Lower addresses of globals
[oota-llvm.git] / lib / Target / SystemZ / SystemZInstrInfo.td
1 //===- SystemZInstrInfo.td - SystemZ Instruction defs ---------*- tblgen-*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source 
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file describes the SystemZ instructions in TableGen format.
11 //
12 //===----------------------------------------------------------------------===//
13
14 include "SystemZInstrFormats.td"
15
16 //===----------------------------------------------------------------------===//
17 // Type Constraints.
18 //===----------------------------------------------------------------------===//
19 class SDTCisI8<int OpNum> : SDTCisVT<OpNum, i8>;
20 class SDTCisI16<int OpNum> : SDTCisVT<OpNum, i16>;
21 class SDTCisI32<int OpNum> : SDTCisVT<OpNum, i32>;
22 class SDTCisI64<int OpNum> : SDTCisVT<OpNum, i64>;
23
24 //===----------------------------------------------------------------------===//
25 // Type Profiles.
26 //===----------------------------------------------------------------------===//
27 def SDT_SystemZCall         : SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>;
28 def SDT_SystemZCallSeqStart : SDCallSeqStart<[SDTCisI64<0>]>;
29 def SDT_SystemZCallSeqEnd   : SDCallSeqEnd<[SDTCisI64<0>, SDTCisI64<1>]>;
30 def SDT_CmpTest             : SDTypeProfile<0, 2, [SDTCisSameAs<0, 1>]>;
31 def SDT_BrCond              : SDTypeProfile<0, 2,
32                                            [SDTCisVT<0, OtherVT>,
33                                             SDTCisI8<1>]>;
34 def SDT_SelectCC            : SDTypeProfile<1, 3,
35                                            [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>,
36                                             SDTCisI8<3>]>;
37 def SDT_Address             : SDTypeProfile<1, 1,
38                                             [SDTCisSameAs<0, 1>, SDTCisPtrTy<0>]>;
39
40 //===----------------------------------------------------------------------===//
41 // SystemZ Specific Node Definitions.
42 //===----------------------------------------------------------------------===//
43 def SystemZretflag : SDNode<"SystemZISD::RET_FLAG", SDTNone,
44                      [SDNPHasChain, SDNPOptInFlag]>;
45 def SystemZcall    : SDNode<"SystemZISD::CALL", SDT_SystemZCall,
46                      [SDNPHasChain, SDNPOutFlag, SDNPOptInFlag]>;
47 def SystemZcallseq_start :
48                  SDNode<"ISD::CALLSEQ_START", SDT_SystemZCallSeqStart,
49                         [SDNPHasChain, SDNPOutFlag]>;
50 def SystemZcallseq_end :
51                  SDNode<"ISD::CALLSEQ_END",   SDT_SystemZCallSeqEnd,
52                         [SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>;
53 def SystemZcmp     : SDNode<"SystemZISD::CMP", SDT_CmpTest, [SDNPOutFlag]>;
54 def SystemZucmp    : SDNode<"SystemZISD::UCMP", SDT_CmpTest, [SDNPOutFlag]>;
55 def SystemZbrcond  : SDNode<"SystemZISD::BRCOND", SDT_BrCond,
56                             [SDNPHasChain, SDNPInFlag]>;
57 def SystemZselect  : SDNode<"SystemZISD::SELECT", SDT_SelectCC, [SDNPInFlag]>;
58 def SystemZpcrelwrapper : SDNode<"SystemZISD::PCRelativeWrapper", SDT_Address, []>;
59
60 //===----------------------------------------------------------------------===//
61 // Instruction Pattern Stuff.
62 //===----------------------------------------------------------------------===//
63
64 // SystemZ specific condition code. These correspond to CondCode in
65 // SystemZ.h. They must be kept in synch.
66 def SYSTEMZ_COND_E  : PatLeaf<(i8 0)>;
67 def SYSTEMZ_COND_NE : PatLeaf<(i8 1)>;
68 def SYSTEMZ_COND_H  : PatLeaf<(i8 2)>;
69 def SYSTEMZ_COND_L  : PatLeaf<(i8 3)>;
70 def SYSTEMZ_COND_HE : PatLeaf<(i8 4)>;
71 def SYSTEMZ_COND_LE : PatLeaf<(i8 5)>;
72
73 def LL16 : SDNodeXForm<imm, [{
74   // Transformation function: return low 16 bits.
75   return getI16Imm(N->getZExtValue() & 0x000000000000FFFFULL);
76 }]>;
77
78 def LH16 : SDNodeXForm<imm, [{
79   // Transformation function: return bits 16-31.
80   return getI16Imm((N->getZExtValue() & 0x00000000FFFF0000ULL) >> 16);
81 }]>;
82
83 def HL16 : SDNodeXForm<imm, [{
84   // Transformation function: return bits 32-47.
85   return getI16Imm((N->getZExtValue() & 0x0000FFFF00000000ULL) >> 32);
86 }]>;
87
88 def HH16 : SDNodeXForm<imm, [{
89   // Transformation function: return bits 48-63.
90   return getI16Imm((N->getZExtValue() & 0xFFFF000000000000ULL) >> 48);
91 }]>;
92
93 def LO32 : SDNodeXForm<imm, [{
94   // Transformation function: return low 32 bits.
95   return getI32Imm(N->getZExtValue() & 0x00000000FFFFFFFFULL);
96 }]>;
97
98 def HI32 : SDNodeXForm<imm, [{
99   // Transformation function: return bits 32-63.
100   return getI32Imm(N->getZExtValue() >> 32);
101 }]>;
102
103 def i64ll16 : PatLeaf<(imm), [{  
104   // i64ll16 predicate - true if the 64-bit immediate has only rightmost 16
105   // bits set.
106   return ((N->getZExtValue() & 0x000000000000FFFFULL) == N->getZExtValue());
107 }], LL16>;
108
109 def i64lh16 : PatLeaf<(imm), [{  
110   // i64lh16 predicate - true if the 64-bit immediate has only bits 16-31 set.
111   return ((N->getZExtValue() & 0x00000000FFFF0000ULL) == N->getZExtValue());
112 }], LH16>;
113
114 def i64hl16 : PatLeaf<(i64 imm), [{  
115   // i64hl16 predicate - true if the 64-bit immediate has only bits 32-47 set.
116   return ((N->getZExtValue() & 0x0000FFFF00000000ULL) == N->getZExtValue());
117 }], HL16>;
118
119 def i64hh16 : PatLeaf<(i64 imm), [{  
120   // i64hh16 predicate - true if the 64-bit immediate has only bits 48-63 set.
121   return ((N->getZExtValue() & 0xFFFF000000000000ULL) == N->getZExtValue());
122 }], HH16>;
123
124 def immSExt16 : PatLeaf<(imm), [{
125   // immSExt16 predicate - true if the immediate fits in a 16-bit sign extended
126   // field.
127   if (N->getValueType(0) == MVT::i64) {
128     uint64_t val = N->getZExtValue();
129     return ((int64_t)val == (int16_t)val);
130   } else if (N->getValueType(0) == MVT::i32) {
131     uint32_t val = N->getZExtValue();
132     return ((int32_t)val == (int16_t)val);
133   }
134
135   return false;
136 }]>;
137
138 def immSExt32 : PatLeaf<(i64 imm), [{
139   // immSExt32 predicate - true if the immediate fits in a 32-bit sign extended
140   // field.
141   uint64_t val = N->getZExtValue();
142   return ((int64_t)val == (int32_t)val);
143 }]>;
144
145 def i64lo32 : PatLeaf<(i64 imm), [{
146   // i64lo32 predicate - true if the 64-bit immediate has only rightmost 32
147   // bits set.
148   return ((N->getZExtValue() & 0x00000000FFFFFFFFULL) == N->getZExtValue());
149 }], LO32>;
150
151 def i64hi32 : PatLeaf<(i64 imm), [{
152   // i64hi32 predicate - true if the 64-bit immediate has only bits 32-63 set.
153   return ((N->getZExtValue() & 0xFFFFFFFF00000000ULL) == N->getZExtValue());
154 }], HI32>;
155
156 def i32immSExt8  : PatLeaf<(i32 imm), [{
157   // i32immSExt8 predicate - True if the 32-bit immediate fits in a 8-bit
158   // sign extended field.
159   return (int32_t)N->getZExtValue() == (int8_t)N->getZExtValue();
160 }]>;
161
162 def i32immSExt16 : PatLeaf<(i32 imm), [{
163   // i32immSExt16 predicate - True if the 32-bit immediate fits in a 16-bit
164   // sign extended field.
165   return (int32_t)N->getZExtValue() == (int16_t)N->getZExtValue();
166 }]>;
167
168 def i64immSExt32 : PatLeaf<(i64 imm), [{
169   // i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit
170   // sign extended field.
171   return (int64_t)N->getZExtValue() == (int32_t)N->getZExtValue();
172 }]>;
173
174 def i64immZExt32 : PatLeaf<(i64 imm), [{
175   // i64immZExt32 predicate - True if the 64-bit immediate fits in a 32-bit
176   // zero extended field.
177   return (uint64_t)N->getZExtValue() == (uint32_t)N->getZExtValue();
178 }]>;
179
180 // extloads
181 def extloadi32i8   : PatFrag<(ops node:$ptr), (i32 (extloadi8  node:$ptr))>;
182 def extloadi32i16  : PatFrag<(ops node:$ptr), (i32 (extloadi16 node:$ptr))>;
183 def extloadi64i8   : PatFrag<(ops node:$ptr), (i64 (extloadi8  node:$ptr))>;
184 def extloadi64i16  : PatFrag<(ops node:$ptr), (i64 (extloadi16 node:$ptr))>;
185 def extloadi64i32  : PatFrag<(ops node:$ptr), (i64 (extloadi32 node:$ptr))>;
186
187 def sextloadi32i8   : PatFrag<(ops node:$ptr), (i32 (sextloadi8  node:$ptr))>;
188 def sextloadi32i16  : PatFrag<(ops node:$ptr), (i32 (sextloadi16 node:$ptr))>;
189 def sextloadi64i8   : PatFrag<(ops node:$ptr), (i64 (sextloadi8  node:$ptr))>;
190 def sextloadi64i16  : PatFrag<(ops node:$ptr), (i64 (sextloadi16 node:$ptr))>;
191 def sextloadi64i32  : PatFrag<(ops node:$ptr), (i64 (sextloadi32 node:$ptr))>;
192
193 def zextloadi32i8   : PatFrag<(ops node:$ptr), (i32 (zextloadi8  node:$ptr))>;
194 def zextloadi32i16  : PatFrag<(ops node:$ptr), (i32 (zextloadi16 node:$ptr))>;
195 def zextloadi64i8   : PatFrag<(ops node:$ptr), (i64 (zextloadi8  node:$ptr))>;
196 def zextloadi64i16  : PatFrag<(ops node:$ptr), (i64 (zextloadi16 node:$ptr))>;
197 def zextloadi64i32  : PatFrag<(ops node:$ptr), (i64 (zextloadi32 node:$ptr))>;
198
199 // A couple of more descriptive operand definitions.
200 // 32-bits but only 8 bits are significant.
201 def i32i8imm  : Operand<i32>;
202 // 32-bits but only 16 bits are significant.
203 def i32i16imm : Operand<i32>;
204 // 64-bits but only 32 bits are significant.
205 def i64i32imm : Operand<i64>;
206 // Branch targets have OtherVT type.
207 def brtarget : Operand<OtherVT>;
208
209 //===----------------------------------------------------------------------===//
210 // SystemZ Operand Definitions.
211 //===----------------------------------------------------------------------===//
212
213 // Address operands
214
215 // riaddr := reg + imm
216 def riaddr32 : Operand<i32>,
217                ComplexPattern<i32, 2, "SelectAddrRI", []> {
218   let PrintMethod = "printRIAddrOperand";
219   let MIOperandInfo = (ops ADDR32:$base, i32imm:$disp);
220 }
221
222 def riaddr : Operand<i64>,
223              ComplexPattern<i64, 2, "SelectAddrRI", []> {
224   let PrintMethod = "printRIAddrOperand";
225   let MIOperandInfo = (ops ADDR64:$base, i64imm:$disp);
226 }
227
228 //===----------------------------------------------------------------------===//
229
230 // rriaddr := reg + reg + imm
231 def rriaddr : Operand<i64>,
232               ComplexPattern<i64, 3, "SelectAddrRRI", [], []> {
233   let PrintMethod = "printRRIAddrOperand";
234   let MIOperandInfo = (ops ADDR64:$base, i64imm:$disp, ADDR64:$index);
235 }
236 def laaddr : Operand<i64>,
237              ComplexPattern<i64, 3, "SelectLAAddr", [add, sub, or, frameindex], []> {
238   let PrintMethod = "printRRIAddrOperand";
239   let MIOperandInfo = (ops ADDR64:$base, i64imm:$disp, ADDR64:$index);
240 }
241
242 //===----------------------------------------------------------------------===//
243 // Instruction list..
244
245 def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt),
246                               "#ADJCALLSTACKDOWN",
247                               [(SystemZcallseq_start timm:$amt)]>;
248 def ADJCALLSTACKUP   : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
249                               "#ADJCALLSTACKUP",
250                               [(SystemZcallseq_end timm:$amt1, timm:$amt2)]>;
251
252 let usesCustomDAGSchedInserter = 1 in {
253   def Select32 : Pseudo<(outs GR32:$dst), (ins GR32:$src1, GR32:$src2, i8imm:$cc),
254                         "# Select32 PSEUDO",
255                         [(set GR32:$dst,
256                               (SystemZselect GR32:$src1, GR32:$src2, imm:$cc))]>;
257   def Select64 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, GR64:$src2, i8imm:$cc),
258                         "# Select64 PSEUDO",
259                         [(set GR64:$dst,
260                               (SystemZselect GR64:$src1, GR64:$src2, imm:$cc))]>;
261 }
262
263
264 //===----------------------------------------------------------------------===//
265 //  Control Flow Instructions...
266 //
267
268 // FIXME: Provide proper encoding!
269 let isReturn = 1, isTerminator = 1, isBarrier = 1, hasCtrlDep = 1 in {
270   def RET : Pseudo<(outs), (ins), "br\t%r14", [(SystemZretflag)]>;
271 }
272
273 let isBranch = 1, isTerminator = 1 in {
274   let Uses = [PSW] in {
275     def JE  : Pseudo<(outs), (ins brtarget:$dst),
276                      "je\t$dst",
277                      [(SystemZbrcond bb:$dst, SYSTEMZ_COND_E)]>;
278     def JNE : Pseudo<(outs), (ins brtarget:$dst),
279                      "jne\t$dst",
280                      [(SystemZbrcond bb:$dst, SYSTEMZ_COND_NE)]>;
281     def JH  : Pseudo<(outs), (ins brtarget:$dst),
282                      "jh\t$dst",
283                      [(SystemZbrcond bb:$dst, SYSTEMZ_COND_H)]>;
284     def JL  : Pseudo<(outs), (ins brtarget:$dst),
285                      "jl\t$dst",
286                      [(SystemZbrcond bb:$dst, SYSTEMZ_COND_L)]>;
287     def JHE : Pseudo<(outs), (ins brtarget:$dst),
288                      "jhe\t$dst",
289                      [(SystemZbrcond bb:$dst, SYSTEMZ_COND_HE)]>;
290     def JLE : Pseudo<(outs), (ins brtarget:$dst),
291                      "jle\t$dst",
292                      [(SystemZbrcond bb:$dst, SYSTEMZ_COND_LE)]>;
293
294   } // Uses = [PSW]
295 } // isBranch = 1
296
297 //===----------------------------------------------------------------------===//
298 //  Call Instructions...
299 //
300
301 let isCall = 1 in
302   // All calls clobber the non-callee saved registers (except R14 which we
303   // handle separately). Uses for argument registers are added manually.
304   let Defs = [R0D, R1D, R3D, R4D, R5D] in {
305     def CALLi     : Pseudo<(outs), (ins i64imm:$dst, variable_ops),
306                            "brasl\t%r14, $dst", [(SystemZcall imm:$dst)]>;
307     def CALLr     : Pseudo<(outs), (ins ADDR64:$dst, variable_ops),
308                            "brasl\t%r14, $dst", [(SystemZcall ADDR64:$dst)]>;
309   }
310
311 //===----------------------------------------------------------------------===//
312 //  Miscellaneous Instructions.
313 //
314
315 let isReMaterializable = 1 in
316 // FIXME: Provide imm12 variant
317 def LA64r  : Pseudo<(outs GR64:$dst), (ins laaddr:$src),
318                     "lay\t{$dst, $src}",
319                     [(set GR64:$dst, laaddr:$src)]>;
320 def LA64rm : Pseudo<(outs GR64:$dst), (ins i64imm:$src),
321                     "larl\t{$dst, $src}",
322                     [(set GR64:$dst,
323                           (SystemZpcrelwrapper tglobaladdr:$src))]>;
324
325 let neverHasSideEffects = 1 in
326 def NOP : Pseudo<(outs), (ins), "# no-op", []>;
327
328 //===----------------------------------------------------------------------===//
329 // Move Instructions
330
331 // FIXME: Provide proper encoding!
332 let neverHasSideEffects = 1 in {
333 def MOV32rr : Pseudo<(outs GR32:$dst), (ins GR32:$src),
334                      "lr\t{$dst, $src}",
335                      []>;
336 def MOV64rr : Pseudo<(outs GR64:$dst), (ins GR64:$src),
337                      "lgr\t{$dst, $src}",
338                      []>;
339 def MOV128rr : Pseudo<(outs GR128:$dst), (ins GR128:$src),
340                      "# MOV128 PSEUDO!"
341                      "lgr\t{$dst:subreg_odd, $src:subreg_odd}\n"
342                      "lgr\t{$dst:subreg_even, $src:subreg_even}",
343                      []>;
344 def MOV64rrP : Pseudo<(outs GR64P:$dst), (ins GR64P:$src),
345                      "# MOV64P PSEUDO!"
346                      "lr\t{$dst:subreg_odd, $src:subreg_odd}\n"
347                      "lr\t{$dst:subreg_even, $src:subreg_even}",
348                      []>;
349 }
350
351 def MOVSX64rr32 : Pseudo<(outs GR64:$dst), (ins GR32:$src),
352                          "lgfr\t{$dst, $src}",
353                          [(set GR64:$dst, (sext GR32:$src))]>;
354 def MOVZX64rr32 : Pseudo<(outs GR64:$dst), (ins GR32:$src),
355                          "llgfr\t{$dst, $src}",
356                          [(set GR64:$dst, (zext GR32:$src))]>;
357
358 // FIXME: Provide proper encoding!
359 let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
360 def MOV32ri16 : Pseudo<(outs GR32:$dst), (ins i32imm:$src),
361                        "lhi\t{$dst, $src}",
362                        [(set GR32:$dst, immSExt16:$src)]>;
363 def MOV64ri16 : Pseudo<(outs GR64:$dst), (ins i64imm:$src),
364                        "lghi\t{$dst, $src}",
365                        [(set GR64:$dst, immSExt16:$src)]>;
366
367 def MOV64rill16 : Pseudo<(outs GR64:$dst), (ins i64imm:$src),
368                          "llill\t{$dst, $src}",
369                          [(set GR64:$dst, i64ll16:$src)]>;
370 def MOV64rilh16 : Pseudo<(outs GR64:$dst), (ins i64imm:$src),
371                          "llilh\t{$dst, $src}",
372                          [(set GR64:$dst, i64lh16:$src)]>;
373 def MOV64rihl16 : Pseudo<(outs GR64:$dst), (ins i64imm:$src),
374                          "llihl\t{$dst, $src}",
375                          [(set GR64:$dst, i64hl16:$src)]>;
376 def MOV64rihh16 : Pseudo<(outs GR64:$dst), (ins i64imm:$src),
377                          "llihh\t{$dst, $src}",
378                          [(set GR64:$dst, i64hh16:$src)]>;
379 // FIXME: these 3 instructions seem to require extimm facility
380 def MOV64ri32 : Pseudo<(outs GR64:$dst), (ins i64imm:$src),
381                        "lgfi\t{$dst, $src}",
382                        [(set GR64:$dst, immSExt32:$src)]>;
383 def MOV64rilo32 : Pseudo<(outs GR64:$dst), (ins i64imm:$src),
384                          "llilf\t{$dst, $src}",
385                          [(set GR64:$dst, i64lo32:$src)]>;
386 def MOV64rihi32 : Pseudo<(outs GR64:$dst), (ins i64imm:$src),
387                          "llihf\t{$dst, $src}",
388                          [(set GR64:$dst, i64hi32:$src)]>;
389 }
390
391 let canFoldAsLoad = 1, isReMaterializable = 1, mayHaveSideEffects = 1 in {
392 def MOV64rm : Pseudo<(outs GR64:$dst), (ins rriaddr:$src),
393                      "lg\t{$dst, $src}",
394                      [(set GR64:$dst, (load rriaddr:$src))]>;
395
396 }
397
398 def MOV64mr : Pseudo<(outs), (ins rriaddr:$dst, GR64:$src),
399                      "stg\t{$src, $dst}",
400                      [(store GR64:$src, rriaddr:$dst)]>;
401
402 // FIXME: displacements here are really 12 bit, not 20!
403 def MOV8mi    : Pseudo<(outs), (ins riaddr:$dst, i32i8imm:$src),
404                        "mvi\t{$dst, $src}",
405                        [(truncstorei8 (i32 i32immSExt8:$src), riaddr:$dst)]>;
406 def MOV16mi   : Pseudo<(outs), (ins riaddr:$dst, i32i16imm:$src),
407                        "mvhhi\t{$dst, $src}",
408                        [(truncstorei16 (i32 i32immSExt16:$src), riaddr:$dst)]>;
409 def MOV32mi16 : Pseudo<(outs), (ins riaddr:$dst, i32imm:$src),
410                        "mvhi\t{$dst, $src}",
411                        [(store (i32 immSExt16:$src), riaddr:$dst)]>;
412 def MOV64mi16 : Pseudo<(outs), (ins riaddr:$dst, i64imm:$src),
413                        "mvghi\t{$dst, $src}",
414                        [(store (i64 immSExt16:$src), riaddr:$dst)]>;
415
416 // extloads
417 def MOVSX32rm8  : Pseudo<(outs GR32:$dst), (ins rriaddr:$src),
418                          "lb\t{$dst, $src}",
419                          [(set GR32:$dst, (sextloadi32i8 rriaddr:$src))]>;
420 def MOVSX32rm16 : Pseudo<(outs GR32:$dst), (ins rriaddr:$src),
421                          "lhy\t{$dst, $src}",
422                          [(set GR32:$dst, (sextloadi32i16 rriaddr:$src))]>;
423 def MOVSX64rm8  : Pseudo<(outs GR64:$dst), (ins rriaddr:$src),
424                          "lgb\t{$dst, $src}",
425                          [(set GR64:$dst, (sextloadi64i8 rriaddr:$src))]>;
426 def MOVSX64rm16 : Pseudo<(outs GR64:$dst), (ins rriaddr:$src),
427                          "lgh\t{$dst, $src}",
428                          [(set GR64:$dst, (sextloadi64i16 rriaddr:$src))]>;
429 def MOVSX64rm32 : Pseudo<(outs GR64:$dst), (ins rriaddr:$src),
430                          "lgf\t{$dst, $src}",
431                          [(set GR64:$dst, (sextloadi64i32 rriaddr:$src))]>;
432
433 def MOVZX32rm8  : Pseudo<(outs GR32:$dst), (ins rriaddr:$src),
434                          "llc\t{$dst, $src}",
435                          [(set GR32:$dst, (zextloadi32i8 rriaddr:$src))]>;
436 def MOVZX32rm16 : Pseudo<(outs GR32:$dst), (ins rriaddr:$src),
437                          "llh\t{$dst, $src}",
438                          [(set GR32:$dst, (zextloadi32i16 rriaddr:$src))]>;
439 def MOVZX64rm8  : Pseudo<(outs GR64:$dst), (ins rriaddr:$src),
440                          "llgc\t{$dst, $src}",
441                          [(set GR64:$dst, (zextloadi64i8 rriaddr:$src))]>;
442 def MOVZX64rm16 : Pseudo<(outs GR64:$dst), (ins rriaddr:$src),
443                          "llgh\t{$dst, $src}",
444                          [(set GR64:$dst, (zextloadi64i16 rriaddr:$src))]>;
445 def MOVZX64rm32 : Pseudo<(outs GR64:$dst), (ins rriaddr:$src),
446                          "llgf\t{$dst, $src}",
447                          [(set GR64:$dst, (zextloadi64i32 rriaddr:$src))]>;
448
449 // truncstores
450 // FIXME: Implement 12-bit displacement stuff someday
451 def MOV32m8r  : Pseudo<(outs), (ins rriaddr:$dst, GR32:$src),
452                        "stcy\t{$src, $dst}",
453                        [(truncstorei8 GR32:$src, rriaddr:$dst)]>;
454
455 def MOV32m16r : Pseudo<(outs), (ins rriaddr:$dst, GR32:$src),
456                        "sthy\t{$src, $dst}",
457                        [(truncstorei16 GR32:$src, rriaddr:$dst)]>;
458
459 def MOV64m8r  : Pseudo<(outs), (ins rriaddr:$dst, GR64:$src),
460                        "stcy\t{$src, $dst}",
461                        [(truncstorei8 GR64:$src, rriaddr:$dst)]>;
462
463 def MOV64m16r : Pseudo<(outs), (ins rriaddr:$dst, GR64:$src),
464                        "sthy\t{$src, $dst}",
465                        [(truncstorei16 GR64:$src, rriaddr:$dst)]>;
466
467 def MOV64m32r : Pseudo<(outs), (ins rriaddr:$dst, GR64:$src),
468                        "sty\t{$src, $dst}",
469                        [(truncstorei32 GR64:$src, rriaddr:$dst)]>;
470
471 // multiple regs moves
472 // FIXME: should we use multiple arg nodes?
473 def MOV32mrm  : Pseudo<(outs), (ins riaddr:$dst, GR32:$from, GR32:$to),
474                        "stmy\t{$from, $to, $dst}",
475                        []>;
476 def MOV64mrm  : Pseudo<(outs), (ins riaddr:$dst, GR64:$from, GR64:$to),
477                        "stmg\t{$from, $to, $dst}",
478                        []>;
479 def MOV32rmm  : Pseudo<(outs GR32:$from, GR32:$to), (ins riaddr:$dst),
480                        "lmy\t{$from, $to, $dst}",
481                        []>;
482 def MOV64rmm  : Pseudo<(outs GR64:$from, GR64:$to), (ins riaddr:$dst),
483                        "lmg\t{$from, $to, $dst}",
484                        []>;
485
486
487 //===----------------------------------------------------------------------===//
488 // Arithmetic Instructions
489
490 let isTwoAddress = 1 in {
491
492 let Defs = [PSW] in {
493
494 let isCommutable = 1 in { // X = ADD Y, Z  == X = ADD Z, Y
495 // FIXME: Provide proper encoding!
496 def ADD32rr : Pseudo<(outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
497                      "ar\t{$dst, $src2}",
498                      [(set GR32:$dst, (add GR32:$src1, GR32:$src2)),
499                       (implicit PSW)]>;
500 def ADD64rr : Pseudo<(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
501                      "agr\t{$dst, $src2}",
502                      [(set GR64:$dst, (add GR64:$src1, GR64:$src2)),
503                       (implicit PSW)]>;
504 }
505
506 // FIXME: Provide proper encoding!
507 def ADD32ri16 : Pseudo<(outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
508                        "ahi\t{$dst, $src2}",
509                        [(set GR32:$dst, (add GR32:$src1, immSExt16:$src2)),
510                         (implicit PSW)]>;
511 def ADD32ri   : Pseudo<(outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
512                        "afi\t{$dst, $src2}",
513                        [(set GR32:$dst, (add GR32:$src1, imm:$src2)),
514                         (implicit PSW)]>;
515 def ADD64ri16 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
516                        "aghi\t{$dst, $src2}",
517                        [(set GR64:$dst, (add GR64:$src1, immSExt16:$src2)),
518                         (implicit PSW)]>;
519 def ADD64ri32 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
520                        "agfi\t{$dst, $src2}",
521                        [(set GR64:$dst, (add GR64:$src1, immSExt32:$src2)),
522                         (implicit PSW)]>;
523
524 let isCommutable = 1 in { // X = AND Y, Z  == X = AND Z, Y
525 // FIXME: Provide proper encoding!
526 def AND32rr : Pseudo<(outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
527                      "nr\t{$dst, $src2}",
528                      [(set GR32:$dst, (and GR32:$src1, GR32:$src2))]>;
529 def AND64rr : Pseudo<(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
530                      "ngr\t{$dst, $src2}",
531                      [(set GR64:$dst, (and GR64:$src1, GR64:$src2))]>;
532 }
533
534 // FIXME: Provide proper encoding!
535 def AND64rill16 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
536                          "nill\t{$dst, $src2}",
537                          [(set GR64:$dst, (and GR64:$src1, i64ll16:$src2))]>;
538 def AND64rilh16 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
539                          "nilh\t{$dst, $src2}",
540                          [(set GR64:$dst, (and GR64:$src1, i64lh16:$src2))]>;
541 def AND64rihl16 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
542                          "nihl\t{$dst, $src2}",
543                          [(set GR64:$dst, (and GR64:$src1, i64hl16:$src2))]>;
544 def AND64rihh16 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
545                          "nihh\t{$dst, $src2}",
546                          [(set GR64:$dst, (and GR64:$src1, i64hh16:$src2))]>;
547 // FIXME: these 2 instructions seem to require extimm facility
548 def AND64rilo32 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
549                          "nilf\t{$dst, $src2}",
550                          [(set GR64:$dst, (and GR64:$src1, i64lo32:$src2))]>;
551 def AND64rihi32 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
552                          "nihf\t{$dst, $src2}",
553                          [(set GR64:$dst, (and GR64:$src1, i64hi32:$src2))]>;
554
555 let isCommutable = 1 in { // X = OR Y, Z  == X = OR Z, Y
556 // FIXME: Provide proper encoding!
557 def OR32rr : Pseudo<(outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
558                     "or\t{$dst, $src2}",
559                     [(set GR32:$dst, (or GR32:$src1, GR32:$src2))]>;
560 def OR64rr : Pseudo<(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
561                     "ogr\t{$dst, $src2}",
562                     [(set GR64:$dst, (or GR64:$src1, GR64:$src2))]>;
563 }
564
565 def OR32ri16  : Pseudo<(outs GR32:$dst), (ins GR32:$src1, i16imm:$src2),
566                       "oill\t{$dst, $src2}",
567                       [(set GR32:$dst, (or GR32:$src1, i64ll16:$src2))]>;
568 def OR32ri16h : Pseudo<(outs GR32:$dst), (ins GR32:$src1, i16imm:$src2),
569                       "oilh\t{$dst, $src2}",
570                       [(set GR32:$dst, (or GR32:$src1, i64lh16:$src2))]>;
571 def OR32ri : Pseudo<(outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
572                     "oilf\t{$dst, $src2}",
573                     [(set GR32:$dst, (or GR32:$src1, imm:$src2))]>;
574
575 def OR64rill16 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
576                         "oill\t{$dst, $src2}",
577                         [(set GR64:$dst, (or GR64:$src1, i64ll16:$src2))]>;
578 def OR64rilh16 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
579                         "oilh\t{$dst, $src2}",
580                         [(set GR64:$dst, (or GR64:$src1, i64lh16:$src2))]>;
581 def OR64rihl16 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
582                         "oihl\t{$dst, $src2}",
583                         [(set GR64:$dst, (or GR64:$src1, i64hl16:$src2))]>;
584 def OR64rihh16 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
585                         "oihh\t{$dst, $src2}",
586                         [(set GR64:$dst, (or GR64:$src1, i64hh16:$src2))]>;
587 // FIXME: these 2 instructions seem to require extimm facility
588 def OR64rilo32 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
589                         "oilf\t{$dst, $src2}",
590                         [(set GR64:$dst, (or GR64:$src1, i64lo32:$src2))]>;
591 def OR64rihi32 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
592                         "oihf\t{$dst, $src2}",
593                         [(set GR64:$dst, (or GR64:$src1, i64hi32:$src2))]>;
594
595 // FIXME: Provide proper encoding!
596 def SUB32rr : Pseudo<(outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
597                      "sr\t{$dst, $src2}",
598                      [(set GR32:$dst, (sub GR32:$src1, GR32:$src2))]>;
599 def SUB64rr : Pseudo<(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
600                      "sgr\t{$dst, $src2}",
601                      [(set GR64:$dst, (sub GR64:$src1, GR64:$src2))]>;
602
603
604 let isCommutable = 1 in { // X = XOR Y, Z  == X = XOR Z, Y
605 // FIXME: Provide proper encoding!
606 def XOR32rr : Pseudo<(outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
607                      "xr\t{$dst, $src2}",
608                      [(set GR32:$dst, (xor GR32:$src1, GR32:$src2))]>;
609 def XOR64rr : Pseudo<(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
610                      "xgr\t{$dst, $src2}",
611                      [(set GR64:$dst, (xor GR64:$src1, GR64:$src2))]>;
612 }
613
614 def XOR32ri : Pseudo<(outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
615                      "xilf\t{$dst, $src2}",
616                      [(set GR32:$dst, (xor GR32:$src1, imm:$src2))]>;
617
618 // FIXME: these 2 instructions seem to require extimm facility
619 def XOR64rilo32 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
620                          "xilf\t{$dst, $src2}",
621                          [(set GR64:$dst, (xor GR64:$src1, i64lo32:$src2))]>;
622 def XOR64rihi32 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
623                          "xihf\t{$dst, $src2}",
624                          [(set GR64:$dst, (xor GR64:$src1, i64hi32:$src2))]>;
625
626 } // Defs = [PSW]
627
628 let isCommutable = 1 in { // X = MUL Y, Z == X = MUL Z, Y
629 def MUL32rr : Pseudo<(outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
630                      "msr\t{$dst, $src2}",
631                      [(set GR32:$dst, (mul GR32:$src1, GR32:$src2))]>;
632 def MUL64rr : Pseudo<(outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
633                      "msgr\t{$dst, $src2}",
634                      [(set GR64:$dst, (mul GR64:$src1, GR64:$src2))]>;
635
636 def MUL64rrP   : Pseudo<(outs GR64P:$dst), (ins GR64P:$src1, GR32:$src2),
637                         "mr\t{$dst, $src2}",
638                         []>;
639 def UMUL64rrP  : Pseudo<(outs GR64P:$dst), (ins GR64P:$src1, GR32:$src2),
640                          "mlr\t{$dst, $src2}",
641                          []>;
642 def UMUL128rrP : Pseudo<(outs GR128:$dst), (ins GR128:$src1, GR64:$src2),
643                         "mlgr\t{$dst, $src2}",
644                         []>;
645 }
646
647
648 def MUL32ri16   : Pseudo<(outs GR32:$dst), (ins GR32:$src1, i32i16imm:$src2),
649                          "mhi\t{$dst, $src2}",
650                          [(set GR32:$dst, (mul GR32:$src1, i32immSExt16:$src2))]>;
651 def MUL32ri     : Pseudo<(outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
652                          "msfi\t{$dst, $src2}",
653                          [(set GR32:$dst, (mul GR32:$src1, imm:$src2))]>;
654 def MUL64ri16   : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64imm:$src2),
655                          "mghi\t{$dst, $src2}",
656                          [(set GR64:$dst, (mul GR64:$src1, immSExt16:$src2))]>;
657 def MUL64ri32   : Pseudo<(outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
658                          "msgfi\t{$dst, $src2}",
659                          [(set GR64:$dst, (mul GR64:$src1, i64immSExt32:$src2))]>;
660
661 def MUL32rm : Pseudo<(outs GR32:$dst), (ins GR32:$src1, rriaddr:$src2),
662                      "msy\t{$dst, $src2}",
663                      [(set GR32:$dst, (mul GR32:$src1, (load rriaddr:$src2)))]>;
664 def MUL64rm : Pseudo<(outs GR64:$dst), (ins GR64:$src1, rriaddr:$src2),
665                      "msgy\t{$dst, $src2}",
666                      [(set GR64:$dst, (mul GR64:$src1, (load rriaddr:$src2)))]>;
667
668 def MULSX64rr32 : Pseudo<(outs GR64:$dst), (ins GR64:$src1, GR32:$src2),
669                          "msgfr\t{$dst, $src2}",
670                          [(set GR64:$dst, (mul GR64:$src1, (sext GR32:$src2)))]>;
671
672 def SDIVREM64rrP  : Pseudo<(outs GR64P:$dst), (ins GR64P:$src1, GR32:$src2),
673                            "dr\t{$dst, $src2}",
674                            []>;
675
676 def SDIVREM128rrP : Pseudo<(outs GR128:$dst), (ins GR128:$src1, GR64:$src2),
677                            "dsgr\t{$dst, $src2}",
678                            []>;
679
680 def UDIVREM64rrP  : Pseudo<(outs GR64P:$dst), (ins GR64P:$src1, GR32:$src2),
681                            "dlr\t{$dst, $src2}",
682                            []>;
683
684 def UDIVREM128rrP : Pseudo<(outs GR128:$dst), (ins GR128:$src1, GR64:$src2),
685                            "dlgr\t{$dst, $src2}",
686                            []>;
687
688 } // isTwoAddress = 1
689
690 //===----------------------------------------------------------------------===//
691 // Shifts
692
693 let isTwoAddress = 1 in
694 def SRL32rri : Pseudo<(outs GR32:$dst), (ins GR32:$src, riaddr32:$amt),
695                       "srl\t{$src, $amt}",
696                       [(set GR32:$dst, (srl GR32:$src, riaddr32:$amt))]>;
697 def SRL64rri : Pseudo<(outs GR64:$dst), (ins GR64:$src, riaddr:$amt),
698                       "srlg\t{$dst, $src, $amt}",
699                       [(set GR64:$dst, (srl GR64:$src, (i32 (trunc riaddr:$amt))))]>;
700 def SRLA64ri  : Pseudo<(outs GR64:$dst), (ins GR64:$src, i32imm:$amt),
701                       "srlg\t{$dst, $src, $amt}",
702                       [(set GR64:$dst, (srl GR64:$src, (i32 imm:$amt)))]>;
703
704 let isTwoAddress = 1 in
705 def SHL32rri : Pseudo<(outs GR32:$dst), (ins GR32:$src, riaddr32:$amt),
706                       "sll\t{$src, $amt}",
707                       [(set GR32:$dst, (shl GR32:$src, riaddr32:$amt))]>;
708 def SHL64rri : Pseudo<(outs GR64:$dst), (ins GR64:$src, riaddr:$amt),
709                       "sllg\t{$dst, $src, $amt}",
710                       [(set GR64:$dst, (shl GR64:$src, (i32 (trunc riaddr:$amt))))]>;
711 def SHL64ri  : Pseudo<(outs GR64:$dst), (ins GR64:$src, i32imm:$amt),
712                       "sllg\t{$dst, $src, $amt}",
713                       [(set GR64:$dst, (shl GR64:$src, (i32 imm:$amt)))]>;
714
715
716 let Defs = [PSW] in {
717 let isTwoAddress = 1 in
718 def SRA32rri : Pseudo<(outs GR32:$dst), (ins GR32:$src, riaddr32:$amt),
719                       "sra\t{$src, $amt}",
720                       [(set GR32:$dst, (sra GR32:$src, riaddr32:$amt)),
721                        (implicit PSW)]>;
722 def SRA64rri : Pseudo<(outs GR64:$dst), (ins GR64:$src, riaddr:$amt),
723                       "srag\t{$dst, $src, $amt}",
724                       [(set GR64:$dst, (sra GR64:$src, (i32 (trunc riaddr:$amt)))),
725                        (implicit PSW)]>;
726 def SRA64ri  : Pseudo<(outs GR64:$dst), (ins GR64:$src, i32imm:$amt),
727                       "srag\t{$dst, $src, $amt}",
728                       [(set GR64:$dst, (sra GR64:$src, (i32 imm:$amt))),
729                        (implicit PSW)]>;
730 } // Defs = [PSW]
731
732 //===----------------------------------------------------------------------===//
733 // Test instructions (like AND but do not produce any result
734
735 // Integer comparisons
736 let Defs = [PSW] in {
737 def CMP32rr : Pseudo<(outs), (ins GR32:$src1, GR32:$src2),
738                      "cr\t$src1, $src2",
739                      [(SystemZcmp GR32:$src1, GR32:$src2), (implicit PSW)]>;
740 def CMP64rr : Pseudo<(outs), (ins GR64:$src1, GR64:$src2),
741                      "cgr\t$src1, $src2",
742                      [(SystemZcmp GR64:$src1, GR64:$src2), (implicit PSW)]>;
743
744 def CMP32ri   : Pseudo<(outs), (ins GR32:$src1, i32imm:$src2),
745                        "cfi\t$src1, $src2",
746                        [(SystemZcmp GR32:$src1, imm:$src2), (implicit PSW)]>;
747 def CMP64ri32 : Pseudo<(outs), (ins GR64:$src1, i64i32imm:$src2),
748                        "cgfi\t$src1, $src2",
749                        [(SystemZcmp GR64:$src1, i64immSExt32:$src2),
750                         (implicit PSW)]>;
751
752 def CMP32rm : Pseudo<(outs), (ins GR32:$src1, rriaddr:$src2),
753                      "cy\t$src1, $src2",
754                      [(SystemZcmp GR32:$src1, (load rriaddr:$src2)),
755                       (implicit PSW)]>;
756 def CMP64rm : Pseudo<(outs), (ins GR64:$src1, rriaddr:$src2),
757                      "cg\t$src1, $src2",
758                      [(SystemZcmp GR64:$src1, (load rriaddr:$src2)),
759                       (implicit PSW)]>;
760
761 def UCMP32rr : Pseudo<(outs), (ins GR32:$src1, GR32:$src2),
762                       "clr\t$src1, $src2",
763                       [(SystemZucmp GR32:$src1, GR32:$src2), (implicit PSW)]>;
764 def UCMP64rr : Pseudo<(outs), (ins GR64:$src1, GR64:$src2),
765                       "clgr\t$src1, $src2",
766                       [(SystemZucmp GR64:$src1, GR64:$src2), (implicit PSW)]>;
767
768 def UCMP32ri   : Pseudo<(outs), (ins GR32:$src1, i32imm:$src2),
769                         "clfi\t$src1, $src2",
770                         [(SystemZucmp GR32:$src1, imm:$src2), (implicit PSW)]>;
771 def UCMP64ri32 : Pseudo<(outs), (ins GR64:$src1, i64i32imm:$src2),
772                         "clgfi\t$src1, $src2",
773                         [(SystemZucmp GR64:$src1, i64immZExt32:$src2),
774                          (implicit PSW)]>;
775
776 def UCMP32rm : Pseudo<(outs), (ins GR32:$src1, rriaddr:$src2),
777                       "cly\t$src1, $src2",
778                       [(SystemZucmp GR32:$src1, (load rriaddr:$src2)),
779                        (implicit PSW)]>;
780 def UCMP64rm : Pseudo<(outs), (ins GR64:$src1, rriaddr:$src2),
781                       "clg\t$src1, $src2",
782                       [(SystemZucmp GR64:$src1, (load rriaddr:$src2)),
783                        (implicit PSW)]>;
784
785 def CMPSX64rr32  : Pseudo<(outs), (ins GR64:$src1, GR32:$src2),
786                           "cgfr\t$src1, $src2",
787                           [(SystemZucmp GR64:$src1, (sext GR32:$src2)),
788                            (implicit PSW)]>;
789 def UCMPZX64rr32 : Pseudo<(outs), (ins GR64:$src1, GR32:$src2),
790                           "clgfr\t$src1, $src2",
791                           [(SystemZucmp GR64:$src1, (zext GR32:$src2)),
792                            (implicit PSW)]>;
793
794 def CMPSX64rm32   : Pseudo<(outs), (ins GR64:$src1, rriaddr:$src2),
795                            "cgf\t$src1, $src2",
796                            [(SystemZucmp GR64:$src1, (sextloadi64i32 rriaddr:$src2)),
797                             (implicit PSW)]>;
798 def UCMPZX64rm32  : Pseudo<(outs), (ins GR64:$src1, rriaddr:$src2),
799                            "clgf\t$src1, $src2",
800                            [(SystemZucmp GR64:$src1, (zextloadi64i32 rriaddr:$src2)),
801                             (implicit PSW)]>;
802
803 // FIXME: Add other crazy ucmp forms
804
805 } // Defs = [PSW]
806
807 //===----------------------------------------------------------------------===//
808 // Non-Instruction Patterns.
809 //===----------------------------------------------------------------------===//
810
811 // anyext
812 def : Pat<(i64 (anyext GR32:$src)),
813           (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_32bit)>;
814
815 //===----------------------------------------------------------------------===//
816 // Peepholes.
817 //===----------------------------------------------------------------------===//
818
819 // FIXME: use add/sub tricks with 32678/-32768
820
821 // trunc patterns
822 def : Pat<(i32 (trunc GR64:$src)),
823           (EXTRACT_SUBREG GR64:$src, subreg_32bit)>;
824
825 // sext_inreg patterns
826 def : Pat<(sext_inreg GR64:$src, i32),
827           (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, subreg_32bit))>;
828
829 // extload patterns
830 def : Pat<(extloadi32i8  rriaddr:$src), (MOVZX32rm8  rriaddr:$src)>;
831 def : Pat<(extloadi32i16 rriaddr:$src), (MOVZX32rm16 rriaddr:$src)>;
832 def : Pat<(extloadi64i8  rriaddr:$src), (MOVZX64rm8  rriaddr:$src)>;
833 def : Pat<(extloadi64i16 rriaddr:$src), (MOVZX64rm16 rriaddr:$src)>;
834 def : Pat<(extloadi64i32 rriaddr:$src), (MOVZX64rm32 rriaddr:$src)>;
835
836 // calls
837 def : Pat<(SystemZcall (i64 tglobaladdr:$dst)),
838           (CALLi tglobaladdr:$dst)>;
839 def : Pat<(SystemZcall (i64 texternalsym:$dst)),
840           (CALLi texternalsym:$dst)>;
841
842 // muls
843 def : Pat<(mulhs GR32:$src1, GR32:$src2),
844           (EXTRACT_SUBREG (MUL64rrP (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
845                                                    GR32:$src1, subreg_odd),
846                                     GR32:$src2),
847                           subreg_even)>;
848
849 def : Pat<(mulhu GR32:$src1, GR32:$src2),
850           (EXTRACT_SUBREG (UMUL64rrP (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
851                                                     GR32:$src1, subreg_odd),
852                                      GR32:$src2),
853                           subreg_even)>;
854 def : Pat<(mulhu GR64:$src1, GR64:$src2),
855           (EXTRACT_SUBREG (UMUL128rrP (INSERT_SUBREG (i128 (IMPLICIT_DEF)),
856                                                      GR64:$src1, subreg_odd),
857                                       GR64:$src2),
858                           subreg_even)>;
859
860 // divs
861 // FIXME: Add memory versions
862 def : Pat<(sdiv GR32:$src1, GR32:$src2),
863           (EXTRACT_SUBREG (SDIVREM64rrP (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
864                                                        GR32:$src1, subreg_odd),
865                                          GR32:$src2),
866                           subreg_odd)>;
867 def : Pat<(sdiv GR64:$src1, GR64:$src2),
868           (EXTRACT_SUBREG (SDIVREM128rrP (INSERT_SUBREG (i128 (IMPLICIT_DEF)),
869                                                         GR64:$src1, subreg_odd),
870                                          GR64:$src2),
871                           subreg_odd)>;
872 def : Pat<(udiv GR32:$src1, GR32:$src2),
873           (EXTRACT_SUBREG (UDIVREM64rrP (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
874                                                        GR32:$src1, subreg_odd),
875                                          GR32:$src2),
876                           subreg_odd)>;
877 def : Pat<(udiv GR64:$src1, GR64:$src2),
878           (EXTRACT_SUBREG (UDIVREM128rrP (INSERT_SUBREG (i128 (IMPLICIT_DEF)),
879                                                         GR64:$src1, subreg_odd),
880                                          GR64:$src2),
881                           subreg_odd)>;
882
883 // rems
884 // FIXME: Add memory versions
885 def : Pat<(srem GR32:$src1, GR32:$src2),
886           (EXTRACT_SUBREG (SDIVREM64rrP (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
887                                                        GR32:$src1, subreg_odd),
888                                          GR32:$src2),
889                           subreg_even)>;
890 def : Pat<(srem GR64:$src1, GR64:$src2),
891           (EXTRACT_SUBREG (SDIVREM128rrP (INSERT_SUBREG (i128 (IMPLICIT_DEF)),
892                                                         GR64:$src1, subreg_odd),
893                                          GR64:$src2),
894                           subreg_even)>;
895 def : Pat<(urem GR32:$src1, GR32:$src2),
896           (EXTRACT_SUBREG (UDIVREM64rrP (INSERT_SUBREG (i64 (IMPLICIT_DEF)),
897                                                        GR32:$src1, subreg_odd),
898                                          GR32:$src2),
899                           subreg_even)>;
900 def : Pat<(urem GR64:$src1, GR64:$src2),
901           (EXTRACT_SUBREG (UDIVREM128rrP (INSERT_SUBREG (i128 (IMPLICIT_DEF)),
902                                                         GR64:$src1, subreg_odd),
903                                          GR64:$src2),
904                           subreg_even)>;