262                     0))]>;
1263 def TEST64ri32 : RIi32<0xF7, MRM0r, (outs),
1264                                         (ins GR64:$src1, i64i32imm:$src2),
1265                        "test{q}\t{$src2, $src1|$src1, $src2}",
1266                      [(set EFLAGS, (X86cmp (and GR64:$src1, i64immSExt32:$src2),
1267                       0))]>;
1268 def TEST64mi32 : RIi32<0xF7, MRM0m, (outs),
1269                                         (ins i64mem:$src1, i64i32imm:$src2),
1270                        "test{q}\t{$src2, $src1|$src1, $src2}",
1271                 [(set EFLAGS, (X86cmp (and (loadi64 addr:$src1),
1272                                            i64immSExt32:$src2), 0))]>;
1273
1274
1275 def CMP64i32 : RIi32<0x3D, RawFrm, (outs), (ins i64i32imm:$src),
1276                      "cmp{q}\t{$src, %rax|%rax, $src}", []>;
1277 def CMP64rr : RI<0x39, MRMDestReg, (outs), (ins GR64:$src1, GR64:$src2),
1278                  "cmp{q}\t{$src2, $src1|$src1, $src2}",
1279                  [(set EFLAGS, (X86cmp GR64:$src1, GR64:$src2))]>;
1280
1281 // These are alternate spellings for use by the disassembler, we mark them as
1282 // code gen only to ensure they aren't matched by the assembler.
1283 let isCodeGenOnly = 1 in {
1284   def CMP64mrmrr : RI<0x3B, MRMSrcReg, (outs), (ins GR64:$src1, GR64:$src2),
1285                       "cmp{q}\t{$src2, $src1|$src1, $src2}", []>;
1286 }
1287
1288 def CMP64mr : RI<0x39, MRMDestMem, (outs), (ins i64mem:$src1, GR64:$src2),
1289                  "cmp{q}\t{$src2, $src1|$src1, $src2}",
1290                  [(set EFLAGS, (X86cmp (loadi64 addr:$src1), GR64:$src2))]>;
1291 def CMP64rm : RI<0x3B, MRMSrcMem, (outs), (ins GR64:$src1, i64mem:$src2),
1292                  "cmp{q}\t{$src2, $src1|$src1, $src2}",
1293                  [(set EFLAGS, (X86cmp GR64:$src1, (loadi64 addr:$src2)))]>;
1294 def CMP64ri8 : RIi8<0x83, MRM7r, (outs), (ins GR64:$src1, i64i8imm:$src2),
1295                     "cmp{q}\t{$src2, $src1|$src1, $src2}",
1296                     [(set EFLAGS, (X86cmp GR64:$src1, i64immSExt8:$src2))]>;
1297 def CMP64ri32 : RIi32<0x81, MRM7r, (outs), (ins GR64:$src1, i64i32imm:$src2),
1298                       "cmp{q}\t{$src2, $src1|$src1, $src2}",
1299                       [(set EFLAGS, (X86cmp GR64:$src1, i64immSExt32:$src2))]>;
1300 def CMP64mi8 : RIi8<0x83, MRM7m, (outs), (ins i64mem:$src1, i64i8imm:$src2),
1301                     "cmp{q}\t{$src2, $src1|$src1, $src2}",
1302                     [(set EFLAGS, (X86cmp (loadi64 addr:$src1),
1303                                           i64immSExt8:$src2))]>;
1304 def CMP64mi32 : RIi32<0x81, MRM7m, (outs),
1305                                        (ins i64mem:$src1, i64i32imm:$src2),
1306                       "cmp{q}\t{$src2, $src1|$src1, $src2}",
1307                       [(set EFLAGS, (X86cmp (loadi64 addr:$src1),
1308                                             i64immSExt32:$src2))]>;
1309 } // Defs = [EFLAGS]
1310
1311 // Bit tests.
1312 // TODO: BTC, BTR, and BTS
1313 let Defs = [EFLAGS] in {
1314 def BT64rr : RI<0xA3, MRMDestReg, (outs), (ins GR64:$src1, GR64:$src2),
1315                "bt{q}\t{$src2, $src1|$src1, $src2}",
1316                [(set EFLAGS, (X86bt GR64:$src1, GR64:$src2))]>, TB;
1317
1318 // Unlike with the register+register form, the memory+register form of the
1319 // bt instruction does not ignore the high bits of the index. From ISel's
1320 // perspective, this is pretty bizarre. Disable these instructions for now.
1321 def BT64mr : RI<0xA3, MRMDestMem, (outs), (ins i64mem:$src1, GR64:$src2),
1322                "bt{q}\t{$src2, $src1|$src1, $src2}",
1323 //               [(X86bt (loadi64 addr:$src1), GR64:$src2),
1324 //                (implicit EFLAGS)]
1325                 []
1326                 >, TB;
1327
1328 def BT64ri8 : Ii8<0xBA, MRM4r, (outs), (ins GR64:$src1, i64i8imm:$src2),
1329                 "bt{q}\t{$src2, $src1|$src1, $src2}",
1330                 [(set EFLAGS, (X86bt GR64:$src1, i64immSExt8:$src2))]>, TB,
1331                 REX_W;
1332 // Note that these instructions don't need FastBTMem because that
1333 // only applies when the other operand is in a register. When it's
1334 // an immediate, bt is still fast.
1335 def BT64mi8 : Ii8<0xBA, MRM4m, (outs), (ins i64mem:$src1, i64i8imm:$src2),
1336                 "bt{q}\t{$src2, $src1|$src1, $src2}",
1337                 [(set EFLAGS, (X86bt (loadi64 addr:$src1),
1338                                      i64immSExt8:$src2))]>, TB;
1339
1340 def BTC64rr : RI<0xBB, MRMDestReg, (outs), (ins GR64:$src1, GR64:$src2),
1341                  "btc{q}\t{$src2, $src1|$src1, $src2}", []>, TB;
1342 def BTC64mr : RI<0xBB, MRMDestMem, (outs), (ins i64mem:$src1, GR64:$src2),
1343                  "btc{q}\t{$src2, $src1|$src1, $src2}", []>, TB;
1344 def BTC64ri8 : RIi8<0xBA, MRM7r, (outs), (ins GR64:$src1, i64i8imm:$src2),
1345                     "btc{q}\t{$src2, $src1|$src1, $src2}", []>, TB;
1346 def BTC64mi8 : RIi8<0xBA, MRM7m, (outs), (ins i64mem:$src1, i64i8imm:$src2),
1347                     "btc{q}\t{$src2, $src1|$src1, $src2}", []>, TB;
1348
1349 def BTR64rr : RI<0xB3, MRMDestReg, (outs), (ins GR64:$src1, GR64:$src2),
1350                  "btr{q}\t{$src2, $src1|$src1, $src2}", []>, TB;
1351 def BTR64mr : RI<0xB3, MRMDestMem, (outs), (ins i64mem:$src1, GR64:$src2),
1352                  "btr{q}\t{$src2, $src1|$src1, $src2}", []>, TB;
1353 def BTR64ri8 : RIi8<0xBA, MRM6r, (outs), (ins GR64:$src1, i64i8imm:$src2),
1354                     "btr{q}\t{$src2, $src1|$src1, $src2}", []>, TB;
1355 def BTR64mi8 : RIi8<0xBA, MRM6m, (outs), (ins i64mem:$src1, i64i8imm:$src2),
1356                     "btr{q}\t{$src2, $src1|$src1, $src2}", []>, TB;
1357
1358 def BTS64rr : RI<0xAB, MRMDestReg, (outs), (ins GR64:$src1, GR64:$src2),
1359                  "bts{q}\t{$src2, $src1|$src1, $src2}", []>, TB;
1360 def BTS64mr : RI<0xAB, MRMDestMem, (outs), (ins i64mem:$src1, GR64:$src2),
1361                  "bts{q}\t{$src2, $src1|$src1, $src2}", []>, TB;
1362 def BTS64ri8 : RIi8<0xBA, MRM5r, (outs), (ins GR64:$src1, i64i8imm:$src2),
1363                     "bts{q}\t{$src2, $src1|$src1, $src2}", []>, TB;
1364 def BTS64mi8 : RIi8<0xBA, MRM5m, (outs), (ins i64mem:$src1, i64i8imm:$src2),
1365                     "bts{q}\t{$src2, $src1|$src1, $src2}", []>, TB;
1366 } // Defs = [EFLAGS]
1367
1368 // Conditional moves
1369 let Uses = [EFLAGS], isTwoAddress = 1 in {
1370 let isCommutable = 1 in {
1371 def CMOVB64rr : RI<0x42, MRMSrcReg,       // if <u, GR64 = GR64
1372                    (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
1373                    "cmovb{q}\t{$src2, $dst|$dst, $src2}",
1374                    [(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
1375                                      X86_COND_B, EFLAGS))]>, TB;
1376 def CMOVAE64rr: RI<0x43, MRMSrcReg,       // if >=u, GR64 = GR64
1377                    (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
1378                    "cmovae{q}\t{$src2, $dst|$dst, $src2}",
1379                    [(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
1380                                      X86_COND_AE, EFLAGS))]>, TB;
1381 def CMOVE64rr : RI<0x44, MRMSrcReg,       // if ==, GR64 = GR64
1382                    (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
1383                    "cmove{q}\t{$src2, $dst|$dst, $src2}",
1384                    [(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
1385                                      X86_COND_E, EFLAGS))]>, TB;
1386 def CMOVNE64rr: RI<0x45, MRMSrcReg,       // if !=, GR64 = GR64
1387                    (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
1388                    "cmovne{q}\t{$src2, $dst|$dst, $src2}",
1389                    [(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
1390                                     X86_COND_NE, EFLAGS))]>, TB;
1391 def CMOVBE64rr: RI<0x46, MRMSrcReg,       // if <=u, GR64 = GR64
1392                    (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
1393                    "cmovbe{q}\t{$src2, $dst|$dst, $src2}",
1394                    [(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
1395                                     X86_COND_BE, EFLAGS))]>, TB;
1396 def CMOVA64rr : RI<0x47, MRMSrcReg,       // if >u, GR64 = GR64
1397                    (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
1398                    "cmova{q}\t{$src2, $dst|$dst, $src2}",
1399                    [(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
1400                                     X86_COND_A, EFLAGS))]>, TB;
1401 def CMOVL64rr : RI<0x4C, MRMSrcReg,       // if <s, GR64 = GR64
1402                    (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
1403                    "cmovl{q}\t{$src2, $dst|$dst, $src2}",
1404                    [(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
1405                                     X86_COND_L, EFLAGS))]>, TB;
1406 def CMOVGE64rr: RI<0x4D, MRMSrcReg,       // if >=s, GR64 = GR64
1407                    (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
1408                    "cmovge{q}\t{$src2, $dst|$dst, $src2}",
1409                    [(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
1410                                     X86_COND_GE, EFLAGS))]>, TB;
1411 def CMOVLE64rr: RI<0x4E, MRMSrcReg,       // if <=s, GR64 = GR64
1412                    (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
1413                    "cmovle{q}\t{$src2, $dst|$dst, $src2}",
1414                    [(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
1415                                     X86_COND_LE, EFLAGS))]>, TB;
1416 def CMOVG64rr : RI<0x4F, MRMSrcReg,       // if >s, GR64 = GR64
1417                    (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
1418                    "cmovg{q}\t{$src2, $dst|$dst, $src2}",
1419                    [(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
1420                                     X86_COND_G, EFLAGS))]>, TB;
1421 def CMOVS64rr : RI<0x48, MRMSrcReg,       // if signed, GR64 = GR64
1422                    (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
1423                    "cmovs{q}\t{$src2, $dst|$dst, $src2}",
1424                    [(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
1425                                     X86_COND_S, EFLAGS))]>, TB;
1426 def CMOVNS64rr: RI<0x49, MRMSrcReg,       // if !signed, GR64 = GR64
1427                    (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
1428                    "cmovns{q}\t{$src2, $dst|$dst, $src2}",
1429                    [(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
1430                                     X86_COND_NS, EFLAGS))]>, TB;
1431 def CMOVP64rr : RI<0x4A, MRMSrcReg,       // if parity, GR64 = GR64
1432                    (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
1433                    "cmovp{q}\t{$src2, $dst|$dst, $src2}",
1434                    [(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
1435                                     X86_COND_P, EFLAGS))]>, TB;
1436 def CMOVNP64rr : RI<0x4B, MRMSrcReg,       // if !parity, GR64 = GR64
1437                    (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
1438                    "cmovnp{q}\t{$src2, $dst|$dst, $src2}",
1439                     [(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
1440                                      X86_COND_NP, EFLAGS))]>, TB;
1441 def CMOVO64rr : RI<0x40, MRMSrcReg,       // if overflow, GR64 = GR64
1442                    (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
1443                    "cmovo{q}\t{$src2, $dst|$dst, $src2}",
1444                    [(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
1445                                     X86_COND_O, EFLAGS))]>, TB;
1446 def CMOVNO64rr : RI<0x41, MRMSrcReg,       // if !overflow, GR64 = GR64
1447                    (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
1448                    "cmovno{q}\t{$src2, $dst|$dst, $src2}",
1449                     [(set GR64:$dst, (X86cmov GR64:$src1, GR64:$src2,
1450                                      X86_COND_NO, EFLAGS))]>, TB;
1451 } // isCommutable = 1
1452
1453 def CMOVB64rm : RI<0x42, MRMSrcMem,       // if <u, GR64 = [mem64]
1454                    (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
1455                    "cmovb{q}\t{$src2, $dst|$dst, $src2}",
1456                    [(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
1457                                      X86_COND_B, EFLAGS))]>, TB;
1458 def CMOVAE64rm: RI<0x43, MRMSrcMem,       // if >=u, GR64 = [mem64]
1459                    (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
1460                    "cmovae{q}\t{$src2, $dst|$dst, $src2}",
1461                    [(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
1462                                      X86_COND_AE, EFLAGS))]>, TB;
1463 def CMOVE64rm : RI<0x44, MRMSrcMem,       // if ==, GR64 = [mem64]
1464                    (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
1465                    "cmove{q}\t{$src2, $dst|$dst, $src2}",
1466                    [(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
1467                                      X86_COND_E, EFLAGS))]>, TB;
1468 def CMOVNE64rm: RI<0x45, MRMSrcMem,       // if !=, GR64 = [mem64]
1469                    (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
1470                    "cmovne{q}\t{$src2, $dst|$dst, $src2}",
1471                    [(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
1472                                     X86_COND_NE, EFLAGS))]>, TB;
1473 def CMOVBE64rm: RI<0x46, MRMSrcMem,       // if <=u, GR64 = [mem64]
1474                    (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
1475                    "cmovbe{q}\t{$src2, $dst|$dst, $src2}",
1476                    [(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
1477                                     X86_COND_BE, EFLAGS))]>, TB;
1478 def CMOVA64rm : RI<0x47, MRMSrcMem,       // if >u, GR64 = [mem64]
1479                    (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
1480                    "cmova{q}\t{$src2, $dst|$dst, $src2}",
1481                    [(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
1482                                     X86_COND_A, EFLAGS))]>, TB;
1483 def CMOVL64rm : RI<0x4C, MRMSrcMem,       // if <s, GR64 = [mem64]
1484                    (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
1485                    "cmovl{q}\t{$src2, $dst|$dst, $src2}",
1486                    [(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
1487                                     X86_COND_L, EFLAGS))]>, TB;
1488 def CMOVGE64rm: RI<0x4D, MRMSrcMem,       // if >=s, GR64 = [mem64]
1489                    (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
1490                    "cmovge{q}\t{$src2, $dst|$dst, $src2}",
1491                    [(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
1492                                     X86_COND_GE, EFLAGS))]>, TB;
1493 def CMOVLE64rm: RI<0x4E, MRMSrcMem,       // if <=s, GR64 = [mem64]
1494                    (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
1495                    "cmovle{q}\t{$src2, $dst|$dst, $src2}",
1496                    [(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
1497                                     X86_COND_LE, EFLAGS))]>, TB;
1498 def CMOVG64rm : RI<0x4F, MRMSrcMem,       // if >s, GR64 = [mem64]
1499                    (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
1500                    "cmovg{q}\t{$src2, $dst|$dst, $src2}",
1501                    [(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
1502                                     X86_COND_G, EFLAGS))]>, TB;
1503 def CMOVS64rm : RI<0x48, MRMSrcMem,       // if signed, GR64 = [mem64]
1504                    (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
1505                    "cmovs{q}\t{$src2, $dst|$dst, $src2}",
1506                    [(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
1507                                     X86_COND_S, EFLAGS))]>, TB;
1508 def CMOVNS64rm: RI<0x49, MRMSrcMem,       // if !signed, GR64 = [mem64]
1509                    (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
1510                    "cmovns{q}\t{$src2, $dst|$dst, $src2}",
1511                    [(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
1512                                     X86_COND_NS, EFLAGS))]>, TB;
1513 def CMOVP64rm : RI<0x4A, MRMSrcMem,       // if parity, GR64 = [mem64]
1514                    (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
1515                    "cmovp{q}\t{$src2, $dst|$dst, $src2}",
1516                    [(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
1517                                     X86_COND_P, EFLAGS))]>, TB;
1518 def CMOVNP64rm : RI<0x4B, MRMSrcMem,       // if !parity, GR64 = [mem64]
1519                    (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
1520                    "cmovnp{q}\t{$src2, $dst|$dst, $src2}",
1521                     [(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
1522                                      X86_COND_NP, EFLAGS))]>, TB;
1523 def CMOVO64rm : RI<0x40, MRMSrcMem,       // if overflow, GR64 = [mem64]
1524                    (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
1525                    "cmovo{q}\t{$src2, $dst|$dst, $src2}",
1526                    [(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
1527                                     X86_COND_O, EFLAGS))]>, TB;
1528 def CMOVNO64rm : RI<0x41, MRMSrcMem,       // if !overflow, GR64 = [mem64]
1529                    (outs GR64:$dst), (ins GR64:$src1, i64mem:$src2),
1530                    "cmovno{q}\t{$src2, $dst|$dst, $src2}",
1531                     [(set GR64:$dst, (X86cmov GR64:$src1, (loadi64 addr:$src2),
1532                                      X86_COND_NO, EFLAGS))]>, TB;
1533 } // isTwoAddress
1534
1535 // Use sbb to materialize carry flag into a GPR.
1536 // FIXME: This are pseudo ops that should be replaced with Pat<> patterns.
1537 // However, Pat<> can't replicate the destination reg into the inputs of the
1538 // result.
1539 // FIXME: Change this to have encoding Pseudo when X86MCCodeEmitter replaces
1540 // X86CodeEmitter.
1541 let Defs = [EFLAGS], Uses = [EFLAGS], isCodeGenOnly = 1 in
1542 def SETB_C64r : RI<0x19, MRMInitReg, (outs GR64:$dst), (ins), "",
1543                  [(set GR64:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
1544
1545 def : Pat<(i64 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1546           (SETB_C64r)>;
1547
1548 //===----------------------------------------------------------------------===//
1549 //  Conversion Instructions...
1550 //
1551
1552 // f64 -> signed i64
1553 def CVTSD2SI64rr: RSDI<0x2D, MRMSrcReg, (outs GR64:$dst), (ins FR64:$src),
1554                        "cvtsd2si{q}\t{$src, $dst|$dst, $src}", []>;
1555 def CVTSD2SI64rm: RSDI<0x2D, MRMSrcMem, (outs GR64:$dst), (ins f64mem:$src),
1556                        "cvtsd2si{q}\t{$src, $dst|$dst, $src}", []>;
1557 def Int_CVTSD2SI64rr: RSDI<0x2D, MRMSrcReg, (outs GR64:$dst), (ins VR128:$src),
1558                            "cvtsd2si{q}\t{$src, $dst|$dst, $src}",
1559                            [(set GR64:$dst,
1560                              (int_x86_sse2_cvtsd2si64 VR128:$src))]>;
1561 def Int_CVTSD2SI64rm: RSDI<0x2D, MRMSrcMem, (outs GR64:$dst), 
1562                            (ins f128mem:$src),
1563                            "cvtsd2si{q}\t{$src, $dst|$dst, $src}",
1564                            [(set GR64:$dst, (int_x86_sse2_cvtsd2si64
1565                                              (load addr:$src)))]>;
1566 def CVTTSD2SI64rr: RSDI<0x2C, MRMSrcReg, (outs GR64:$dst), (ins FR64:$src),
1567                         "cvttsd2si{q}\t{$src, $dst|$dst, $src}",
1568                         [(set GR64:$dst, (fp_to_sint FR64:$src))]>;
1569 def CVTTSD2SI64rm: RSDI<0x2C, MRMSrcMem, (outs GR64:$dst), (ins f64mem:$src),
1570                         "cvttsd2si{q}\t{$src, $dst|$dst, $src}",
1571                         [(set GR64:$dst, (fp_to_sint (loadf64 addr:$src)))]>;
1572 def Int_CVTTSD2SI64rr: RSDI<0x2C, MRMSrcReg, (outs GR64:$dst), (ins VR128:$src),
1573                             "cvttsd2si{q}\t{$src, $dst|$dst, $src}",
1574                             [(set GR64:$dst,
1575                               (int_x86_sse2_cvttsd2si64 VR128:$src))]>;
1576 def Int_CVTTSD2SI64rm: RSDI<0x2C, MRMSrcMem, (outs GR64:$dst), 
1577                             (ins f128mem:$src),
1578                             "cvttsd2si{q}\t{$src, $dst|$dst, $src}",
1579                             [(set GR64:$dst,
1580                               (int_x86_sse2_cvttsd2si64
1581                                (load addr:$src)))]>;
1582
1583 // Signed i64 -> f64
1584 def CVTSI2SD64rr: RSDI<0x2A, MRMSrcReg, (outs FR64:$dst), (ins GR64:$src),
1585                        "cvtsi2sd{q}\t{$src, $dst|$dst, $src}",
1586                        [(set FR64:$dst, (sint_to_fp GR64:$src))]>;
1587 def CVTSI2SD64rm: RSDI<0x2A, MRMSrcMem, (outs FR64:$dst), (ins i64mem:$src),
1588                        "cvtsi2sd{q}\t{$src, $dst|$dst, $src}",
1589                        [(set FR64:$dst, (sint_to_fp (loadi64 addr:$src)))]>;
1590
1591 let isTwoAddress = 1 in {
1592 def Int_CVTSI2SD64rr: RSDI<0x2A, MRMSrcReg,
1593                            (outs VR128:$dst), (ins VR128:$src1, GR64:$src2),
1594                            "cvtsi2sd{q}\t{$src2, $dst|$dst, $src2}",
1595                            [(set VR128:$dst,
1596                              (int_x86_sse2_cvtsi642sd VR128:$src1,
1597                               GR64:$src2))]>;
1598 def Int_CVTSI2SD64rm: RSDI<0x2A, MRMSrcMem,
1599                            (outs VR128:$dst), (ins VR128:$src1, i64mem:$src2),
1600                            "cvtsi2sd{q}\t{$src2, $dst|$dst, $src2}",
1601                            [(set VR128:$dst,
1602                              (int_x86_sse2_cvtsi642sd VR128:$src1,
1603                               (loadi64 addr:$src2)))]>;
1604 } // isTwoAddress
1605
1606 // Signed i64 -> f32
1607 def CVTSI2SS64rr: RSSI<0x2A, MRMSrcReg, (outs FR32:$dst), (ins GR64:$src),
1608                        "cvtsi2ss{q}\t{$src, $dst|$dst, $src}",
1609                        [(set FR32:$dst, (sint_to_fp GR64:$src))]>;
1610 def CVTSI2SS64rm: RSSI<0x2A, MRMSrcMem, (outs FR32:$dst), (ins i64mem:$src),
1611                        "cvtsi2ss{q}\t{$src, $dst|$dst, $src}",
1612                        [(set FR32:$dst, (sint_to_fp (loadi64 addr:$src)))]>;
1613
1614 let isTwoAddress = 1 in {
1615   def Int_CVTSI2SS64rr : RSSI<0x2A, MRMSrcReg,
1616                               (outs VR128:$dst), (ins VR128:$src1, GR64:$src2),
1617                               "cvtsi2ss{q}\t{$src2, $dst|$dst, $src2}",
1618                               [(set VR128:$dst,
1619                                 (int_x86_sse_cvtsi642ss VR128:$src1,
1620                                  GR64:$src2))]>;
1621   def Int_CVTSI2SS64rm : RSSI<0x2A, MRMSrcMem,
1622                               (outs VR128:$dst), 
1623                               (ins VR128:$src1, i64mem:$src2),
1624                               "cvtsi2ss{q}\t{$src2, $dst|$dst, $src2}",
1625                               [(set VR128:$dst,
1626                                 (int_x86_sse_cvtsi642ss VR128:$src1,
1627                                  (loadi64 addr:$src2)))]>;
1628 }
1629
1630 // f32 -> signed i64
1631 def CVTSS2SI64rr: RSSI<0x2D, MRMSrcReg, (outs GR64:$dst), (ins FR32:$src),
1632                        "cvtss2si{q}\t{$src, $dst|$dst, $src}", []>;
1633 def CVTSS2SI64rm: RSSI<0x2D, MRMSrcMem, (outs GR64:$dst), (ins f32mem:$src),
1634                        "cvtss2si{q}\t{$src, $dst|$dst, $src}", []>;
1635 def Int_CVTSS2SI64rr: RSSI<0x2D, MRMSrcReg, (outs GR64:$dst), (ins VR128:$src),
1636                            "cvtss2si{q}\t{$src, $dst|$dst, $src}",
1637                            [(set GR64:$dst,
1638                              (int_x86_sse_cvtss2si64 VR128:$src))]>;
1639 def Int_CVTSS2SI64rm: RSSI<0x2D, MRMSrcMem, (outs GR64:$dst), (ins f32mem:$src),
1640                            "cvtss2si{q}\t{$src, $dst|$dst, $src}",
1641                            [(set GR64:$dst, (int_x86_sse_cvtss2si64
1642                                              (load addr:$src)))]>;
1643 def CVTTSS2SI64rr: RSSI<0x2C, MRMSrcReg, (outs GR64:$dst), (ins FR32:$src),
1644                         "cvttss2si{q}\t{$src, $dst|$dst, $src}",
1645                         [(set GR64:$dst, (fp_to_sint FR32:$src))]>;
1646 def CVTTSS2SI64rm: RSSI<0x2C, MRMSrcMem, (outs GR64:$dst), (ins f32mem:$src),
1647                         "cvttss2si{q}\t{$src, $dst|$dst, $src}",
1648                         [(set GR64:$dst, (fp_to_sint (loadf32 addr:$src)))]>;
1649 def Int_CVTTSS2SI64rr: RSSI<0x2C, MRMSrcReg, (outs GR64:$dst), (ins VR128:$src),
1650                             "cvttss2si{q}\t{$src, $dst|$dst, $src}",
1651                             [(set GR64:$dst,
1652                               (int_x86_sse_cvttss2si64 VR128:$src))]>;
1653 def Int_CVTTSS2SI64rm: RSSI<0x2C, MRMSrcMem, (outs GR64:$dst),
1654                             (ins f32mem:$src),
1655                             "cvttss2si{q}\t{$src, $dst|$dst, $src}",
1656                             [(set GR64:$dst,
1657                               (int_x86_sse_cvttss2si64 (load addr:$src)))]>;
1658                               
1659 // Descriptor-table support instructions
1660
1661 // LLDT is not interpreted specially in 64-bit mode because there is no sign
1662 //   extension.
1663 def SLDT64r : RI<0x00, MRM0r, (outs GR64:$dst), (ins),
1664                  "sldt{q}\t$dst", []>, TB;
1665 def SLDT64m : RI<0x00, MRM0m, (outs i16mem:$dst), (ins),
1666                  "sldt{q}\t$dst", []>, TB;
1667
1668 //===----------------------------------------------------------------------===//
1669 // Alias Instructions
1670 //===----------------------------------------------------------------------===//
1671
1672 // We want to rewrite MOV64r0 in terms of MOV32r0, because it's sometimes a
1673 // smaller encoding, but doing so at isel time interferes with rematerialization
1674 // in the current register allocator. For now, this is rewritten when the
1675 // instruction is lowered to an MCInst.
1676 // FIXME: AddedComplexity gives this a higher priority than MOV64ri32. Remove
1677 // when we have a better way to specify isel priority.
1678 let Defs = [EFLAGS],
1679     AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1 in
1680 def MOV64r0   : I<0x31, MRMInitReg, (outs GR64:$dst), (ins), "",
1681                  [(set GR64:$dst, 0)]>;
1682
1683 // Materialize i64 constant where top 32-bits are zero. This could theoretically
1684 // use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however
1685 // that would make it more difficult to rematerialize.
1686 let AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1 in
1687 def MOV64ri64i32 : Ii32<0xB8, AddRegFrm, (outs GR64:$dst), (ins i64i32imm:$src),
1688                         "", [(set GR64:$dst, i64immZExt32:$src)]>;
1689
1690 //===----------------------------------------------------------------------===//
1691 // Thread Local Storage Instructions
1692 //===----------------------------------------------------------------------===//
1693
1694 // All calls clobber the non-callee saved registers. RSP is marked as
1695 // a use to prevent stack-pointer assignments that appear immediately
1696 // before calls from potentially appearing dead.
1697 let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
1698             FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, ST1,
1699             MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
1700             XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
1701             XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
1702     Uses = [RSP] in
1703 def TLS_addr64 : I<0, Pseudo, (outs), (ins lea64mem:$sym),
1704                    ".byte\t0x66; "
1705                    "leaq\t$sym(%rip), %rdi; "
1706                    ".word\t0x6666; "
1707                    "rex64; "
1708                    "call\t__tls_get_addr@PLT",
1709                   [(X86tlsaddr tls64addr:$sym)]>,
1710                   Requires<[In64BitMode]>;
1711
1712 let AddedComplexity = 5, isCodeGenOnly = 1 in
1713 def MOV64GSrm : RI<0x8B, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
1714                  "movq\t%gs:$src, $dst",
1715                  [(set GR64:$dst, (gsload addr:$src))]>, SegGS;
1716
1717 let AddedComplexity = 5, isCodeGenOnly = 1 in
1718 def MOV64FSrm : RI<0x8B, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
1719                  "movq\t%fs:$src, $dst",
1720                  [(set GR64:$dst, (fsload addr:$src))]>, SegFS;
1721
1722 //===----------------------------------------------------------------------===//
1723 // Atomic Instructions
1724 //===----------------------------------------------------------------------===//
1725
1726 let Defs = [RAX, EFLAGS], Uses = [RAX] in {
1727 def LCMPXCHG64 : RI<0xB1, MRMDestMem, (outs), (ins i64mem:$ptr, GR64:$swap),
1728                "lock\n\t"
1729                "cmpxchgq\t$swap,$ptr",
1730                [(X86cas addr:$ptr, GR64:$swap, 8)]>, TB, LOCK;
1731 }
1732
1733 let Constraints = "$val = $dst" in {
1734 let Defs = [EFLAGS] in
1735 def LXADD64 : RI<0xC1, MRMSrcMem, (outs GR64:$dst), (ins GR64:$val,i64mem:$ptr),
1736                "lock\n\t"
1737                "xadd\t$val, $ptr",
1738                [(set GR64:$dst, (atomic_load_add_64 addr:$ptr, GR64:$val))]>,
1739                 TB, LOCK;
1740
1741 def XCHG64rm : RI<0x87, MRMSrcMem, (outs GR64:$dst), 
1742                   (ins GR64:$val,i64mem:$ptr),
1743                   "xchg{q}\t{$val, $ptr|$ptr, $val}", 
1744                   [(set GR64:$dst, (atomic_swap_64 addr:$ptr, GR64:$val))]>;
1745
1746 def XCHG64rr : RI<0x87, MRMSrcReg, (outs GR64:$dst), (ins GR64:$val,GR64:$src),
1747                   "xchg{q}\t{$val, $src|$src, $val}", []>;
1748 }
1749
1750 def XADD64rr  : RI<0xC1, MRMDestReg, (outs GR64:$dst), (ins GR64:$src),
1751                    "xadd{q}\t{$src, $dst|$dst, $src}", []>, TB;
1752 let mayLoad = 1, mayStore = 1 in
1753 def XADD64rm  : RI<0xC1, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src),
1754                    "xadd{q}\t{$src, $dst|$dst, $src}", []>, TB;
1755                    
1756 def CMPXCHG64rr  : RI<0xB1, MRMDestReg, (outs GR64:$dst), (ins GR64:$src),
1757                       "cmpxchg{q}\t{$src, $dst|$dst, $src}", []>, TB;
1758 let mayLoad = 1, mayStore = 1 in
1759 def CMPXCHG64rm  : RI<0xB1, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src),
1760                       "cmpxchg{q}\t{$src, $dst|$dst, $src}", []>, TB;
1761                       
1762 let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX] in
1763 def CMPXCHG16B : RI<0xC7, MRM1m, (outs), (ins i128mem:$dst),
1764                     "cmpxchg16b\t$dst", []>, TB;
1765
1766 def XCHG64ar : RI<0x90, AddRegFrm, (outs), (ins GR64:$src),
1767                   "xchg{q}\t{$src, %rax|%rax, $src}", []>;
1768
1769 // Optimized codegen when the non-memory output is not used.
1770 let Defs = [EFLAGS], mayLoad = 1, mayStore = 1 in {
1771 // FIXME: Use normal add / sub instructions and add lock prefix dynamically.
1772 def LOCK_ADD64mr : RI<0x03, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
1773                       "lock\n\t"
1774                       "add{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
1775 def LOCK_ADD64mi8 : RIi8<0x83, MRM0m, (outs),
1776                                       (ins i64mem:$dst, i64i8imm :$src2),
1777                     "lock\n\t"
1778                     "add{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
1779 def LOCK_ADD64mi32 : RIi32<0x81, MRM0m, (outs),
1780                                         (ins i64mem:$dst, i64i32imm :$src2),
1781                       "lock\n\t"
1782                       "add{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
1783 def LOCK_SUB64mr : RI<0x29, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2), 
1784                       "lock\n\t"
1785                       "sub{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
1786 def LOCK_SUB64mi8 : RIi8<0x83, MRM5m, (outs),
1787                                       (ins i64mem:$dst, i64i8imm :$src2), 
1788                       "lock\n\t"
1789                       "sub{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
1790 def LOCK_SUB64mi32 : RIi32<0x81, MRM5m, (outs),
1791                                         (ins i64mem:$dst, i64i32imm:$src2),
1792                       "lock\n\t"
1793                       "sub{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
1794 def LOCK_INC64m : RI<0xFF, MRM0m, (outs), (ins i64mem:$dst),
1795                      "lock\n\t"
1796                      "inc{q}\t$dst", []>, LOCK;
1797 def LOCK_DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst),
1798                       "lock\n\t"
1799                       "dec{q}\t$dst", []>, LOCK;
1800 }
1801 // Atomic exchange, and, or, xor
1802 let Constraints = "$val = $dst", Defs = [EFLAGS],
1803                   usesCustomInserter = 1 in {
1804 def ATOMAND64 : I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
1805                "#ATOMAND64 PSEUDO!", 
1806                [(set GR64:$dst, (atomic_load_and_64 addr:$ptr, GR64:$val))]>;
1807 def ATOMOR64 : I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
1808                "#ATOMOR64 PSEUDO!", 
1809                [(set GR64:$dst, (atomic_load_or_64 addr:$ptr, GR64:$val))]>;
1810 def ATOMXOR64 : I<0, Pseudo,(outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
1811                "#ATOMXOR64 PSEUDO!", 
1812                [(set GR64:$dst, (atomic_load_xor_64 addr:$ptr, GR64:$val))]>;
1813 def ATOMNAND64 : I<0, Pseudo,(outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
1814                "#ATOMNAND64 PSEUDO!", 
1815                [(set GR64:$dst, (atomic_load_nand_64 addr:$ptr, GR64:$val))]>;
1816 def ATOMMIN64: I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$ptr, GR64:$val),
1817                "#ATOMMIN64 PSEUDO!", 
1818                [(set GR64:$dst, (atomic_load_min_64 addr:$ptr, GR64:$val))]>;
1819 def ATOMMAX64: I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
1820                "#ATOMMAX64 PSEUDO!", 
1821                [(set GR64:$dst, (atomic_load_max_64 addr:$ptr, GR64:$val))]>;
1822 def ATOMUMIN64: I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
1823                "#ATOMUMIN64 PSEUDO!", 
1824                [(set GR64:$dst, (atomic_load_umin_64 addr:$ptr, GR64:$val))]>;
1825 def ATOMUMAX64: I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
1826                "#ATOMUMAX64 PSEUDO!", 
1827                [(set GR64:$dst, (atomic_load_umax_64 addr:$ptr, GR64:$val))]>;
1828 }
1829
1830 // Segmentation support instructions
1831
1832 // i16mem operand in LAR64rm and GR32 operand in LAR32rr is not a typo.
1833 def LAR64rm : RI<0x02, MRMSrcMem, (outs GR64:$dst), (ins i16mem:$src), 
1834                  "lar{q}\t{$src, $dst|$dst, $src}", []>, TB;
1835 def LAR64rr : RI<0x02, MRMSrcReg, (outs GR64:$dst), (ins GR32:$src),
1836                  "lar{q}\t{$src, $dst|$dst, $src}", []>, TB;
1837                  
1838 def LSL64rm : RI<0x03, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
1839                  "lsl{q}\t{$src, $dst|$dst, $src}", []>, TB; 
1840 def LSL64rr : RI<0x03, MRMSrcReg, (outs GR64:$dst), (ins GR64:$src),
1841                  "lsl{q}\t{$src, $dst|$dst, $src}", []>, TB;
1842
1843 def SWAPGS : I<0x01, MRM_F8, (outs), (ins), "swapgs", []>, TB;
1844
1845 def PUSHFS64 : I<0xa0, RawFrm, (outs), (ins),
1846                  "push{q}\t%fs", []>, TB;
1847 def PUSHGS64 : I<0xa8, RawFrm, (outs), (ins),
1848                  "push{q}\t%gs", []>, TB;
1849
1850 def POPFS64 : I<0xa1, RawFrm, (outs), (ins),
1851                 "pop{q}\t%fs", []>, TB;
1852 def POPGS64 : I<0xa9, RawFrm, (outs), (ins),
1853                 "pop{q}\t%gs", []>, TB;
1854                  
1855 def LSS64rm : RI<0xb2, MRMSrcMem, (outs GR64:$dst), (ins opaque80mem:$src),
1856                  "lss{q}\t{$src, $dst|$dst, $src}", []>, TB;
1857 def LFS64rm : RI<0xb4, MRMSrcMem, (outs GR64:$dst), (ins opaque80mem:$src),
1858                  "lfs{q}\t{$src, $dst|$dst, $src}", []>, TB;
1859 def LGS64rm : RI<0xb5, MRMSrcMem, (outs GR64:$dst), (ins opaque80mem:$src),
1860                  "lgs{q}\t{$src, $dst|$dst, $src}", []>, TB;
1861
1862 // Specialized register support
1863
1864 // no m form encodable; use SMSW16m
1865 def SMSW64r : RI<0x01, MRM4r, (outs GR64:$dst), (ins), 
1866                  "smsw{q}\t$dst", []>, TB;
1867
1868 // String manipulation instructions
1869
1870 def LODSQ : RI<0xAD, RawFrm, (outs), (ins), "lodsq", []>;
1871
1872 //===----------------------------------------------------------------------===//
1873 // Non-Instruction Patterns
1874 //===----------------------------------------------------------------------===//
1875
1876 // ConstantPool GlobalAddress, ExternalSymbol, and JumpTable when not in small
1877 // code model mode, should use 'movabs'.  FIXME: This is really a hack, the
1878 //  'movabs' predicate should handle this sort of thing.
1879 def : Pat<(i64 (X86Wrapper tconstpool  :$dst)),
1880           (MOV64ri tconstpool  :$dst)>, Requires<[FarData]>;
1881 def : Pat<(i64 (X86Wrapper tjumptable  :$dst)),
1882           (MOV64ri tjumptable  :$dst)>, Requires<[FarData]>;
1883 def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
1884           (MOV64ri tglobaladdr :$dst)>, Requires<[FarData]>;
1885 def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
1886           (MOV64ri texternalsym:$dst)>, Requires<[FarData]>;
1887 def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
1888           (MOV64ri tblockaddress:$dst)>, Requires<[FarData]>;
1889
1890 // In static codegen with small code model, we can get the address of a label
1891 // into a register with 'movl'.  FIXME: This is a hack, the 'imm' predicate of
1892 // the MOV64ri64i32 should accept these.
1893 def : Pat<(i64 (X86Wrapper tconstpool  :$dst)),
1894           (MOV64ri64i32 tconstpool  :$dst)>, Requires<[SmallCode]>;
1895 def : Pat<(i64 (X86Wrapper tjumptable  :$dst)),
1896           (MOV64ri64i32 tjumptable  :$dst)>, Requires<[SmallCode]>;
1897 def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
1898           (MOV64ri64i32 tglobaladdr :$dst)>, Requires<[SmallCode]>;
1899 def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
1900           (MOV64ri64i32 texternalsym:$dst)>, Requires<[SmallCode]>;
1901 def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
1902           (MOV64ri64i32 tblockaddress:$dst)>, Requires<[SmallCode]>;
1903
1904 // In kernel code model, we can get the address of a label
1905 // into a register with 'movq'.  FIXME: This is a hack, the 'imm' predicate of
1906 // the MOV64ri32 should accept these.
1907 def : Pat<(i64 (X86Wrapper tconstpool  :$dst)),
1908           (MOV64ri32 tconstpool  :$dst)>, Requires<[KernelCode]>;
1909 def : Pat<(i64 (X86Wrapper tjumptable  :$dst)),
1910           (MOV64ri32 tjumptable  :$dst)>, Requires<[KernelCode]>;
1911 def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
1912           (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>;
1913 def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
1914           (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>;
1915 def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
1916           (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>;
1917
1918 // If we have small model and -static mode, it is safe to store global addresses
1919 // directly as immediates.  FIXME: This is really a hack, the 'imm' predicate
1920 // for MOV64mi32 should handle this sort of thing.
1921 def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
1922           (MOV64mi32 addr:$dst, tconstpool:$src)>,
1923           Requires<[NearData, IsStatic]>;
1924 def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
1925           (MOV64mi32 addr:$dst, tjumptable:$src)>,
1926           Requires<[NearData, IsStatic]>;
1927 def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
1928           (MOV64mi32 addr:$dst, tglobaladdr:$src)>,
1929           Requires<[NearData, IsStatic]>;
1930 def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
1931           (MOV64mi32 addr:$dst, texternalsym:$src)>,
1932           Requires<[NearData, IsStatic]>;
1933 def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst),
1934           (MOV64mi32 addr:$dst, tblockaddress:$src)>,
1935           Requires<[NearData, IsStatic]>;
1936
1937 // Calls
1938 // Direct PC relative function call for small code model. 32-bit displacement
1939 // sign extended to 64-bit.
1940 def : Pat<(X86call (i64 tglobaladdr:$dst)),
1941           (CALL64pcrel32 tglobaladdr:$dst)>, Requires<[NotWin64]>;
1942 def : Pat<(X86call (i64 texternalsym:$dst)),
1943           (CALL64pcrel32 texternalsym:$dst)>, Requires<[NotWin64]>;
1944
1945 def : Pat<(X86call (i64 tglobaladdr:$dst)),
1946           (WINCALL64pcrel32 tglobaladdr:$dst)>, Requires<[IsWin64]>;
1947 def : Pat<(X86call (i64 texternalsym:$dst)),
1948           (WINCALL64pcrel32 texternalsym:$dst)>, Requires<[IsWin64]>;
1949
1950 // tailcall stuff
1951 def : Pat<(X86tcret GR64_TC:$dst, imm:$off),
1952           (TCRETURNri64 GR64_TC:$dst, imm:$off)>,
1953           Requires<[In64BitMode]>;
1954
1955 def : Pat<(X86tcret (load addr:$dst), imm:$off),
1956           (TCRETURNmi64 addr:$dst, imm:$off)>,
1957           Requires<[In64BitMode]>;
1958
1959 def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off),
1960           (TCRETURNdi64 tglobaladdr:$dst, imm:$off)>,
1961           Requires<[In64BitMode]>;
1962
1963 def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off),
1964           (TCRETURNdi64 texternalsym:$dst, imm:$off)>,
1965           Requires<[In64BitMode]>;
1966
1967 // Comparisons.
1968
1969 // TEST R,R is smaller than CMP R,0
1970 def : Pat<(X86cmp GR64:$src1, 0),
1971           (TEST64rr GR64:$src1, GR64:$src1)>;
1972
1973 // Conditional moves with folded loads with operands swapped and conditions
1974 // inverted.
1975 def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_B, EFLAGS),
1976           (CMOVAE64rm GR64:$src2, addr:$src1)>;
1977 def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_AE, EFLAGS),
1978           (CMOVB64rm GR64:$src2, addr:$src1)>;
1979 def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_E, EFLAGS),
1980           (CMOVNE64rm GR64:$src2, addr:$src1)>;
1981 def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_NE, EFLAGS),
1982           (CMOVE64rm GR64:$src2, addr:$src1)>;
1983 def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_BE, EFLAGS),
1984           (CMOVA64rm GR64:$src2, addr:$src1)>;
1985 def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_A, EFLAGS),
1986           (CMOVBE64rm GR64:$src2, addr:$src1)>;
1987 def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_L, EFLAGS),
1988           (CMOVGE64rm GR64:$src2, addr:$src1)>;
1989 def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_GE, EFLAGS),
1990           (CMOVL64rm GR64:$src2, addr:$src1)>;
1991 def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_LE, EFLAGS),
1992           (CMOVG64rm GR64:$src2, addr:$src1)>;
1993 def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_G, EFLAGS),
1994           (CMOVLE64rm GR64:$src2, addr:$src1)>;
1995 def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_P, EFLAGS),
1996           (CMOVNP64rm GR64:$src2, addr:$src1)>;
1997 def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_NP, EFLAGS),
1998           (CMOVP64rm GR64:$src2, addr:$src1)>;
1999 def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_S, EFLAGS),
2000           (CMOVNS64rm GR64:$src2, addr:$src1)>;
2001 def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_NS, EFLAGS),
2002           (CMOVS64rm GR64:$src2, addr:$src1)>;
2003 def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_O, EFLAGS),
2004           (CMOVNO64rm GR64:$src2, addr:$src1)>;
2005 def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, X86_COND_NO, EFLAGS),
2006           (CMOVO64rm GR64:$src2, addr:$src1)>;
2007
2008 // zextload bool -> zextload byte
2009 def : Pat<(zextloadi64i1 addr:$src), (MOVZX64rm8 addr:$src)>;
2010
2011 // extload
2012 // When extloading from 16-bit and smaller memory locations into 64-bit 
2013 // registers, use zero-extending loads so that the entire 64-bit register is 
2014 // defined, avoiding partial-register updates.
2015 def : Pat<(extloadi64i1 addr:$src),  (MOVZX64rm8  addr:$src)>;
2016 def : Pat<(extloadi64i8 addr:$src),  (MOVZX64rm8  addr:$src)>;
2017 def : Pat<(extloadi64i16 addr:$src), (MOVZX64rm16 addr:$src)>;
2018 // For other extloads, use subregs, since the high contents of the register are
2019 // defined after an extload.
2020 def : Pat<(extloadi64i32 addr:$src),
2021           (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src),
2022                          sub_32bit)>;
2023
2024 // anyext. Define these to do an explicit zero-extend to
2025 // avoid partial-register updates.
2026 def : Pat<(i64 (anyext GR8 :$src)), (MOVZX64rr8  GR8  :$src)>;
2027 def : Pat<(i64 (anyext GR16:$src)), (MOVZX64rr16 GR16 :$src)>;
2028 def : Pat<(i64 (anyext GR32:$src)),
2029           (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
2030
2031 //===----------------------------------------------------------------------===//
2032 // Some peepholes
2033 //===----------------------------------------------------------------------===//
2034
2035 // Odd encoding trick: -128 fits into an 8-bit immediate field while
2036 // +128 doesn't, so in this special case use a sub instead of an add.
2037 def : Pat<(add GR64:$src1, 128),
2038           (SUB64ri8 GR64:$src1, -128)>;
2039 def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst),
2040           (SUB64mi8 addr:$dst, -128)>;
2041
2042 // The same trick applies for 32-bit immediate fields in 64-bit
2043 // instructions.
2044 def : Pat<(add GR64:$src1, 0x0000000080000000),
2045           (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
2046 def : Pat<(store (add (loadi64 addr:$dst), 0x00000000800000000), addr:$dst),
2047           (SUB64mi32 addr:$dst, 0xffffffff80000000)>;
2048
2049 // Use a 32-bit and with implicit zero-extension instead of a 64-bit and if it
2050 // has an immediate with at least 32 bits of leading zeros, to avoid needing to
2051 // materialize that immediate in a register first.
2052 def : Pat<(and GR64:$src, i64immZExt32:$imm),
2053           (SUBREG_TO_REG
2054             (i64 0),
2055             (AND32ri
2056               (EXTRACT_SUBREG GR64:$src, sub_32bit),
2057               (i32 (GetLo32XForm imm:$imm))),
2058             sub_32bit)>;
2059
2060 // r & (2^32-1) ==> movz
2061 def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
2062           (MOVZX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
2063 // r & (2^16-1) ==> movz
2064 def : Pat<(and GR64:$src, 0xffff),
2065           (MOVZX64rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit)))>;
2066 // r & (2^8-1) ==> movz
2067 def : Pat<(and GR64:$src, 0xff),
2068           (MOVZX64rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit)))>;
2069 // r & (2^8-1) ==> movz
2070 def : Pat<(and GR32:$src1, 0xff),
2071            (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>,
2072       Requires<[In64BitMode]>;
2073 // r & (2^8-1) ==> movz
2074 def : Pat<(and GR16:$src1, 0xff),
2075            (MOVZX16rr8 (i8 (EXTRACT_SUBREG GR16:$src1, sub_8bit)))>,
2076       Requires<[In64BitMode]>;
2077
2078 // sext_inreg patterns
2079 def : Pat<(sext_inreg GR64:$src, i32),
2080           (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
2081 def : Pat<(sext_inreg GR64:$src, i16),
2082           (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>;
2083 def : Pat<(sext_inreg GR64:$src, i8),
2084           (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>;
2085 def : Pat<(sext_inreg GR32:$src, i8),
2086           (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>,
2087       Requires<[In64BitMode]>;
2088 def : Pat<(sext_inreg GR16:$src, i8),
2089           (MOVSX16rr8 (i8 (EXTRACT_SUBREG GR16:$src, sub_8bit)))>,
2090       Requires<[In64BitMode]>;
2091
2092 // trunc patterns
2093 def : Pat<(i32 (trunc GR64:$src)),
2094           (EXTRACT_SUBREG GR64:$src, sub_32bit)>;
2095 def : Pat<(i16 (trunc GR64:$src)),
2096           (EXTRACT_SUBREG GR64:$src, sub_16bit)>;
2097 def : Pat<(i8 (trunc GR64:$src)),
2098           (EXTRACT_SUBREG GR64:$src, sub_8bit)>;
2099 def : Pat<(i8 (trunc GR32:$src)),
2100           (EXTRACT_SUBREG GR32:$src, sub_8bit)>,
2101       Requires<[In64BitMode]>;
2102 def : Pat<(i8 (trunc GR16:$src)),
2103           (EXTRACT_SUBREG GR16:$src, sub_8bit)>,
2104       Requires<[In64BitMode]>;
2105
2106 // h-register tricks.
2107 // For now, be conservative on x86-64 and use an h-register extract only if the
2108 // value is immediately zero-extended or stored, which are somewhat common
2109 // cases. This uses a bunch of code to prevent a register requiring a REX prefix
2110 // from being allocated in the same instruction as the h register, as there's
2111 // currently no way to describe this requirement to the register allocator.
2112
2113 // h-register extract and zero-extend.
2114 def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)),
2115           (SUBREG_TO_REG
2116             (i64 0),
2117             (MOVZX32_NOREXrr8
2118               (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
2119                               sub_8bit_hi)),
2120             sub_32bit)>;
2121 def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
2122           (MOVZX32_NOREXrr8
2123             (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
2124                             sub_8bit_hi))>,
2125       Requires<[In64BitMode]>;
2126 def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
2127           (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, 
2128                                                                    GR32_ABCD)),
2129                                              sub_8bit_hi))>,
2130       Requires<[In64BitMode]>;
2131 def : Pat<(srl GR16:$src, (i8 8)),
2132           (EXTRACT_SUBREG
2133             (MOVZX32_NOREXrr8
2134               (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
2135                               sub_8bit_hi)),
2136             sub_16bit)>,
2137       Requires<[In64BitMode]>;
2138 def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
2139           (MOVZX32_NOREXrr8
2140             (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
2141                             sub_8bit_hi))>,
2142       Requires<[In64BitMode]>;
2143 def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
2144           (MOVZX32_NOREXrr8
2145             (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
2146                             sub_8bit_hi))>,
2147       Requires<[In64BitMode]>;
2148 def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
2149           (SUBREG_TO_REG
2150             (i64 0),
2151             (MOVZX32_NOREXrr8
2152               (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
2153                               sub_8bit_hi)),
2154             sub_32bit)>;
2155 def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))),
2156           (SUBREG_TO_REG
2157             (i64 0),
2158             (MOVZX32_NOREXrr8
2159               (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
2160                               sub_8bit_hi)),
2161             sub_32bit)>;
2162
2163 // h-register extract and store.
2164 def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst),
2165           (MOV8mr_NOREX
2166             addr:$dst,
2167             (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
2168                             sub_8bit_hi))>;
2169 def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst),
2170           (MOV8mr_NOREX
2171             addr:$dst,
2172             (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
2173                             sub_8bit_hi))>,
2174       Requires<[In64BitMode]>;
2175 def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst),
2176           (MOV8mr_NOREX
2177             addr:$dst,
2178             (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
2179                             sub_8bit_hi))>,
2180       Requires<[In64BitMode]>;
2181
2182 // (shl x, 1) ==> (add x, x)
2183 def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;
2184
2185 // (shl x (and y, 63)) ==> (shl x, y)
2186 def : Pat<(shl GR64:$src1, (and CL, 63)),
2187           (SHL64rCL GR64:$src1)>;
2188 def : Pat<(store (shl (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
2189           (SHL64mCL addr:$dst)>;
2190
2191 def : Pat<(srl GR64:$src1, (and CL, 63)),
2192           (SHR64rCL GR64:$src1)>;
2193 def : Pat<(store (srl (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
2194           (SHR64mCL addr:$dst)>;
2195
2196 def : Pat<(sra GR64:$src1, (and CL, 63)),
2197           (SAR64rCL GR64:$src1)>;
2198 def : Pat<(store (sra (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
2199           (SAR64mCL addr:$dst)>;
2200
2201 // (or x1, x2) -> (add x1, x2) if two operands are known not to share bits.
2202 let AddedComplexity = 5 in {  // Try this before the selecting to OR
2203 def : Pat<(or_is_add GR64:$src1, i64immSExt8:$src2),
2204           (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
2205 def : Pat<(or_is_add GR64:$src1, i64immSExt32:$src2),
2206           (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
2207 def : Pat<(or_is_add GR64:$src1, GR64:$src2),
2208           (ADD64rr GR64:$src1, GR64:$src2)>;
2209 } // AddedComplexity
2210
2211 // X86 specific add which produces a flag.
2212 def : Pat<(addc GR64:$src1, GR64:$src2),
2213           (ADD64rr GR64:$src1, GR64:$src2)>;
2214 def : Pat<(addc GR64:$src1, (load addr:$src2)),
2215           (ADD64rm GR64:$src1, addr:$src2)>;
2216 def : Pat<(addc GR64:$src1, i64immSExt8:$src2),
2217           (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
2218 def : Pat<(addc GR64:$src1, i64immSExt32:$src2),
2219           (ADD64ri32 GR64:$src1, imm:$src2)>;
2220
2221 def : Pat<(subc GR64:$src1, GR64:$src2),
2222           (SUB64rr GR64:$src1, GR64:$src2)>;
2223 def : Pat<(subc GR64:$src1, (load addr:$src2)),
2224           (SUB64rm GR64:$src1, addr:$src2)>;
2225 def : Pat<(subc GR64:$src1, i64immSExt8:$src2),
2226           (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
2227 def : Pat<(subc GR64:$src1, imm:$src2),
2228           (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
2229
2230 //===----------------------------------------------------------------------===//
2231 // EFLAGS-defining Patterns
2232 //===----------------------------------------------------------------------===//
2233
2234 // addition
2235 def : Pat<(add GR64:$src1, GR64:$src2),
2236           (ADD64rr GR64:$src1, GR64:$src2)>;
2237 def : Pat<(add GR64:$src1, i64immSExt8:$src2),
2238           (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
2239 def : Pat<(add GR64:$src1, i64immSExt32:$src2),
2240           (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
2241 def : Pat<(add GR64:$src1, (loadi64 addr:$src2)),
2242           (ADD64rm GR64:$src1, addr:$src2)>;
2243
2244 // subtraction
2245 def : Pat<(sub GR64:$src1, GR64:$src2),
2246           (SUB64rr GR64:$src1, GR64:$src2)>;
2247 def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)),
2248           (SUB64rm GR64:$src1, addr:$src2)>;
2249 def : Pat<(sub GR64:$src1, i64immSExt8:$src2),
2250           (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
2251 def : Pat<(sub GR64:$src1, i64immSExt32:$src2),
2252           (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
2253
2254 // Multiply
2255 def : Pat<(mul GR64:$src1, GR64:$src2),
2256           (IMUL64rr GR64:$src1, GR64:$src2)>;
2257 def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)),
2258           (IMUL64rm GR64:$src1, addr:$src2)>;
2259 def : Pat<(mul GR64:$src1, i64immSExt8:$src2),
2260           (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>;
2261 def : Pat<(mul GR64:$src1, i64immSExt32:$src2),
2262           (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>;
2263 def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2),
2264           (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>;
2265 def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2),
2266           (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>;
2267
2268 // inc/dec
2269 def : Pat<(add GR16:$src, 1),  (INC64_16r GR16:$src)>, Requires<[In64BitMode]>;
2270 def : Pat<(add GR16:$src, -1), (DEC64_16r GR16:$src)>, Requires<[In64BitMode]>;
2271 def : Pat<(add GR32:$src, 1),  (INC64_32r GR32:$src)>, Requires<[In64BitMode]>;
2272 def : Pat<(add GR32:$src, -1), (DEC64_32r GR32:$src)>, Requires<[In64BitMode]>;
2273 def : Pat<(add GR64:$src, 1),  (INC64r GR64:$src)>;
2274 def : Pat<(add GR64:$src, -1), (DEC64r GR64:$src)>;
2275
2276 // or
2277 def : Pat<(or GR64:$src1, GR64:$src2),
2278           (OR64rr GR64:$src1, GR64:$src2)>;
2279 def : Pat<(or GR64:$src1, i64immSExt8:$src2),
2280           (OR64ri8 GR64:$src1, i64immSExt8:$src2)>;
2281 def : Pat<(or GR64:$src1, i64immSExt32:$src2),
2282           (OR64ri32 GR64:$src1, i64immSExt32:$src2)>;
2283 def : Pat<(or GR64:$src1, (loadi64 addr:$src2)),
2284           (OR64rm GR64:$src1, addr:$src2)>;
2285
2286 // xor
2287 def : Pat<(xor GR64:$src1, GR64:$src2),
2288           (XOR64rr GR64:$src1, GR64:$src2)>;
2289 def : Pat<(xor GR64:$src1, i64immSExt8:$src2),
2290           (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
2291 def : Pat<(xor GR64:$src1, i64immSExt32:$src2),
2292           (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;
2293 def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)),
2294           (XOR64rm GR64:$src1, addr:$src2)>;
2295
2296 // and
2297 def : Pat<(and GR64:$src1, GR64:$src2),
2298           (AND64rr GR64:$src1, GR64:$src2)>;
2299 def : Pat<(and GR64:$src1, i64immSExt8:$src2),
2300           (AND64ri8 GR64:$src1, i64immSExt8:$src2)>;
2301 def : Pat<(and GR64:$src1, i64immSExt32:$src2),
2302           (AND64ri32 GR64:$src1, i64immSExt32:$src2)>;
2303 def : Pat<(and GR64:$src1, (loadi64 addr:$src2)),
2304           (AND64rm GR64:$src1, addr:$src2)>;
2305
2306 //===----------------------------------------------------------------------===//
2307 // X86-64 SSE Instructions
2308 //===----------------------------------------------------------------------===//
2309
2310 // Move instructions...
2311
2312 def MOV64toPQIrr : RPDI<0x6E, MRMSrcReg, (outs VR128:$dst), (ins GR64:$src),
2313                         "mov{d|q}\t{$src, $dst|$dst, $src}",
2314                         [(set VR128:$dst,
2315                           (v2i64 (scalar_to_vector GR64:$src)))]>;
2316 def MOVPQIto64rr  : RPDI<0x7E, MRMDestReg, (outs GR64:$dst), (ins VR128:$src),
2317                          "mov{d|q}\t{$src, $dst|$dst, $src}",
2318                          [(set GR64:$dst, (vector_extract (v2i64 VR128:$src),
2319                                            (iPTR 0)))]>;
2320
2321 def MOV64toSDrr : RPDI<0x6E, MRMSrcReg, (outs FR64:$dst), (ins GR64:$src),
2322                        "mov{d|q}\t{$src, $dst|$dst, $src}",
2323                        [(set FR64:$dst, (bitconvert GR64:$src))]>;
2324 def MOV64toSDrm : S3SI<0x7E, MRMSrcMem, (outs FR64:$dst), (ins i64mem:$src),
2325                        "movq\t{$src, $dst|$dst, $src}",
2326                        [(set FR64:$dst, (bitconvert (loadi64 addr:$src)))]>;
2327
2328 def MOVSDto64rr  : RPDI<0x7E, MRMDestReg, (outs GR64:$dst), (ins FR64:$src),
2329                         "mov{d|q}\t{$src, $dst|$dst, $src}",
2330                         [(set GR64:$dst, (bitconvert FR64:$src))]>;
2331 def MOVSDto64mr  : RPDI<0x7E, MRMDestMem, (outs), (ins i64mem:$dst, FR64:$src),
2332                         "movq\t{$src, $dst|$dst, $src}",
2333                         [(store (i64 (bitconvert FR64:$src)), addr:$dst)]>;
2334
2335 //===----------------------------------------------------------------------===//
2336 // X86-64 SSE4.1 Instructions
2337 //===----------------------------------------------------------------------===//
2338
2339 /// SS41I_extract32 - SSE 4.1 extract 32 bits to int reg or memory destination
2340 multiclass SS41I_extract64<bits<8> opc, string OpcodeStr> {
2341   def rr : SS4AIi8<opc, MRMDestReg, (outs GR64:$dst),
2342                  (ins VR128:$src1, i32i8imm:$src2),
2343                  !strconcat(OpcodeStr, 
2344                   "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
2345                  [(set GR64:$dst,
2346                   (extractelt (v2i64 VR128:$src1), imm:$src2))]>, OpSize, REX_W;
2347   def mr : SS4AIi8<opc, MRMDestMem, (outs),
2348                  (ins i64mem:$dst, VR128:$src1, i32i8imm:$src2),
2349                  !strconcat(OpcodeStr, 
2350                   "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
2351                  [(store (extractelt (v2i64 VR128:$src1), imm:$src2),
2352                           addr:$dst)]>, OpSize, REX_W;
2353 }
2354
2355 defm PEXTRQ      : SS41I_extract64<0x16, "pextrq">;
2356
2357 let isTwoAddress = 1 in {
2358   multiclass SS41I_insert64<bits<8> opc, string OpcodeStr> {
2359     def rr : SS4AIi8<opc, MRMSrcReg, (outs VR128:$dst),
2360                    (ins VR128:$src1, GR64:$src2, i32i8imm:$src3),
2361                    !strconcat(OpcodeStr, 
2362                     "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
2363                    [(set VR128:$dst, 
2364                      (v2i64 (insertelt VR128:$src1, GR64:$src2, imm:$src3)))]>,
2365                    OpSize, REX_W;
2366     def rm : SS4AIi8<opc, MRMSrcMem, (outs VR128:$dst),
2367                    (ins VR128:$src1, i64mem:$src2, i32i8imm:$src3),
2368                    !strconcat(OpcodeStr,
2369                     "\t{$src3, $src2, $dst|$dst, $src2, $src3}"),
2370                    [(set VR128:$dst, 
2371                      (v2i64 (insertelt VR128:$src1, (loadi64 addr:$src2),
2372                                        imm:$src3)))]>, OpSize, REX_W;
2373   }
2374 }
2375
2376 defm PINSRQ      : SS41I_insert64<0x22, "pinsrq">;