Refactor the code that checks that all operands of a node are UNDEFs.
[oota-llvm.git] / lib / Target / TargetRegisterInfo.cpp
1 //===- TargetRegisterInfo.cpp - Target Register Information Implementation ===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the TargetRegisterInfo interface.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Target/TargetMachine.h"
15 #include "llvm/Target/TargetRegisterInfo.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/Support/raw_ostream.h"
18
19 using namespace llvm;
20
21 TargetRegisterInfo::TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
22                              regclass_iterator RCB, regclass_iterator RCE,
23                              const char *const *subregindexnames)
24   : InfoDesc(ID), SubRegIndexNames(subregindexnames),
25     RegClassBegin(RCB), RegClassEnd(RCE) {
26 }
27
28 TargetRegisterInfo::~TargetRegisterInfo() {}
29
30 void PrintReg::print(raw_ostream &OS) const {
31   if (!Reg)
32     OS << "%noreg";
33   else if (TargetRegisterInfo::isStackSlot(Reg))
34     OS << "SS#" << TargetRegisterInfo::stackSlot2Index(Reg);
35   else if (TargetRegisterInfo::isVirtualRegister(Reg))
36     OS << "%vreg" << TargetRegisterInfo::virtReg2Index(Reg);
37   else if (TRI && Reg < TRI->getNumRegs())
38     OS << '%' << TRI->getName(Reg);
39   else
40     OS << "%physreg" << Reg;
41   if (SubIdx) {
42     if (TRI)
43       OS << ':' << TRI->getSubRegIndexName(SubIdx);
44     else
45       OS << ":sub(" << SubIdx << ')';
46   }
47 }
48
49 void PrintRegUnit::print(raw_ostream &OS) const {
50   // Generic printout when TRI is missing.
51   if (!TRI) {
52     OS << "Unit~" << Unit;
53     return;
54   }
55
56   // Check for invalid register units.
57   if (Unit >= TRI->getNumRegUnits()) {
58     OS << "BadUnit~" << Unit;
59     return;
60   }
61
62   // Normal units have at least one root.
63   MCRegUnitRootIterator Roots(Unit, TRI);
64   assert(Roots.isValid() && "Unit has no roots.");
65   OS << TRI->getName(*Roots);
66   for (++Roots; Roots.isValid(); ++Roots)
67     OS << '~' << TRI->getName(*Roots);
68 }
69
70 /// getAllocatableClass - Return the maximal subclass of the given register
71 /// class that is alloctable, or NULL.
72 const TargetRegisterClass *
73 TargetRegisterInfo::getAllocatableClass(const TargetRegisterClass *RC) const {
74   if (!RC || RC->isAllocatable())
75     return RC;
76
77   const unsigned *SubClass = RC->getSubClassMask();
78   for (unsigned Base = 0, BaseE = getNumRegClasses();
79        Base < BaseE; Base += 32) {
80     unsigned Idx = Base;
81     for (unsigned Mask = *SubClass++; Mask; Mask >>= 1) {
82       unsigned Offset = CountTrailingZeros_32(Mask);
83       const TargetRegisterClass *SubRC = getRegClass(Idx + Offset);
84       if (SubRC->isAllocatable())
85         return SubRC;
86       Mask >>= Offset;
87       Idx += Offset + 1;
88     }
89   }
90   return NULL;
91 }
92
93 /// getMinimalPhysRegClass - Returns the Register Class of a physical
94 /// register of the given type, picking the most sub register class of
95 /// the right type that contains this physreg.
96 const TargetRegisterClass *
97 TargetRegisterInfo::getMinimalPhysRegClass(unsigned reg, EVT VT) const {
98   assert(isPhysicalRegister(reg) && "reg must be a physical register");
99
100   // Pick the most sub register class of the right type that contains
101   // this physreg.
102   const TargetRegisterClass* BestRC = 0;
103   for (regclass_iterator I = regclass_begin(), E = regclass_end(); I != E; ++I){
104     const TargetRegisterClass* RC = *I;
105     if ((VT == MVT::Other || RC->hasType(VT)) && RC->contains(reg) &&
106         (!BestRC || BestRC->hasSubClass(RC)))
107       BestRC = RC;
108   }
109
110   assert(BestRC && "Couldn't find the register class");
111   return BestRC;
112 }
113
114 /// getAllocatableSetForRC - Toggle the bits that represent allocatable
115 /// registers for the specific register class.
116 static void getAllocatableSetForRC(const MachineFunction &MF,
117                                    const TargetRegisterClass *RC, BitVector &R){
118   assert(RC->isAllocatable() && "invalid for nonallocatable sets");
119   ArrayRef<uint16_t> Order = RC->getRawAllocationOrder(MF);
120   for (unsigned i = 0; i != Order.size(); ++i)
121     R.set(Order[i]);
122 }
123
124 BitVector TargetRegisterInfo::getAllocatableSet(const MachineFunction &MF,
125                                           const TargetRegisterClass *RC) const {
126   BitVector Allocatable(getNumRegs());
127   if (RC) {
128     // A register class with no allocatable subclass returns an empty set.
129     const TargetRegisterClass *SubClass = getAllocatableClass(RC);
130     if (SubClass)
131       getAllocatableSetForRC(MF, SubClass, Allocatable);
132   } else {
133     for (TargetRegisterInfo::regclass_iterator I = regclass_begin(),
134          E = regclass_end(); I != E; ++I)
135       if ((*I)->isAllocatable())
136         getAllocatableSetForRC(MF, *I, Allocatable);
137   }
138
139   // Mask out the reserved registers
140   BitVector Reserved = getReservedRegs(MF);
141   Allocatable &= Reserved.flip();
142
143   return Allocatable;
144 }
145
146 static inline
147 const TargetRegisterClass *firstCommonClass(const uint32_t *A,
148                                             const uint32_t *B,
149                                             const TargetRegisterInfo *TRI) {
150   for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; I += 32)
151     if (unsigned Common = *A++ & *B++)
152       return TRI->getRegClass(I + CountTrailingZeros_32(Common));
153   return 0;
154 }
155
156 const TargetRegisterClass *
157 TargetRegisterInfo::getCommonSubClass(const TargetRegisterClass *A,
158                                       const TargetRegisterClass *B) const {
159   // First take care of the trivial cases.
160   if (A == B)
161     return A;
162   if (!A || !B)
163     return 0;
164
165   // Register classes are ordered topologically, so the largest common
166   // sub-class it the common sub-class with the smallest ID.
167   return firstCommonClass(A->getSubClassMask(), B->getSubClassMask(), this);
168 }
169
170 const TargetRegisterClass *
171 TargetRegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A,
172                                              const TargetRegisterClass *B,
173                                              unsigned Idx) const {
174   assert(A && B && "Missing register class");
175   assert(Idx && "Bad sub-register index");
176
177   // Find Idx in the list of super-register indices.
178   for (SuperRegClassIterator RCI(B, this); RCI.isValid(); ++RCI)
179     if (RCI.getSubReg() == Idx)
180       // The bit mask contains all register classes that are projected into B
181       // by Idx. Find a class that is also a sub-class of A.
182       return firstCommonClass(RCI.getMask(), A->getSubClassMask(), this);
183   return 0;
184 }
185
186 const TargetRegisterClass *TargetRegisterInfo::
187 getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
188                        const TargetRegisterClass *RCB, unsigned SubB,
189                        unsigned &PreA, unsigned &PreB) const {
190   assert(RCA && SubA && RCB && SubB && "Invalid arguments");
191
192   // Search all pairs of sub-register indices that project into RCA and RCB
193   // respectively. This is quadratic, but usually the sets are very small. On
194   // most targets like X86, there will only be a single sub-register index
195   // (e.g., sub_16bit projecting into GR16).
196   //
197   // The worst case is a register class like DPR on ARM.
198   // We have indices dsub_0..dsub_7 projecting into that class.
199   //
200   // It is very common that one register class is a sub-register of the other.
201   // Arrange for RCA to be the larger register so the answer will be found in
202   // the first iteration. This makes the search linear for the most common
203   // case.
204   const TargetRegisterClass *BestRC = 0;
205   unsigned *BestPreA = &PreA;
206   unsigned *BestPreB = &PreB;
207   if (RCA->getSize() < RCB->getSize()) {
208     std::swap(RCA, RCB);
209     std::swap(SubA, SubB);
210     std::swap(BestPreA, BestPreB);
211   }
212
213   // Also terminate the search one we have found a register class as small as
214   // RCA.
215   unsigned MinSize = RCA->getSize();
216
217   for (SuperRegClassIterator IA(RCA, this, true); IA.isValid(); ++IA) {
218     unsigned FinalA = composeSubRegIndices(IA.getSubReg(), SubA);
219     for (SuperRegClassIterator IB(RCB, this, true); IB.isValid(); ++IB) {
220       // Check if a common super-register class exists for this index pair.
221       const TargetRegisterClass *RC =
222         firstCommonClass(IA.getMask(), IB.getMask(), this);
223       if (!RC || RC->getSize() < MinSize)
224         continue;
225
226       // The indexes must compose identically: PreA+SubA == PreB+SubB.
227       unsigned FinalB = composeSubRegIndices(IB.getSubReg(), SubB);
228       if (FinalA != FinalB)
229         continue;
230
231       // Is RC a better candidate than BestRC?
232       if (BestRC && RC->getSize() >= BestRC->getSize())
233         continue;
234
235       // Yes, RC is the smallest super-register seen so far.
236       BestRC = RC;
237       *BestPreA = IA.getSubReg();
238       *BestPreB = IB.getSubReg();
239
240       // Bail early if we reached MinSize. We won't find a better candidate.
241       if (BestRC->getSize() == MinSize)
242         return BestRC;
243     }
244   }
245   return BestRC;
246 }