1 //===-- X86CodeEmitter.cpp - Convert X86 code to machine code -------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains the pass that transforms the X86 machine instructions into
11 // relocatable machine code.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "x86-emitter"
16 #include "X86InstrInfo.h"
17 #include "X86JITInfo.h"
18 #include "X86Subtarget.h"
19 #include "X86TargetMachine.h"
20 #include "X86Relocations.h"
22 #include "llvm/LLVMContext.h"
23 #include "llvm/PassManager.h"
24 #include "llvm/CodeGen/JITCodeEmitter.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineInstr.h"
27 #include "llvm/CodeGen/MachineModuleInfo.h"
28 #include "llvm/CodeGen/Passes.h"
29 #include "llvm/Function.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/MC/MCCodeEmitter.h"
32 #include "llvm/MC/MCExpr.h"
33 #include "llvm/MC/MCInst.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Target/TargetOptions.h"
40 STATISTIC(NumEmitted, "Number of machine instructions emitted");
43 template<class CodeEmitter>
44 class Emitter : public MachineFunctionPass {
45 const X86InstrInfo *II;
49 MachineModuleInfo *MMI;
50 intptr_t PICBaseOffset;
55 explicit Emitter(X86TargetMachine &tm, CodeEmitter &mce)
56 : MachineFunctionPass(ID), II(0), TD(0), TM(tm),
57 MCE(mce), PICBaseOffset(0), Is64BitMode(false),
58 IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
59 Emitter(X86TargetMachine &tm, CodeEmitter &mce,
60 const X86InstrInfo &ii, const TargetData &td, bool is64)
61 : MachineFunctionPass(ID), II(&ii), TD(&td), TM(tm),
62 MCE(mce), PICBaseOffset(0), Is64BitMode(is64),
63 IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
65 bool runOnMachineFunction(MachineFunction &MF);
67 virtual const char *getPassName() const {
68 return "X86 Machine Code Emitter";
71 void emitOpcodePrefix(uint64_t TSFlags, int MemOperand,
72 const MachineInstr &MI,
73 const MCInstrDesc *Desc) const;
75 void emitVEXOpcodePrefix(uint64_t TSFlags, int MemOperand,
76 const MachineInstr &MI,
77 const MCInstrDesc *Desc) const;
79 void emitSegmentOverridePrefix(uint64_t TSFlags,
81 const MachineInstr &MI) const;
83 void emitInstruction(MachineInstr &MI, const MCInstrDesc *Desc);
85 void getAnalysisUsage(AnalysisUsage &AU) const {
87 AU.addRequired<MachineModuleInfo>();
88 MachineFunctionPass::getAnalysisUsage(AU);
92 void emitPCRelativeBlockAddress(MachineBasicBlock *MBB);
93 void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
94 intptr_t Disp = 0, intptr_t PCAdj = 0,
95 bool Indirect = false);
96 void emitExternalSymbolAddress(const char *ES, unsigned Reloc);
97 void emitConstPoolAddress(unsigned CPI, unsigned Reloc, intptr_t Disp = 0,
99 void emitJumpTableAddress(unsigned JTI, unsigned Reloc,
102 void emitDisplacementField(const MachineOperand *RelocOp, int DispVal,
103 intptr_t Adj = 0, bool IsPCRel = true);
105 void emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeField);
106 void emitRegModRMByte(unsigned RegOpcodeField);
107 void emitSIBByte(unsigned SS, unsigned Index, unsigned Base);
108 void emitConstant(uint64_t Val, unsigned Size);
110 void emitMemModRMByte(const MachineInstr &MI,
111 unsigned Op, unsigned RegOpcodeField,
115 template<class CodeEmitter>
116 char Emitter<CodeEmitter>::ID = 0;
117 } // end anonymous namespace.
119 /// createX86CodeEmitterPass - Return a pass that emits the collected X86 code
120 /// to the specified templated MachineCodeEmitter object.
121 FunctionPass *llvm::createX86JITCodeEmitterPass(X86TargetMachine &TM,
122 JITCodeEmitter &JCE) {
123 return new Emitter<JITCodeEmitter>(TM, JCE);
126 template<class CodeEmitter>
127 bool Emitter<CodeEmitter>::runOnMachineFunction(MachineFunction &MF) {
128 MMI = &getAnalysis<MachineModuleInfo>();
129 MCE.setModuleInfo(MMI);
131 II = TM.getInstrInfo();
132 TD = TM.getTargetData();
133 Is64BitMode = TM.getSubtarget<X86Subtarget>().is64Bit();
134 IsPIC = TM.getRelocationModel() == Reloc::PIC_;
137 DEBUG(dbgs() << "JITTing function '"
138 << MF.getFunction()->getName() << "'\n");
139 MCE.startFunction(MF);
140 for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
142 MCE.StartMachineBasicBlock(MBB);
143 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
145 const MCInstrDesc &Desc = I->getDesc();
146 emitInstruction(*I, &Desc);
147 // MOVPC32r is basically a call plus a pop instruction.
148 if (Desc.getOpcode() == X86::MOVPC32r)
149 emitInstruction(*I, &II->get(X86::POP32r));
150 ++NumEmitted; // Keep track of the # of mi's emitted
153 } while (MCE.finishFunction(MF));
158 /// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
159 /// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
160 /// size, and 3) use of X86-64 extended registers.
161 static unsigned determineREX(const MachineInstr &MI) {
163 const MCInstrDesc &Desc = MI.getDesc();
165 // Pseudo instructions do not need REX prefix byte.
166 if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
168 if (Desc.TSFlags & X86II::REX_W)
171 unsigned NumOps = Desc.getNumOperands();
173 bool isTwoAddr = NumOps > 1 &&
174 Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1;
176 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
177 unsigned i = isTwoAddr ? 1 : 0;
178 for (unsigned e = NumOps; i != e; ++i) {
179 const MachineOperand& MO = MI.getOperand(i);
181 unsigned Reg = MO.getReg();
182 if (X86II::isX86_64NonExtLowByteReg(Reg))
187 switch (Desc.TSFlags & X86II::FormMask) {
188 case X86II::MRMInitReg:
189 if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0)))
190 REX |= (1 << 0) | (1 << 2);
192 case X86II::MRMSrcReg: {
193 if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0)))
195 i = isTwoAddr ? 2 : 1;
196 for (unsigned e = NumOps; i != e; ++i) {
197 const MachineOperand& MO = MI.getOperand(i);
198 if (X86InstrInfo::isX86_64ExtendedReg(MO))
203 case X86II::MRMSrcMem: {
204 if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0)))
207 i = isTwoAddr ? 2 : 1;
208 for (; i != NumOps; ++i) {
209 const MachineOperand& MO = MI.getOperand(i);
211 if (X86InstrInfo::isX86_64ExtendedReg(MO))
218 case X86II::MRM0m: case X86II::MRM1m:
219 case X86II::MRM2m: case X86II::MRM3m:
220 case X86II::MRM4m: case X86II::MRM5m:
221 case X86II::MRM6m: case X86II::MRM7m:
222 case X86II::MRMDestMem: {
223 unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
224 i = isTwoAddr ? 1 : 0;
225 if (NumOps > e && X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e)))
228 for (; i != e; ++i) {
229 const MachineOperand& MO = MI.getOperand(i);
231 if (X86InstrInfo::isX86_64ExtendedReg(MO))
239 if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0)))
241 i = isTwoAddr ? 2 : 1;
242 for (unsigned e = NumOps; i != e; ++i) {
243 const MachineOperand& MO = MI.getOperand(i);
244 if (X86InstrInfo::isX86_64ExtendedReg(MO))
255 /// emitPCRelativeBlockAddress - This method keeps track of the information
256 /// necessary to resolve the address of this block later and emits a dummy
259 template<class CodeEmitter>
260 void Emitter<CodeEmitter>::emitPCRelativeBlockAddress(MachineBasicBlock *MBB) {
261 // Remember where this reference was and where it is to so we can
262 // deal with it later.
263 MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
264 X86::reloc_pcrel_word, MBB));
268 /// emitGlobalAddress - Emit the specified address to the code stream assuming
269 /// this is part of a "take the address of a global" instruction.
271 template<class CodeEmitter>
272 void Emitter<CodeEmitter>::emitGlobalAddress(const GlobalValue *GV,
274 intptr_t Disp /* = 0 */,
275 intptr_t PCAdj /* = 0 */,
276 bool Indirect /* = false */) {
277 intptr_t RelocCST = Disp;
278 if (Reloc == X86::reloc_picrel_word)
279 RelocCST = PICBaseOffset;
280 else if (Reloc == X86::reloc_pcrel_word)
282 MachineRelocation MR = Indirect
283 ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc,
284 const_cast<GlobalValue *>(GV),
286 : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
287 const_cast<GlobalValue *>(GV), RelocCST, false);
288 MCE.addRelocation(MR);
289 // The relocated value will be added to the displacement
290 if (Reloc == X86::reloc_absolute_dword)
291 MCE.emitDWordLE(Disp);
293 MCE.emitWordLE((int32_t)Disp);
296 /// emitExternalSymbolAddress - Arrange for the address of an external symbol to
297 /// be emitted to the current location in the function, and allow it to be PC
299 template<class CodeEmitter>
300 void Emitter<CodeEmitter>::emitExternalSymbolAddress(const char *ES,
302 intptr_t RelocCST = (Reloc == X86::reloc_picrel_word) ? PICBaseOffset : 0;
304 // X86 never needs stubs because instruction selection will always pick
305 // an instruction sequence that is large enough to hold any address
307 // (see X86ISelLowering.cpp, near 2039: X86TargetLowering::LowerCall)
308 bool NeedStub = false;
309 MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
312 if (Reloc == X86::reloc_absolute_dword)
318 /// emitConstPoolAddress - Arrange for the address of an constant pool
319 /// to be emitted to the current location in the function, and allow it to be PC
321 template<class CodeEmitter>
322 void Emitter<CodeEmitter>::emitConstPoolAddress(unsigned CPI, unsigned Reloc,
323 intptr_t Disp /* = 0 */,
324 intptr_t PCAdj /* = 0 */) {
325 intptr_t RelocCST = 0;
326 if (Reloc == X86::reloc_picrel_word)
327 RelocCST = PICBaseOffset;
328 else if (Reloc == X86::reloc_pcrel_word)
330 MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
331 Reloc, CPI, RelocCST));
332 // The relocated value will be added to the displacement
333 if (Reloc == X86::reloc_absolute_dword)
334 MCE.emitDWordLE(Disp);
336 MCE.emitWordLE((int32_t)Disp);
339 /// emitJumpTableAddress - Arrange for the address of a jump table to
340 /// be emitted to the current location in the function, and allow it to be PC
342 template<class CodeEmitter>
343 void Emitter<CodeEmitter>::emitJumpTableAddress(unsigned JTI, unsigned Reloc,
344 intptr_t PCAdj /* = 0 */) {
345 intptr_t RelocCST = 0;
346 if (Reloc == X86::reloc_picrel_word)
347 RelocCST = PICBaseOffset;
348 else if (Reloc == X86::reloc_pcrel_word)
350 MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
351 Reloc, JTI, RelocCST));
352 // The relocated value will be added to the displacement
353 if (Reloc == X86::reloc_absolute_dword)
359 inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
361 assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
362 return RM | (RegOpcode << 3) | (Mod << 6);
365 template<class CodeEmitter>
366 void Emitter<CodeEmitter>::emitRegModRMByte(unsigned ModRMReg,
367 unsigned RegOpcodeFld){
368 MCE.emitByte(ModRMByte(3, RegOpcodeFld, X86_MC::getX86RegNum(ModRMReg)));
371 template<class CodeEmitter>
372 void Emitter<CodeEmitter>::emitRegModRMByte(unsigned RegOpcodeFld) {
373 MCE.emitByte(ModRMByte(3, RegOpcodeFld, 0));
376 template<class CodeEmitter>
377 void Emitter<CodeEmitter>::emitSIBByte(unsigned SS,
380 // SIB byte is in the same format as the ModRMByte...
381 MCE.emitByte(ModRMByte(SS, Index, Base));
384 template<class CodeEmitter>
385 void Emitter<CodeEmitter>::emitConstant(uint64_t Val, unsigned Size) {
386 // Output the constant in little endian byte order...
387 for (unsigned i = 0; i != Size; ++i) {
388 MCE.emitByte(Val & 255);
393 /// isDisp8 - Return true if this signed displacement fits in a 8-bit
394 /// sign-extended field.
395 static bool isDisp8(int Value) {
396 return Value == (signed char)Value;
399 static bool gvNeedsNonLazyPtr(const MachineOperand &GVOp,
400 const TargetMachine &TM) {
401 // For Darwin-64, simulate the linktime GOT by using the same non-lazy-pointer
402 // mechanism as 32-bit mode.
403 if (TM.getSubtarget<X86Subtarget>().is64Bit() &&
404 !TM.getSubtarget<X86Subtarget>().isTargetDarwin())
407 // Return true if this is a reference to a stub containing the address of the
408 // global, not the global itself.
409 return isGlobalStubReference(GVOp.getTargetFlags());
412 template<class CodeEmitter>
413 void Emitter<CodeEmitter>::emitDisplacementField(const MachineOperand *RelocOp,
415 intptr_t Adj /* = 0 */,
416 bool IsPCRel /* = true */) {
417 // If this is a simple integer displacement that doesn't require a relocation,
420 emitConstant(DispVal, 4);
424 // Otherwise, this is something that requires a relocation. Emit it as such
426 unsigned RelocType = Is64BitMode ?
427 (IsPCRel ? X86::reloc_pcrel_word : X86::reloc_absolute_word_sext)
428 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
429 if (RelocOp->isGlobal()) {
430 // In 64-bit static small code model, we could potentially emit absolute.
431 // But it's probably not beneficial. If the MCE supports using RIP directly
432 // do it, otherwise fallback to absolute (this is determined by IsPCRel).
433 // 89 05 00 00 00 00 mov %eax,0(%rip) # PC-relative
434 // 89 04 25 00 00 00 00 mov %eax,0x0 # Absolute
435 bool Indirect = gvNeedsNonLazyPtr(*RelocOp, TM);
436 emitGlobalAddress(RelocOp->getGlobal(), RelocType, RelocOp->getOffset(),
438 } else if (RelocOp->isSymbol()) {
439 emitExternalSymbolAddress(RelocOp->getSymbolName(), RelocType);
440 } else if (RelocOp->isCPI()) {
441 emitConstPoolAddress(RelocOp->getIndex(), RelocType,
442 RelocOp->getOffset(), Adj);
444 assert(RelocOp->isJTI() && "Unexpected machine operand!");
445 emitJumpTableAddress(RelocOp->getIndex(), RelocType, Adj);
449 template<class CodeEmitter>
450 void Emitter<CodeEmitter>::emitMemModRMByte(const MachineInstr &MI,
451 unsigned Op,unsigned RegOpcodeField,
453 const MachineOperand &Op3 = MI.getOperand(Op+3);
455 const MachineOperand *DispForReloc = 0;
457 // Figure out what sort of displacement we have to handle here.
458 if (Op3.isGlobal()) {
460 } else if (Op3.isSymbol()) {
462 } else if (Op3.isCPI()) {
463 if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) {
466 DispVal += MCE.getConstantPoolEntryAddress(Op3.getIndex());
467 DispVal += Op3.getOffset();
469 } else if (Op3.isJTI()) {
470 if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) {
473 DispVal += MCE.getJumpTableEntryAddress(Op3.getIndex());
476 DispVal = Op3.getImm();
479 const MachineOperand &Base = MI.getOperand(Op);
480 const MachineOperand &Scale = MI.getOperand(Op+1);
481 const MachineOperand &IndexReg = MI.getOperand(Op+2);
483 unsigned BaseReg = Base.getReg();
485 // Handle %rip relative addressing.
486 if (BaseReg == X86::RIP ||
487 (Is64BitMode && DispForReloc)) { // [disp32+RIP] in X86-64 mode
488 assert(IndexReg.getReg() == 0 && Is64BitMode &&
489 "Invalid rip-relative address");
490 MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
491 emitDisplacementField(DispForReloc, DispVal, PCAdj, true);
495 // Indicate that the displacement will use an pcrel or absolute reference
496 // by default. MCEs able to resolve addresses on-the-fly use pcrel by default
497 // while others, unless explicit asked to use RIP, use absolute references.
498 bool IsPCRel = MCE.earlyResolveAddresses() ? true : false;
500 // Is a SIB byte needed?
501 // If no BaseReg, issue a RIP relative instruction only if the MCE can
502 // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
503 // 2-7) and absolute references.
504 unsigned BaseRegNo = -1U;
505 if (BaseReg != 0 && BaseReg != X86::RIP)
506 BaseRegNo = X86_MC::getX86RegNum(BaseReg);
508 if (// The SIB byte must be used if there is an index register.
509 IndexReg.getReg() == 0 &&
510 // The SIB byte must be used if the base is ESP/RSP/R12, all of which
511 // encode to an R/M value of 4, which indicates that a SIB byte is
513 BaseRegNo != N86::ESP &&
514 // If there is no base register and we're in 64-bit mode, we need a SIB
515 // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
516 (!Is64BitMode || BaseReg != 0)) {
517 if (BaseReg == 0 || // [disp32] in X86-32 mode
518 BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode
519 MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
520 emitDisplacementField(DispForReloc, DispVal, PCAdj, true);
524 // If the base is not EBP/ESP and there is no displacement, use simple
525 // indirect register encoding, this handles addresses like [EAX]. The
526 // encoding for [EBP] with no displacement means [disp32] so we handle it
527 // by emitting a displacement of 0 below.
528 if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
529 MCE.emitByte(ModRMByte(0, RegOpcodeField, BaseRegNo));
533 // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
534 if (!DispForReloc && isDisp8(DispVal)) {
535 MCE.emitByte(ModRMByte(1, RegOpcodeField, BaseRegNo));
536 emitConstant(DispVal, 1);
540 // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
541 MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo));
542 emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel);
546 // Otherwise we need a SIB byte, so start by outputting the ModR/M byte first.
547 assert(IndexReg.getReg() != X86::ESP &&
548 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
550 bool ForceDisp32 = false;
551 bool ForceDisp8 = false;
553 // If there is no base register, we emit the special case SIB byte with
554 // MOD=0, BASE=4, to JUST get the index, scale, and displacement.
555 MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
557 } else if (DispForReloc) {
558 // Emit the normal disp32 encoding.
559 MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
561 } else if (DispVal == 0 && BaseRegNo != N86::EBP) {
562 // Emit no displacement ModR/M byte
563 MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
564 } else if (isDisp8(DispVal)) {
565 // Emit the disp8 encoding...
566 MCE.emitByte(ModRMByte(1, RegOpcodeField, 4));
567 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
569 // Emit the normal disp32 encoding...
570 MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
573 // Calculate what the SS field value should be...
574 static const unsigned SSTable[] = { ~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3 };
575 unsigned SS = SSTable[Scale.getImm()];
578 // Handle the SIB byte for the case where there is no base, see Intel
579 // Manual 2A, table 2-7. The displacement has already been output.
581 if (IndexReg.getReg())
582 IndexRegNo = X86_MC::getX86RegNum(IndexReg.getReg());
583 else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
585 emitSIBByte(SS, IndexRegNo, 5);
587 unsigned BaseRegNo = X86_MC::getX86RegNum(BaseReg);
589 if (IndexReg.getReg())
590 IndexRegNo = X86_MC::getX86RegNum(IndexReg.getReg());
592 IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
593 emitSIBByte(SS, IndexRegNo, BaseRegNo);
596 // Do we need to output a displacement?
598 emitConstant(DispVal, 1);
599 } else if (DispVal != 0 || ForceDisp32) {
600 emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel);
604 static const MCInstrDesc *UpdateOp(MachineInstr &MI, const X86InstrInfo *II,
606 const MCInstrDesc *Desc = &II->get(Opcode);
611 /// Is16BitMemOperand - Return true if the specified instruction has
612 /// a 16-bit memory operand. Op specifies the operand # of the memoperand.
613 static bool Is16BitMemOperand(const MachineInstr &MI, unsigned Op) {
614 const MachineOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg);
615 const MachineOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
617 if ((BaseReg.getReg() != 0 &&
618 X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg.getReg())) ||
619 (IndexReg.getReg() != 0 &&
620 X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg.getReg())))
625 /// Is32BitMemOperand - Return true if the specified instruction has
626 /// a 32-bit memory operand. Op specifies the operand # of the memoperand.
627 static bool Is32BitMemOperand(const MachineInstr &MI, unsigned Op) {
628 const MachineOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg);
629 const MachineOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
631 if ((BaseReg.getReg() != 0 &&
632 X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg.getReg())) ||
633 (IndexReg.getReg() != 0 &&
634 X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg.getReg())))
639 /// Is64BitMemOperand - Return true if the specified instruction has
640 /// a 64-bit memory operand. Op specifies the operand # of the memoperand.
642 static bool Is64BitMemOperand(const MachineInstr &MI, unsigned Op) {
643 const MachineOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg);
644 const MachineOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
646 if ((BaseReg.getReg() != 0 &&
647 X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg.getReg())) ||
648 (IndexReg.getReg() != 0 &&
649 X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg.getReg())))
655 template<class CodeEmitter>
656 void Emitter<CodeEmitter>::emitOpcodePrefix(uint64_t TSFlags,
658 const MachineInstr &MI,
659 const MCInstrDesc *Desc) const {
660 // Emit the lock opcode prefix as needed.
661 if (Desc->TSFlags & X86II::LOCK)
664 // Emit segment override opcode prefix as needed.
665 emitSegmentOverridePrefix(TSFlags, MemOperand, MI);
667 // Emit the repeat opcode prefix as needed.
668 if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP)
671 // Emit the address size opcode prefix as needed.
672 bool need_address_override;
673 if (TSFlags & X86II::AdSize) {
674 need_address_override = true;
675 } else if (MemOperand == -1) {
676 need_address_override = false;
677 } else if (Is64BitMode) {
678 assert(!Is16BitMemOperand(MI, MemOperand));
679 need_address_override = Is32BitMemOperand(MI, MemOperand);
681 assert(!Is64BitMemOperand(MI, MemOperand));
682 need_address_override = Is16BitMemOperand(MI, MemOperand);
685 if (need_address_override)
688 // Emit the operand size opcode prefix as needed.
689 if (TSFlags & X86II::OpSize)
692 bool Need0FPrefix = false;
693 switch (Desc->TSFlags & X86II::Op0Mask) {
694 case X86II::TB: // Two-byte opcode prefix
695 case X86II::T8: // 0F 38
696 case X86II::TA: // 0F 3A
697 case X86II::A6: // 0F A6
698 case X86II::A7: // 0F A7
701 case X86II::REP: break; // already handled.
702 case X86II::T8XS: // F3 0F 38
703 case X86II::XS: // F3 0F
707 case X86II::T8XD: // F2 0F 38
708 case X86II::TAXD: // F2 0F 3A
709 case X86II::XD: // F2 0F
713 case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
714 case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
716 (((Desc->TSFlags & X86II::Op0Mask)-X86II::D8)
717 >> X86II::Op0Shift));
718 break; // Two-byte opcode prefix
719 default: llvm_unreachable("Invalid prefix!");
720 case 0: break; // No prefix!
723 // Handle REX prefix.
725 if (unsigned REX = determineREX(MI))
726 MCE.emitByte(0x40 | REX);
729 // 0x0F escape code must be emitted just before the opcode.
733 switch (Desc->TSFlags & X86II::Op0Mask) {
734 case X86II::T8XD: // F2 0F 38
735 case X86II::T8XS: // F3 0F 38
736 case X86II::T8: // 0F 38
739 case X86II::TAXD: // F2 0F 38
740 case X86II::TA: // 0F 3A
743 case X86II::A6: // 0F A6
746 case X86II::A7: // 0F A7
752 // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range
753 // 0-7 and the difference between the 2 groups is given by the REX prefix.
754 // In the VEX prefix, registers are seen sequencially from 0-15 and encoded
755 // in 1's complement form, example:
757 // ModRM field => XMM9 => 1
758 // VEX.VVVV => XMM9 => ~9
760 // See table 4-35 of Intel AVX Programming Reference for details.
761 static unsigned char getVEXRegisterEncoding(const MachineInstr &MI,
763 unsigned SrcReg = MI.getOperand(OpNum).getReg();
764 unsigned SrcRegNum = X86_MC::getX86RegNum(MI.getOperand(OpNum).getReg());
765 if (X86II::isX86_64ExtendedReg(SrcReg))
768 // The registers represented through VEX_VVVV should
769 // be encoded in 1's complement form.
770 return (~SrcRegNum) & 0xf;
773 /// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed
774 template<class CodeEmitter>
775 void Emitter<CodeEmitter>::emitSegmentOverridePrefix(uint64_t TSFlags,
777 const MachineInstr &MI) const {
778 switch (TSFlags & X86II::SegOvrMask) {
779 default: llvm_unreachable("Invalid segment!");
781 // No segment override, check for explicit one on memory operand.
782 if (MemOperand != -1) { // If the instruction has a memory operand.
783 switch (MI.getOperand(MemOperand+X86::AddrSegmentReg).getReg()) {
784 default: llvm_unreachable("Unknown segment register!");
786 case X86::CS: MCE.emitByte(0x2E); break;
787 case X86::SS: MCE.emitByte(0x36); break;
788 case X86::DS: MCE.emitByte(0x3E); break;
789 case X86::ES: MCE.emitByte(0x26); break;
790 case X86::FS: MCE.emitByte(0x64); break;
791 case X86::GS: MCE.emitByte(0x65); break;
804 template<class CodeEmitter>
805 void Emitter<CodeEmitter>::emitVEXOpcodePrefix(uint64_t TSFlags,
807 const MachineInstr &MI,
808 const MCInstrDesc *Desc) const {
809 bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
810 bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
812 // VEX_R: opcode externsion equivalent to REX.R in
813 // 1's complement (inverted) form
815 // 1: Same as REX_R=0 (must be 1 in 32-bit mode)
816 // 0: Same as REX_R=1 (64 bit mode only)
818 unsigned char VEX_R = 0x1;
820 // VEX_X: equivalent to REX.X, only used when a
821 // register is used for index in SIB Byte.
823 // 1: Same as REX.X=0 (must be 1 in 32-bit mode)
824 // 0: Same as REX.X=1 (64-bit mode only)
825 unsigned char VEX_X = 0x1;
829 // 1: Same as REX_B=0 (ignored in 32-bit mode)
830 // 0: Same as REX_B=1 (64 bit mode only)
832 unsigned char VEX_B = 0x1;
834 // VEX_W: opcode specific (use like REX.W, or used for
835 // opcode extension, or ignored, depending on the opcode byte)
836 unsigned char VEX_W = 0;
838 // XOP: Use XOP prefix byte 0x8f instead of VEX.
839 unsigned char XOP = 0;
841 // VEX_5M (VEX m-mmmmm field):
843 // 0b00000: Reserved for future use
844 // 0b00001: implied 0F leading opcode
845 // 0b00010: implied 0F 38 leading opcode bytes
846 // 0b00011: implied 0F 3A leading opcode bytes
847 // 0b00100-0b11111: Reserved for future use
848 // 0b01000: XOP map select - 08h instructions with imm byte
849 // 0b10001: XOP map select - 09h instructions with no imm byte
850 unsigned char VEX_5M = 0x1;
852 // VEX_4V (VEX vvvv field): a register specifier
853 // (in 1's complement form) or 1111 if unused.
854 unsigned char VEX_4V = 0xf;
856 // VEX_L (Vector Length):
858 // 0: scalar or 128-bit vector
861 unsigned char VEX_L = 0;
863 // VEX_PP: opcode extension providing equivalent
864 // functionality of a SIMD prefix
871 unsigned char VEX_PP = 0;
873 // Encode the operand size opcode prefix as needed.
874 if (TSFlags & X86II::OpSize)
877 if ((TSFlags >> X86II::VEXShift) & X86II::VEX_W)
880 if ((TSFlags >> X86II::VEXShift) & X86II::XOP)
883 if ((TSFlags >> X86II::VEXShift) & X86II::VEX_L)
886 switch (TSFlags & X86II::Op0Mask) {
887 default: llvm_unreachable("Invalid prefix!");
888 case X86II::T8: // 0F 38
891 case X86II::TA: // 0F 3A
894 case X86II::T8XS: // F3 0F 38
898 case X86II::T8XD: // F2 0F 38
902 case X86II::TAXD: // F2 0F 3A
906 case X86II::XS: // F3 0F
909 case X86II::XD: // F2 0F
918 case X86II::A6: // Bypass: Not used by VEX
919 case X86II::A7: // Bypass: Not used by VEX
920 case X86II::TB: // Bypass: Not used by VEX
926 // Set the vector length to 256-bit if YMM0-YMM15 is used
927 for (unsigned i = 0; i != MI.getNumOperands(); ++i) {
928 if (!MI.getOperand(i).isReg())
930 unsigned SrcReg = MI.getOperand(i).getReg();
931 if (SrcReg >= X86::YMM0 && SrcReg <= X86::YMM15)
935 // Classify VEX_B, VEX_4V, VEX_R, VEX_X
937 switch (TSFlags & X86II::FormMask) {
938 case X86II::MRMInitReg:
939 // Duplicate register.
940 if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
944 VEX_4V = getVEXRegisterEncoding(MI, CurOp);
945 if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
948 VEX_4V = getVEXRegisterEncoding(MI, CurOp);
950 case X86II::MRMDestMem: {
951 // MRMDestMem instructions forms:
952 // MemAddr, src1(ModR/M)
953 // MemAddr, src1(VEX_4V), src2(ModR/M)
954 // MemAddr, src1(ModR/M), imm8
956 if (X86II::isX86_64ExtendedReg(MI.getOperand(X86::AddrBaseReg).getReg()))
958 if (X86II::isX86_64ExtendedReg(MI.getOperand(X86::AddrIndexReg).getReg()))
961 CurOp = X86::AddrNumOperands;
963 VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
965 const MachineOperand &MO = MI.getOperand(CurOp);
966 if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
970 case X86II::MRMSrcMem:
971 // MRMSrcMem instructions forms:
972 // src1(ModR/M), MemAddr
973 // src1(ModR/M), src2(VEX_4V), MemAddr
974 // src1(ModR/M), MemAddr, imm8
975 // src1(ModR/M), MemAddr, src2(VEX_I8IMM)
978 // dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
979 // dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
980 if (X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
984 VEX_4V = getVEXRegisterEncoding(MI, 1);
986 if (X86II::isX86_64ExtendedReg(
987 MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
989 if (X86II::isX86_64ExtendedReg(
990 MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
994 VEX_4V = getVEXRegisterEncoding(MI, X86::AddrNumOperands+1);
996 case X86II::MRM0m: case X86II::MRM1m:
997 case X86II::MRM2m: case X86II::MRM3m:
998 case X86II::MRM4m: case X86II::MRM5m:
999 case X86II::MRM6m: case X86II::MRM7m: {
1000 // MRM[0-9]m instructions forms:
1002 // src1(VEX_4V), MemAddr
1004 VEX_4V = getVEXRegisterEncoding(MI, 0);
1006 if (X86II::isX86_64ExtendedReg(
1007 MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
1009 if (X86II::isX86_64ExtendedReg(
1010 MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
1014 case X86II::MRMSrcReg:
1015 // MRMSrcReg instructions forms:
1016 // dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
1017 // dst(ModR/M), src1(ModR/M)
1018 // dst(ModR/M), src1(ModR/M), imm8
1020 if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
1025 VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
1026 if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
1030 VEX_4V = getVEXRegisterEncoding(MI, CurOp);
1032 case X86II::MRMDestReg:
1033 // MRMDestReg instructions forms:
1034 // dst(ModR/M), src(ModR/M)
1035 // dst(ModR/M), src(ModR/M), imm8
1036 if (X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
1038 if (X86II::isX86_64ExtendedReg(MI.getOperand(1).getReg()))
1041 case X86II::MRM0r: case X86II::MRM1r:
1042 case X86II::MRM2r: case X86II::MRM3r:
1043 case X86II::MRM4r: case X86II::MRM5r:
1044 case X86II::MRM6r: case X86II::MRM7r:
1045 // MRM0r-MRM7r instructions forms:
1046 // dst(VEX_4V), src(ModR/M), imm8
1047 VEX_4V = getVEXRegisterEncoding(MI, 0);
1048 if (X86II::isX86_64ExtendedReg(MI.getOperand(1).getReg()))
1055 // Emit segment override opcode prefix as needed.
1056 emitSegmentOverridePrefix(TSFlags, MemOperand, MI);
1058 // VEX opcode prefix can have 2 or 3 bytes
1061 // +-----+ +--------------+ +-------------------+
1062 // | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
1063 // +-----+ +--------------+ +-------------------+
1065 // +-----+ +-------------------+
1066 // | C5h | | R | vvvv | L | pp |
1067 // +-----+ +-------------------+
1069 unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
1071 if (VEX_B && VEX_X && !VEX_W && !XOP && (VEX_5M == 1)) { // 2 byte VEX prefix
1073 MCE.emitByte(LastByte | (VEX_R << 7));
1077 // 3 byte VEX prefix
1078 MCE.emitByte(XOP ? 0x8F : 0xC4);
1079 MCE.emitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M);
1080 MCE.emitByte(LastByte | (VEX_W << 7));
1083 template<class CodeEmitter>
1084 void Emitter<CodeEmitter>::emitInstruction(MachineInstr &MI,
1085 const MCInstrDesc *Desc) {
1086 DEBUG(dbgs() << MI);
1088 // If this is a pseudo instruction, lower it.
1089 switch (Desc->getOpcode()) {
1090 case X86::ADD16rr_DB: Desc = UpdateOp(MI, II, X86::OR16rr); break;
1091 case X86::ADD32rr_DB: Desc = UpdateOp(MI, II, X86::OR32rr); break;
1092 case X86::ADD64rr_DB: Desc = UpdateOp(MI, II, X86::OR64rr); break;
1093 case X86::ADD16ri_DB: Desc = UpdateOp(MI, II, X86::OR16ri); break;
1094 case X86::ADD32ri_DB: Desc = UpdateOp(MI, II, X86::OR32ri); break;
1095 case X86::ADD64ri32_DB: Desc = UpdateOp(MI, II, X86::OR64ri32); break;
1096 case X86::ADD16ri8_DB: Desc = UpdateOp(MI, II, X86::OR16ri8); break;
1097 case X86::ADD32ri8_DB: Desc = UpdateOp(MI, II, X86::OR32ri8); break;
1098 case X86::ADD64ri8_DB: Desc = UpdateOp(MI, II, X86::OR64ri8); break;
1099 case X86::ACQUIRE_MOV8rm: Desc = UpdateOp(MI, II, X86::MOV8rm); break;
1100 case X86::ACQUIRE_MOV16rm: Desc = UpdateOp(MI, II, X86::MOV16rm); break;
1101 case X86::ACQUIRE_MOV32rm: Desc = UpdateOp(MI, II, X86::MOV32rm); break;
1102 case X86::ACQUIRE_MOV64rm: Desc = UpdateOp(MI, II, X86::MOV64rm); break;
1103 case X86::RELEASE_MOV8mr: Desc = UpdateOp(MI, II, X86::MOV8mr); break;
1104 case X86::RELEASE_MOV16mr: Desc = UpdateOp(MI, II, X86::MOV16mr); break;
1105 case X86::RELEASE_MOV32mr: Desc = UpdateOp(MI, II, X86::MOV32mr); break;
1106 case X86::RELEASE_MOV64mr: Desc = UpdateOp(MI, II, X86::MOV64mr); break;
1110 MCE.processDebugLoc(MI.getDebugLoc(), true);
1112 unsigned Opcode = Desc->Opcode;
1114 // If this is a two-address instruction, skip one of the register operands.
1115 unsigned NumOps = Desc->getNumOperands();
1117 if (NumOps > 1 && Desc->getOperandConstraint(1, MCOI::TIED_TO) != -1)
1119 else if (NumOps > 2 && Desc->getOperandConstraint(NumOps-1,MCOI::TIED_TO)== 0)
1120 // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
1123 uint64_t TSFlags = Desc->TSFlags;
1125 // Is this instruction encoded using the AVX VEX prefix?
1126 bool HasVEXPrefix = (TSFlags >> X86II::VEXShift) & X86II::VEX;
1127 // It uses the VEX.VVVV field?
1128 bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
1129 bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
1130 bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
1131 const unsigned MemOp4_I8IMMOperand = 2;
1133 // Determine where the memory operand starts, if present.
1134 int MemoryOperand = X86II::getMemoryOperandNo(TSFlags, Opcode);
1135 if (MemoryOperand != -1) MemoryOperand += CurOp;
1138 emitOpcodePrefix(TSFlags, MemoryOperand, MI, Desc);
1140 emitVEXOpcodePrefix(TSFlags, MemoryOperand, MI, Desc);
1142 unsigned char BaseOpcode = X86II::getBaseOpcodeFor(Desc->TSFlags);
1143 switch (TSFlags & X86II::FormMask) {
1145 llvm_unreachable("Unknown FormMask value in X86 MachineCodeEmitter!");
1147 // Remember the current PC offset, this is the PIC relocation
1151 llvm_unreachable("pseudo instructions should be removed before code"
1153 // Do nothing for Int_MemBarrier - it's just a comment. Add a debug
1154 // to make it slightly easier to see.
1155 case X86::Int_MemBarrier:
1156 DEBUG(dbgs() << "#MEMBARRIER\n");
1159 case TargetOpcode::INLINEASM:
1160 // We allow inline assembler nodes with empty bodies - they can
1161 // implicitly define registers, which is ok for JIT.
1162 if (MI.getOperand(0).getSymbolName()[0])
1163 report_fatal_error("JIT does not support inline asm!");
1165 case TargetOpcode::PROLOG_LABEL:
1166 case TargetOpcode::GC_LABEL:
1167 case TargetOpcode::EH_LABEL:
1168 MCE.emitLabel(MI.getOperand(0).getMCSymbol());
1171 case TargetOpcode::IMPLICIT_DEF:
1172 case TargetOpcode::KILL:
1174 case X86::MOVPC32r: {
1175 // This emits the "call" portion of this pseudo instruction.
1176 MCE.emitByte(BaseOpcode);
1177 emitConstant(0, X86II::getSizeOfImm(Desc->TSFlags));
1178 // Remember PIC base.
1179 PICBaseOffset = (intptr_t) MCE.getCurrentPCOffset();
1180 X86JITInfo *JTI = TM.getJITInfo();
1181 JTI->setPICBase(MCE.getCurrentPCValue());
1187 case X86II::RawFrm: {
1188 MCE.emitByte(BaseOpcode);
1190 if (CurOp == NumOps)
1193 const MachineOperand &MO = MI.getOperand(CurOp++);
1195 DEBUG(dbgs() << "RawFrm CurOp " << CurOp << "\n");
1196 DEBUG(dbgs() << "isMBB " << MO.isMBB() << "\n");
1197 DEBUG(dbgs() << "isGlobal " << MO.isGlobal() << "\n");
1198 DEBUG(dbgs() << "isSymbol " << MO.isSymbol() << "\n");
1199 DEBUG(dbgs() << "isImm " << MO.isImm() << "\n");
1202 emitPCRelativeBlockAddress(MO.getMBB());
1206 if (MO.isGlobal()) {
1207 emitGlobalAddress(MO.getGlobal(), X86::reloc_pcrel_word,
1212 if (MO.isSymbol()) {
1213 emitExternalSymbolAddress(MO.getSymbolName(), X86::reloc_pcrel_word);
1217 // FIXME: Only used by hackish MCCodeEmitter, remove when dead.
1219 emitJumpTableAddress(MO.getIndex(), X86::reloc_pcrel_word);
1223 assert(MO.isImm() && "Unknown RawFrm operand!");
1224 if (Opcode == X86::CALLpcrel32 || Opcode == X86::CALL64pcrel32) {
1225 // Fix up immediate operand for pc relative calls.
1226 intptr_t Imm = (intptr_t)MO.getImm();
1227 Imm = Imm - MCE.getCurrentPCValue() - 4;
1228 emitConstant(Imm, X86II::getSizeOfImm(Desc->TSFlags));
1230 emitConstant(MO.getImm(), X86II::getSizeOfImm(Desc->TSFlags));
1234 case X86II::AddRegFrm: {
1235 MCE.emitByte(BaseOpcode +
1236 X86_MC::getX86RegNum(MI.getOperand(CurOp++).getReg()));
1238 if (CurOp == NumOps)
1241 const MachineOperand &MO1 = MI.getOperand(CurOp++);
1242 unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
1244 emitConstant(MO1.getImm(), Size);
1248 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
1249 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
1250 if (Opcode == X86::MOV64ri64i32)
1251 rt = X86::reloc_absolute_word; // FIXME: add X86II flag?
1252 // This should not occur on Darwin for relocatable objects.
1253 if (Opcode == X86::MOV64ri)
1254 rt = X86::reloc_absolute_dword; // FIXME: add X86II flag?
1255 if (MO1.isGlobal()) {
1256 bool Indirect = gvNeedsNonLazyPtr(MO1, TM);
1257 emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
1259 } else if (MO1.isSymbol())
1260 emitExternalSymbolAddress(MO1.getSymbolName(), rt);
1261 else if (MO1.isCPI())
1262 emitConstPoolAddress(MO1.getIndex(), rt);
1263 else if (MO1.isJTI())
1264 emitJumpTableAddress(MO1.getIndex(), rt);
1268 case X86II::MRMDestReg: {
1269 MCE.emitByte(BaseOpcode);
1270 emitRegModRMByte(MI.getOperand(CurOp).getReg(),
1271 X86_MC::getX86RegNum(MI.getOperand(CurOp+1).getReg()));
1275 case X86II::MRMDestMem: {
1276 MCE.emitByte(BaseOpcode);
1278 unsigned SrcRegNum = CurOp + X86::AddrNumOperands;
1279 if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1281 emitMemModRMByte(MI, CurOp,
1282 X86_MC::getX86RegNum(MI.getOperand(SrcRegNum).getReg()));
1283 CurOp = SrcRegNum + 1;
1287 case X86II::MRMSrcReg: {
1288 MCE.emitByte(BaseOpcode);
1290 unsigned SrcRegNum = CurOp+1;
1291 if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1294 if (HasMemOp4) // Skip 2nd src (which is encoded in I8IMM)
1297 emitRegModRMByte(MI.getOperand(SrcRegNum).getReg(),
1298 X86_MC::getX86RegNum(MI.getOperand(CurOp).getReg()));
1299 // 2 operands skipped with HasMemOp4, compensate accordingly
1300 CurOp = HasMemOp4 ? SrcRegNum : SrcRegNum + 1;
1305 case X86II::MRMSrcMem: {
1306 int AddrOperands = X86::AddrNumOperands;
1307 unsigned FirstMemOp = CurOp+1;
1310 ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV).
1312 if (HasMemOp4) // Skip second register source (encoded in I8IMM)
1315 MCE.emitByte(BaseOpcode);
1317 intptr_t PCAdj = (CurOp + AddrOperands + 1 != NumOps) ?
1318 X86II::getSizeOfImm(Desc->TSFlags) : 0;
1319 emitMemModRMByte(MI, FirstMemOp,
1320 X86_MC::getX86RegNum(MI.getOperand(CurOp).getReg()),PCAdj);
1321 CurOp += AddrOperands + 1;
1327 case X86II::MRM0r: case X86II::MRM1r:
1328 case X86II::MRM2r: case X86II::MRM3r:
1329 case X86II::MRM4r: case X86II::MRM5r:
1330 case X86II::MRM6r: case X86II::MRM7r: {
1331 if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
1333 MCE.emitByte(BaseOpcode);
1334 emitRegModRMByte(MI.getOperand(CurOp++).getReg(),
1335 (Desc->TSFlags & X86II::FormMask)-X86II::MRM0r);
1337 if (CurOp == NumOps)
1340 const MachineOperand &MO1 = MI.getOperand(CurOp++);
1341 unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
1343 emitConstant(MO1.getImm(), Size);
1347 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
1348 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
1349 if (Opcode == X86::MOV64ri32)
1350 rt = X86::reloc_absolute_word_sext; // FIXME: add X86II flag?
1351 if (MO1.isGlobal()) {
1352 bool Indirect = gvNeedsNonLazyPtr(MO1, TM);
1353 emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
1355 } else if (MO1.isSymbol())
1356 emitExternalSymbolAddress(MO1.getSymbolName(), rt);
1357 else if (MO1.isCPI())
1358 emitConstPoolAddress(MO1.getIndex(), rt);
1359 else if (MO1.isJTI())
1360 emitJumpTableAddress(MO1.getIndex(), rt);
1364 case X86II::MRM0m: case X86II::MRM1m:
1365 case X86II::MRM2m: case X86II::MRM3m:
1366 case X86II::MRM4m: case X86II::MRM5m:
1367 case X86II::MRM6m: case X86II::MRM7m: {
1368 if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
1370 intptr_t PCAdj = (CurOp + X86::AddrNumOperands != NumOps) ?
1371 (MI.getOperand(CurOp+X86::AddrNumOperands).isImm() ?
1372 X86II::getSizeOfImm(Desc->TSFlags) : 4) : 0;
1374 MCE.emitByte(BaseOpcode);
1375 emitMemModRMByte(MI, CurOp, (Desc->TSFlags & X86II::FormMask)-X86II::MRM0m,
1377 CurOp += X86::AddrNumOperands;
1379 if (CurOp == NumOps)
1382 const MachineOperand &MO = MI.getOperand(CurOp++);
1383 unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
1385 emitConstant(MO.getImm(), Size);
1389 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
1390 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
1391 if (Opcode == X86::MOV64mi32)
1392 rt = X86::reloc_absolute_word_sext; // FIXME: add X86II flag?
1393 if (MO.isGlobal()) {
1394 bool Indirect = gvNeedsNonLazyPtr(MO, TM);
1395 emitGlobalAddress(MO.getGlobal(), rt, MO.getOffset(), 0,
1397 } else if (MO.isSymbol())
1398 emitExternalSymbolAddress(MO.getSymbolName(), rt);
1399 else if (MO.isCPI())
1400 emitConstPoolAddress(MO.getIndex(), rt);
1401 else if (MO.isJTI())
1402 emitJumpTableAddress(MO.getIndex(), rt);
1406 case X86II::MRMInitReg:
1407 MCE.emitByte(BaseOpcode);
1408 // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
1409 emitRegModRMByte(MI.getOperand(CurOp).getReg(),
1410 X86_MC::getX86RegNum(MI.getOperand(CurOp).getReg()));
1415 MCE.emitByte(BaseOpcode);
1419 MCE.emitByte(BaseOpcode);
1423 MCE.emitByte(BaseOpcode);
1427 MCE.emitByte(BaseOpcode);
1431 MCE.emitByte(BaseOpcode);
1436 if (CurOp != NumOps) {
1437 // The last source register of a 4 operand instruction in AVX is encoded
1438 // in bits[7:4] of a immediate byte.
1439 if ((TSFlags >> X86II::VEXShift) & X86II::VEX_I8IMM) {
1440 const MachineOperand &MO = MI.getOperand(HasMemOp4 ? MemOp4_I8IMMOperand
1443 unsigned RegNum = X86_MC::getX86RegNum(MO.getReg()) << 4;
1444 if (X86II::isX86_64ExtendedReg(MO.getReg()))
1446 // If there is an additional 5th operand it must be an immediate, which
1447 // is encoded in bits[3:0]
1448 if (CurOp != NumOps) {
1449 const MachineOperand &MIMM = MI.getOperand(CurOp++);
1451 unsigned Val = MIMM.getImm();
1452 assert(Val < 16 && "Immediate operand value out of range");
1456 emitConstant(RegNum, 1);
1458 emitConstant(MI.getOperand(CurOp++).getImm(),
1459 X86II::getSizeOfImm(Desc->TSFlags));
1463 if (!MI.isVariadic() && CurOp != NumOps) {
1465 dbgs() << "Cannot encode all operands of: " << MI << "\n";
1467 llvm_unreachable(0);
1470 MCE.processDebugLoc(MI.getDebugLoc(), false);